
1 / 62

Storage Management

Lecture 4: Disk Space Management



2 / 62

Storage Management

Administrivia

• Collaboration allowed for programming assignments
• Exercise sheets and exams will be individual tasks
• Assignment 1 is due on September 13th @ 11:59pm



3 / 62

Storage Management

Today’s Agenda

Storage Management
1.1 Recap
1.2 Layered Architecture
1.3 Hardware Properties
1.4 Disk-Oriented DBMS
1.5 File Storage
1.6 Page Layout
1.7 Tuple Layout



4 / 62

Storage Management Recap

Recap



5 / 62

Storage Management Recap

List of SQL Features

• Aggregations + Group By
• String / Date / Time Operations
• Output Control + Redirection
• Nested Queries
• Join
• Common Table Expressions
• Window Functions



6 / 62

Storage Management Recap

Window Functions

• Task: Get the name of the students with the second highest grade for each course.
SELECT cid, sid, grade, rank FROM (
SELECT *, RANK()
OVER (PARTITION BY cid ORDER BY grade ASC) AS rank
FROM enrolled

) AS ranking
WHERE ranking.rank = 2 --- Update rank

cid sid grade rank

2 4 C 2



7 / 62

Storage Management Recap

Common Table Expressions

• Task: Find students record with the highest id that is enrolled in at least one course.
WITH cteSource (maxId) AS (

SELECT MAX(sid) FROM enrolled
)
SELECT name FROM students, cteSource

WHERE students.sid = cteSource.maxId



8 / 62

Storage Management Recap

Lateral Join

• Task: List the names of students with hobbies.
SELECT name
FROM students, LATERAL (SELECT sid FROM hobbies

WHERE students.sid = hobbies.sid) ss;

name

Maria
Maria
Rahul



9 / 62

Storage Management Layered Architecture

Layered Architecture



10 / 62

Storage Management Layered Architecture

Overview

• We now understand what a database looks like at a logical level and how to write
queries to read/write data from it (i.e., physical level).

• We will next learn how to build software that manages a database.



11 / 62

Storage Management Layered Architecture

Anatomy of a Database System [Monologue]

• Process Manager
▶ Manages client connections

• Query Processor
▶ Parse, plan and execute queries on top of storage manager

• Transactional Storage Manager
▶ Knits together buffer management, concurrency control, logging and recovery

• Shared Utilities
▶ Manage hardware resources across threads

https://dsf.berkeley.edu/papers/fntdb07-architecture.pdf


12 / 62

Storage Management Layered Architecture

Anatomy of a Database System [Monologue] (2)

• Process Manager
▶ Connection Manager + Admission Control

• Query Processor
▶ Query Parser
▶ Query Optimizer (a.k.a., Query Planner)
▶ Query Executor

• Transactional Storage Manager
▶ Lock Manager
▶ Access Methods (a.k.a., Indexes)
▶ Buffer Pool Manager
▶ Log Manager

• Shared Utilities
▶ Memory, Disk, and Networking Manager

https://dsf.berkeley.edu/papers/fntdb07-architecture.pdf


13 / 62

Storage Management Layered Architecture

The Problem

Application
Data

?
Filesystem

Logical Drive

Physical Drive



14 / 62

Storage Management Layered Architecture

Requirements

There are different classes of requirements:
• Data Independence

▶ application logic must be shielded from physical storage implementation details
▶ physical storage can be reorganized
▶ hardware can be changed

• Scalability
▶ must scale to (nearly) arbitrary data size
▶ efficiently access to individual tuples
▶ efficiently update an arbitrary subset of tuples

• Reliability
▶ data must never be lost
▶ must cope with hardware and software failures

• ...



15 / 62

Storage Management Layered Architecture

Layered Architecture

• implementing all these requirements on “bare metal” is hard
• and not desirable
• a DBMS must be maintainable and extensible

Instead: use a layered architecture
• the DBMS logic is split into levels of functionality
• each level is implemented by a specific layer
• each layer interacts only with the next lower layer
• simplifies and modularizes the code



16 / 62

Storage Management Layered Architecture

A Simple Layered Architecture

 

DB

access layer

query layer

storage layer

query translation
and optimization

managing records
and access paths

DB buffer and
hardware interface

Purpose

declarative queries
sets of records

records

page

Access Granularity



17 / 62

Storage Management Layered Architecture

A Simple Layered Architecture (2)

• layers can be characterized by the data items they manipulate
• lower layer offers functionality for the next higher level
• keeps the complexity of individual layers reasonable
• rough structure: physical → low level → high level

This is a reasonable architecture, but simplified.
A more detailed architecture is needed for a complete DBMS.



18 / 62

Storage Management Layered Architecture

A More Detailed Architecture

DB

granularity:
data structures:
 
granularity:

block, file
free space inventory,
extent table ...
track, cylinder, ...

granularity:
data structures:
 
granularity:

page, segment
page table,
block map ...
block, file

granularity:
data structures:
 
granularity:

physical record,...
free space inventory,
page indexes ...
page, segment

granularity:
data structures:
 
granularity:

logical record, key,...
access path,
physical schema ...
physical record, ...

granularity:
data structures:
 
granularity:

relation, view, ...
logical schema,
integrity constraints
logical record, key, ...

granularity: relation, view, ...

Device Interface

File Interface

DB Buffer

Record Access

Record Interface

Query Interface
SQL,...

FIND NEXT record,
STORE record

write record,
insert in B-tree,...

access page j,
release page j

read block k,
write block k

application

logical data

access paths

physical data

page structure

storage allocation

external storage



19 / 62

Storage Management Layered Architecture

A More Detailed Architecture (2)

A few pieces are still missing:
• transaction isolation
• recovery

but otherwise it is a reasonable architecture.

Some system deviate slightly from this classical architecture
• many DBMSs nowadays delegate disk access to the OS
• some DBMSs delegate buffer management to the OS (tricky, though)
• a few DBMSs allow for direct logical record access
• ...



20 / 62

Storage Management Hardware Properties

Hardware Properties



21 / 62

Storage Management Hardware Properties

Impact of Hardware

Must take hardware properties into account when designing a storage system.

For a long time dominated by Moore’s Law:
The number of transistors on a chip doubles every 18 month.

Indirectly drove a number of other parameters:
• main memory size
• CPU speed

▶ no longer true!
• HDD capacity

▶ start getting problematic, too. density is very high
▶ only capacity, not access time



22 / 62

Storage Management Hardware Properties

Memory Hierarchy

archive storage (offline)

archive storage (nearline)

external storage (online)

main memory

cache

register

capacity
latency

 

bytes
1ns

K-M bytes
<10ns

G bytes
<100ns

T bytes
ms

T bytes
sec

T-P bytes
sec-min



23 / 62

Storage Management Hardware Properties

Memory Hierarchy (2)

There are huge gaps between hierarchy levels
• traditionally, main memory vs. disk is most important
• but memory vs. cache etc. also relevant

The DBMS must aim to maximize locality.



24 / 62

Storage Management Hardware Properties

Hard Disk Access

Hard Disks are still the dominant external storage:
• rotating platters, mechanical effects
• transfer rate: ca. 150MB/s
• seek time ca. 3ms
• huge imbalance in random vs. sequential I/O!



25 / 62

Storage Management Hardware Properties

Hard Disk Access (2)

The DBMS must take these effects into account
• sequential access is much more efficient
• traditional DBMSs are designed to maximize sequential access
• gap is growing instead of shrinking
• even SSDs are slightly asymmetric (and have other problems)
• DBMSs try to reduce number of writes to random pages by organizing data in

contiguous blocks.
• Allocating multiple pages at the same time is called a segment



26 / 62

Storage Management Hardware Properties

Hard Disk Access (3)

Techniques to speed up disk access:
• do not move the head for every single tuple
• instead, load larger chunks. typical granularity: one page
• page size varies. traditionally 4KB, nowadays often 16K and more (trade-off)

 
1 2 3 4

5 6 7 8

9 10 11 ...



27 / 62

Storage Management Hardware Properties

Hard Disk Access (4)

The page structure is very prominent within the DBMS
• granularity of I/O
• granularity of buffering/memory management
• granularity of recovery

Page is still too small to hide random I/O though
• sequential page access is important
• DBMSs use read-ahead techniques
• asynchronous write-back



28 / 62

Storage Management Hardware Properties

Database System Architectures

Storage Management

Disk-Centric Database System
• The DBMS assumes that the primary storage location of the database is HDD.

Memory-Centric Database System (MMDB)
• The DBMS assumes that the primary storage location of the database is DRAM.

Buffer Management

The DBMS’s components manage the movement of data between non-volatile and volatile
storage.



29 / 62

Storage Management Hardware Properties

Access Times

Access Time Hardware Scaled Time

0.5 ns L1 Cache 0.5 sec
7 ns L2 Cache 7 sec
100 ns DRAM 100 sec
350 ns NVM 6 min
150 us SSD 1.7 days
10 ms HDD 16.5 weeks
30 ms Network Storage 11.4 months
1 s Tape Archives 31.7 years

Source: Latency numbers every programmer should know

https://gist.github.com/hellerbarde/2843375


30 / 62

Storage Management Disk-Oriented DBMS

Disk-Oriented DBMS



31 / 62

Storage Management Disk-Oriented DBMS

Design Goals

• Allow the DBMS to manage databases that exceed the amount of memory available.
• Reading/writing to disk is expensive, so it must be managed carefully to avoid large

stalls and performance degradation.



32 / 62

Storage Management Disk-Oriented DBMS

Disk-Oriented DBMS

Query execution engine −→ Storage Manager: Get Page 2

Memory | Buffer Pool Page Directory - - -

Disk | Database File Page Directory 8 5 1 4 7 3 2 9 6



33 / 62

Storage Management Disk-Oriented DBMS

Disk-Oriented DBMS

• Each page has a header with the page’s metadata (e.g., page number, free space bitmap)
• Query execution engine gets pointer to page 2

▶ Interprets the contents of page 2 using the header
• Page directory is typically implemented as a hash table

▶ page number −→ buffer pool slot
▶ page number −→ file block

• Page migration between disk and memory is known as buffer management



34 / 62

Storage Management Disk-Oriented DBMS

Why not use the OS?

• One can use memory mapping (mmap) to store the contents of a file into a process’
address space.

• The OS is responsible for moving data for moving the files’ pages in and out of
memory.

Problems
• What if we allow multiple threads to access the mmap files to hide page fault stalls?
• This works good enough for read-only access.
• It is complicated when there are multiple writers.



35 / 62

Storage Management Disk-Oriented DBMS

Why not use the OS?

• There are some solutions to this problem:
▶ madvise: Tell the OS how you expect to read certain pages.
▶ mlock: Tell the OS that memory ranges cannot be paged out.
▶ msync: Tell the OS to flush memory ranges out to disk.

• Database systems using mmap
▶ Full Usage: MonetDB, LMDB, e.t.c.
▶ Partial Usage: mongoDB, MemSQL, e.t.c.



36 / 62

Storage Management Disk-Oriented DBMS

Why not use the OS?

• DBMS (almost) always wants to control things itself and can do a better job at it.
▶ Flushing dirty pages to disk in the correct order.
▶ Specialized prefetching.
▶ Buffer replacement policy.
▶ Thread/process scheduling.



37 / 62

Storage Management Disk-Oriented DBMS

Storage Management

• File Storage
• Page Layout
• Tuple Layout



38 / 62

Storage Management File Storage

File Storage



39 / 62

Storage Management File Storage

File Storage

• The DBMS stores a database as one or more files on disk.
▶ The OS doesn’t know anything about the contents of these files.

• Early systems in the 1980s used custom filesystems on raw storage.
▶ Some "enterprise" DBMSs still support this.
▶ Most newer DBMSs do not roll their own filesystem



40 / 62

Storage Management File Storage

Storage Manager

• The storage manager is responsible for maintaining a database’s files.
▶ Some do their own scheduling of I/O operations to improve spatial and temporal locality

of pages.
• It organizes the files as a collection of pages.

▶ Tracks data being read from and written to pages.
▶ Tracks the available free space.



41 / 62

Storage Management File Storage

Database Pages

• A page is a fixed-size block of data.
▶ It can contain tuples, meta-data, indexes, log records. . .
▶ Most systems do not mix page types.
▶ Some systems require a page to be self-contained. Why?

• Each page is given a unique identifier.
▶ The DBMS uses an indirection layer to map page ids to physical locations.
▶ This is implemented as a page directory table.



42 / 62

Storage Management File Storage

Database Pages

• There are three different notions of "pages" in a DBMS:
▶ Hardware Page (usually 4 KB)
▶ OS Page (usually 4 KB)
▶ Database Page (512 B – 16 KB)

• By hardware page, we mean at what level the device can guarantee a "failsafe write".



43 / 62

Storage Management File Storage

Page Storage Architectures

• Different DBMSs manage pages in files on disk in different ways.
▶ Heap File Organization
▶ Sequential / Sorted File Organization
▶ Hashing File Organization

• At this point in the hierarchy we don’t need to know anything about what is inside of
the pages.



44 / 62

Storage Management File Storage

Database Heap

• A heap file is an unordered collection of pages where tuples are stored in random
order.
▶ Create / Get /Write / Delete Page
▶ Must also support iterating over all pages.

• Need meta-data to keep track of what pages exist and which ones have free space.
• Two ways to represent a heap file:

▶ Linked List
▶ Page Directory



45 / 62

Storage Management File Storage

Heap File Organization: Linked List

• Maintain a header page at the beginning of the
file that stores two pointers:
▶ HEAD of the free page list.
▶ HEAD of the data page list.

• Each page keeps track of the number of free
slots in itself.



46 / 62

Storage Management File Storage

Heap File Organization: Page Directory

• The DBMS maintains special pages that tracks
the location of data pages in the database files.

• The directory also records the number of free
slots per page.

• The DBMS has to make sure that the directory
pages are in sync with the data pages.



47 / 62

Storage Management Page Layout

Page Layout



48 / 62

Storage Management Page Layout

Page Header

• Every page contains a header of meta-data about the page’s contents.
▶ Page Size
▶ Checksum
▶ DBMS Version
▶ Transaction Visibility
▶ Compression Information

• Some systems require pages to be self-contained (e.g., Oracle).



49 / 62

Storage Management Page Layout

Page Layout

• For any page storage architecture, we now need to understand how to organize the
data stored inside of the page.
▶ We are still assuming that we are only storing tuples.

• Two approaches:
▶ Tuple-oriented
▶ Log-structured



50 / 62

Storage Management Page Layout

Tuple Storage

• How to store tuples in a page?
• Strawman Idea: Keep track of the number of

tuples in a page and then just append a new
tuple to the end.
▶ What happens if we delete a tuple?
▶ What happens if we have a variable-length

attribute?



51 / 62

Storage Management Page Layout

Slotted Pages

• The most common page layout scheme is called
slotted pages.

• The slot array maps "slots" to the tuples’
starting position offsets.

• The header keeps track of:
▶ The number of used slots
▶ The offset of the starting location of the last slot

used.



52 / 62

Storage Management Page Layout

Log-structured File Organization

• Instead of storing tuples in pages, the DBMS
only stores log records.

• The system appends log records to the file of
how the database was modified:
▶ Inserts store the entire tuple.
▶ Deletes mark the tuple as deleted.
▶ Updates contain the delta of just the attributes

that were modified.



53 / 62

Storage Management Page Layout

Log-structured File Organization

• To read a record, the DBMS scans the log
backwards and "recreates" the tuple to find what
it needs.

• Build indexes to allow it to jump to locations in
the log.

• Periodically compact the log.



54 / 62

Storage Management Page Layout

Log-structured Compaction

• Compaction coalesces larger log files
into smaller files by removing
unnecessary records.



55 / 62

Storage Management Tuple Layout

Tuple Layout



56 / 62

Storage Management Tuple Layout

Tuple Layout

• A tuple is essentially a sequence of bytes.
• It’s the job of the DBMS to interpret those bytes into attribute types and values.



57 / 62

Storage Management Tuple Layout

Tuple Header

• Each tuple is prefixed with a header that
contains meta-data about it.
▶ Visibility info (concurrency control)
▶ Bit map for keeping track of NULL values.

• We do not need to store meta-data about the
schema. Why?



58 / 62

Storage Management Tuple Layout

Tuple Data

• Attributes are typically stored in the order that
you specify them when you create the table.

• This is done for software engineering reasons.
CREATE TABLE foo (

a INT PRIMARY KEY,
b INT NOT NULL,
c INT,
d DOUBLE,
e FLOAT

);



59 / 62

Storage Management Tuple Layout

Denormalized Tuple Data

• Can physically denormalize (e.g., "pre join")
related tuples and store them together in the
same page.
▶ Potentially reduces the amount of I/O for

common workload patterns.
▶ Can make updates more expensive.
▶ IBM System R did this in the 1970s.
▶ Several NoSQL DBMSs do this as well.

CREATE TABLE foo (
a INT PRIMARY KEY,
b INT NOT NULL

);
CREATE TABLE bar (

c INT PRIMARY KEY,
a INT REFERENCES foo (a)

);



60 / 62

Storage Management Tuple Layout

Tuple IDs

• The DBMS needs a way to keep track of individual tuples.
• Each tuple is assigned a unique record identifier.

▶ Most common: page_id + offset/slot
▶ Can also contain file location info.

• An application cannot rely on these ids to mean anything.
• Examples

▶ PostgreSQL: CTID (6-bytes)
▶ SQLite: ROWID (10-bytes)
▶ Oracle: ROWID (8-bytes)



61 / 62

Storage Management Tuple Layout

Conclusion

• Database systems have a layered architecture.
• Design of database system components affected by hardware properties.
• Database is physically organized as a collection of pages on disk.
• Different ways to manage pages and tuples.



62 / 62

Storage Management Tuple Layout

Next Class

• Value Representation
• Storage Models


	Storage Management
	Recap
	Layered Architecture
	Hardware Properties
	Disk-Oriented DBMS
	File Storage
	Page Layout
	Tuple Layout


