
1 / 52

Memory Management

Lecture 5: Memory Management

2 / 52

Memory Management

Administrivia

• Assignment 1 is due on September 13th @ 11:59pm

3 / 52

Memory Management

Today’s Agenda

Memory Management
1.1 Recap
1.2 Dynamic Memory Management
1.3 Segments
1.4 System Catalog

4 / 52

Memory Management Recap

Recap

5 / 52

Memory Management Recap

Layered Architecture

DB

granularity:
data structures:

granularity:

block, file
free space inventory,
extent table ...
track, cylinder, ...

granularity:
data structures:

granularity:

page, segment
page table,
block map ...
block, file

granularity:
data structures:

granularity:

physical record,...
free space inventory,
page indexes ...
page, segment

granularity:
data structures:

granularity:

logical record, key,...
access path,
physical schema ...
physical record, ...

granularity:
data structures:

granularity:

relation, view, ...
logical schema,
integrity constraints
logical record, key, ...

granularity: relation, view, ...

Device Interface

File Interface

DB Buffer

Record Access

Record Interface

Query Interface
SQL,...

FIND NEXT record,
STORE record

write record,
insert in B-tree,...

access page j,
release page j

read block k,
write block k

application

logical data

access paths

physical data

page structure

storage allocation

external storage

6 / 52

Memory Management Recap

Database System Architectures

• Disk-Centric Database System
▶ The DBMS assumes that the primary storage location of the database is HDD.

• Memory-Centric Database System
▶ The DBMS assumes that the primary storage location of the database is DRAM.

7 / 52

Memory Management Recap

Slotted Pages

• The most common page layout scheme is called
slotted pages.

• The slot array maps "slots" to the tuples’
starting position offsets.

• The header keeps track of:
▶ The number of used slots
▶ The offset of the starting location of the last slot

used.

8 / 52

Memory Management Recap

Log-structured File Organization

• Instead of storing tuples in pages, the DBMS
only stores log records.

• The system appends log records to the file of
how the database was modified:
▶ Inserts store the entire tuple.
▶ Deletes mark the tuple as deleted.
▶ Updates contain the delta of just the attributes

that were modified.

9 / 52

Memory Management Recap

Log-structured File Organization

• To read a record, the DBMS scans the log
backwards and "recreates" the tuple to find what
it needs.

• Build indexes to allow it to jump to locations in
the log.

• Periodically compact the log.

10 / 52

Memory Management Recap

Today’s Agenda

• Dynamic Memory Management
• Segments
• System Catalog

11 / 52

Memory Management Dynamic Memory Management

Dynamic Memory Management

12 / 52

Memory Management Dynamic Memory Management

Virtual Address Space

Each Linux process runs within its own virtual address space
• The kernel pretends that each process has access to a (huge) continuous range of

addresses (≈ 256 TiB on x86-64)
• Virtual addresses are mapped to physical addresses by the kernel using page tables

and the memory management unit (MMU)
• Greatly simplifies memory management code in the kernel and improves security due

to memory isolation
• Allows for useful “tricks” such as memory-mapping files

13 / 52

Memory Management Dynamic Memory Management

Virtual Address Space

The kernel also uses virtual memory
• Part of the address space has to be reserved for

kernel memory
• This kernel-space memory is mapped to the

same physical address for each process
• Access to this memory is restricted
• Most of the address space is unused
• MMUs on x86-64 platforms only support 48 bit

pointers at the moment

14 / 52

Memory Management Dynamic Memory Management

Virtual Address Space

User-space memory is organized in segments
• Stack segment
• Memory mapping segment
• Heap segment
• BSS, data and text segments

Segments grow over time
• Stack and memory mapping segments usually

grow down (i.e. addresses decrease)
• Heap segment usually grows up (i.e. addresses

increase)

15 / 52

Memory Management Dynamic Memory Management

Stack Segment

Stack memory is typically used for objects with automatic storage duration
• The compiler can statically decide when allocations and deallocations must happen
• The memory layout is known at compile-time
• Allows for highly optimized code (allocations and deallocations simply

increase/decrease a pointer)

Fast, but inflexible memory
• The stack grows and shrinks as functions push and pop local variables
• Stack variables only exist while the function that created them is running
• Array sizes must be known at compile-time
• No dynamic data structures are possible (trees, graphs, e.t.c.)

16 / 52

Memory Management Dynamic Memory Management

Stack Segment

All variables are allocated using stack memory
include <stdio.h>

double multiplyByTwo (double input) {
double twice = input * 2.0;
return twice;

}

int main (int argc, char *argv[]){
int age = 30;
double salary = 12345.67;
double myList[3] = {1.2, 2.3, 3.4};

printf("double your salary is %.3f\n", multiplyByTwo(salary));

return 0;
}

17 / 52

Memory Management Dynamic Memory Management

Heap Segment

The heap is typically used for objects with dynamic storage duration
• The programmer must explicitly manage allocations and deallocations
• Allows for more flexible memory management

Disadvantages
• Performance impact of heap-based memory allocator
• Memory fragmentation
• Dynamic memory allocation is error-prone

▶ Memory leaks
▶ Double free (deallocation)
▶ Make use of debugging tools! (GDB, Valgrind, ASAN)

https://www.cs.cmu.edu/~gilpin/tutorial/
https://www.valgrind.org/docs/manual/mc-manual.html
https://github.com/google/sanitizers

18 / 52

Memory Management Dynamic Memory Management

Heap Segment

All variables are allocated using heap memory
include <stdio.h>
include <stdlib.h>

double *multiplyByTwo (double *input) {
double *twice = malloc(sizeof(double));
*twice = *input * 2.0;
return twice;

}

int main (int argc, char *argv[]) {
int *age = malloc(sizeof(int)); *age = 30;
double *salary = malloc(sizeof(double)); *salary = 12345.67;
double *twiceSalary = multiplyByTwo(salary);
printf("double your salary is %.3f\n", *twiceSalary);

free(age); free(salary); free(twiceSalary);
return 0;

}

19 / 52

Memory Management Dynamic Memory Management

Dynamic Memory Management in C++

C++ provides several mechanisms for dynamic memory management
• Through new and delete expressions (discouraged)
• Through the C functions malloc and free (discouraged)
• Through smart pointers and ownership semantics (preferred)

Mechanisms give control over the storage duration and possibly lifetime of objects
• Level of control varies by method
• In all cases: manual intervention required

20 / 52

Memory Management Dynamic Memory Management

Dynamic Memory Management in C++

Key functions and features
• std::memcpy : copies bytes between non-overlapping memory regions
• std::memmove : copies bytes between possibly overlapping memory region
• std::unique_ptr: assumes unique ownership of another C++ object through a

pointer

https://en.cppreference.com/w/cpp/string/byte/memcpy
https://en.cppreference.com/w/cpp/memory/unique_ptr

21 / 52

Memory Management Dynamic Memory Management

Dynamic Memory Management in C++

Key functions and features
• copy semantics: Assignment and construction of classes typically employ copy

semantics
• move semantics: Move constructors/assignment operators typically “steal” the

resource of the argument
struct A {

A(const A& other);
A(A&& other);

};

int main() {
A a1;
A a2(a1); // calls copy constructor
A a3(std::move(a1)); // calls move constructor

}

22 / 52

Memory Management Dynamic Memory Management

Memory Mapping Files

POSIX defines the function mmap() in the header <sys/mman.h> which can be used to
manage the virtual address space of a process.
void* mmap(void* addr, size_t length, int prot, int flags, int fd, off_t offset)

• Arguments have different meaning depending on flags
• On error, the special value MAP_FAILED is returned
• If a pointer is returned successfully, it must be freed with munmap()
int munmap(void* addr, size_t length)

• addr must be a value returned from mmap()
• length must be the same value passed to mmap()
• munmap() should be called to follow the Resource Acquisition Is Initialization (RAII)

principle

23 / 52

Memory Management Dynamic Memory Management

Memory Mapping Files

One use case for mmap() is to map the contents of a file into the virtual memory. To map a
file, the arguments are used as follows:
void* mmap(void* addr, size_t length, int prot, int flags, int fd, off_t offset)

• addr: hint for the kernel which address to use, should be nullptr
• length: length of the returned memory mapping (usually multiple of page size)
• prot: determines how the mapped pages may be accessed and is a combination (with

bitwise or) of the following flags:
▶ PROT_EXEC: pages may be executed
▶ PROT_READ:pages may be read
▶ PROT_WRITE: pages may be written
▶ PROT_NONE: pages may not be accessed

24 / 52

Memory Management Dynamic Memory Management

Memory Mapping Files

One use case for mmap() is to map the contents of a file into the virtual memory. To map a
file, the arguments are used as follows:
void* mmap(void* addr, size_t length, int prot, int flags, int fd, off_t offset)

• flags: should be either MAP_SHARED (changes to the mapped memory are written to
the file) or MAP_PRIVATE (changes are not written to the file)

• fd: descriptor of an opened file
• offset: Offset into the file where the mapping should start (multiple of page size)

25 / 52

Memory Management Dynamic Memory Management

Memory Mapping Files

Example of reading integers from file /tmp/ints:
• Note: This assumes that integers are written in binary format to the file!
• Using mmap() to read from large files is often faster than using read()
• This is because with mmap() data is directly read from and written to the file without

copying it to a buffer first
int fd = open(``/tmp/ints'', O_RDONLY);
void* mappedFile= mmap(nullptr, 4096, PROT_READ, MAP_SHARED, fd, 0);
int* fileInts= static_cast<int*>(mappedFile);
for (int i = 0; i < 1024; ++i)

std::cout<< fileInts[i] << std::endl;
munmap(mappedFile, 4096);
close(fd)

26 / 52

Memory Management Dynamic Memory Management

Using mmap for Memory Allocation

mmap() can also be used to allocate memory by not associating it with a file.
• flags must be MAP_PRIVATE | MAP_ANONYMOUS
• fd must be -1; offset must be 0
• Used by malloc() internally
• Should be used manually only to allocate large regions of memory (e.g., several MBs)

Example of allocating 100 MiB of memory:
void* mem = mmap(nullptr, 100 * (1ull << 20),

PROT_READ | PROT_WRITE,
MAP_PRIVATE | MAP_ANONYMOUS,
-1, 0);

// [...]
munmap(mem, 100 * (1ull << 20));

27 / 52

Memory Management Dynamic Memory Management

Tuple Layout

• A tuple is essentially a sequence of bytes.
• The DBMS needs a way to keep track of individual tuples.
• Each tuple is assigned a unique record identifier: TID.
std::vector<char> tuple_data;

struct TID {
explicit TID(uint64_t raw_value);
TID(uint64_t page, uint16_t slot);
/// The TID could, for instance, look like the following:
/// - 48 bit page id
/// - 16 bit slot id
uint64_t value;

};

28 / 52

Memory Management Dynamic Memory Management

Tuple Schema

• It’s the job of the DBMS to interpret those bytes into attribute types and values.
std::vector<schema::Table> tables{
schema::Table(

"customer",
{

schema::Column("c_custkey", schema::Type::Integer()),
schema::Column("c_name", schema::Type::Varchar(25)),
schema::Column("c_address", schema::Type::Varchar(40)),
schema::Column("c_acctbal", schema::Type::Numeric(12, 2)),

}
};

auto schema = std::make_unique<schema::Schema>(std::move(tables));

29 / 52

Memory Management Dynamic Memory Management

Page Layout

• The most common page layout scheme is called
slotted pages.

• The slot array maps "slots" to the tuples’
starting position offsets.

• The header keeps track of:
▶ The number of used slots
▶ The offset of the starting location of the last slot

used.

30 / 52

Memory Management Dynamic Memory Management

Page Layout

• The header keeps track of:
▶ The number of used slots
▶ The offset of the starting location of the last slot used.

struct SlottedPage {
struct Header {
// Constructor
explicit Header(char *_buffer_frame, uint32_t page_size);
/// overall page id
uint64_t overall_page_id;
/// location of the page in memory
char *buffer_frame;
/// Number of currently used slots
uint16_t slot_count;
/// Lower end of the data
uint32_t data_start;

};
};

31 / 52

Memory Management Dynamic Memory Management

Page Layout

• The slot array maps "slots" to the tuples’ starting position offsets.
struct SlottedPage {
...
struct Slot {
Slot() = default;
/// The slot value
uint64_t value;

};
/// Constructor.
explicit SlottedPage(char *buffer_frame, uint32_t page_size);
/// Slot helper functions
TID addSlot(uint32_t size);
void setSlot(uint16_t slotId, uint64_t value);
Slot getSlot(uint16_t slotId);

};
/// Slot array
auto *slots = reinterpret_cast<Slot *>(header.buffer_frame + sizeof(header));

32 / 52

Memory Management Segments

Segments

33 / 52

Memory Management Segments

Segments

While page granularity is fine for I/O, it is somewhat unwieldy
• most data structures within a DBMS span multiple pages
• convenient to treat these as one entity: segment
• relations, indexes, free space inventory (FSI), e.t.c.
• each logical DBMS structure is managed as a segment

Conceptually similar to file (but supports non-linear ordering of data).

34 / 52

Memory Management Segments

Segments

A segment offers a virtual address space within the DBMS
• can allocate and release new pages
• can iterate over all pages
• can drop the whole segment
• offers a non-linear address space

Greatly simplifies the logic of higher layers.

35 / 52

Memory Management Segments

Segments

Example: pages from R1 | pages from R2 | pages from R1
• Dropping relation R2 −→ hole in the segment
• New pages from R1 may be inserted into the hole
• Logical insertion order of R1 does not match the physical storage order in segment
• Need ORDER BY to guarantee logical ordering

36 / 52

Memory Management Segments

Disk Block Mapping

Catalog Catalog

static file-mapping dynamic extent-mapping dynamic block-mapping

Catalog

37 / 52

Memory Management Segments

Disk Block Mapping

All approaches have pros and cons:
• ❶ static file-mapping

▶ very simple, low overhead
▶ resizing is difficult

• ❷ dynamic block-mapping
▶ maximum flexibility
▶ administrative overhead, additional indirection

• ❸ dynamic extent-mapping
▶ can handle growth
▶ slight overhead

In most cases extent-based mapping is preferable.

38 / 52

Memory Management Segments

Disk Block Mapping

The units of database space allocation are disk blocks, extents, and segments.
• A disk block is the smallest unit of data used by a database.
• An extent is a logical unit of database storage space allocation made up of a number of

contiguous disk blocks.
• One or more extents in turn make up a segment.
• When the existing space in a segment is completely used, the DBMS allocates a new

extent for the segment.

39 / 52

Memory Management Segments

Disk Block Mapping

A segment is a set of extents that contains all the data for a specific logical storage structure
within a tablespace.
• For each table, the DBMS allocates one or more extents to form that table’s data

segment
• For each index, the DBMS allocates one or more extents to form its index segment.

40 / 52

Memory Management Segments

Disk Block Mapping

Dynamic extent-mapping:
• grows by adding a new extent
• should grow exponentially (e.g., factor 1.25)
• exponential growth bounds the number of extents
• reduces both complexity and space consumption
• and helps with sequential I/O! Why?

41 / 52

Memory Management Segments

Segment Types

Segments can be classified into types
• public vs. private (e.g., list of segments) // visibility to the user
• permanent (e.g., relation) vs. temporary (e.g., intermediate output of a relational

operator in the query plan)
• automatic vs. manual
• with recovery vs. without recovery

Differ in complexity and required effort.

42 / 52

Memory Management Segments

Private Segments

Most DBMS will need at least two private segments:
• segment inventory

▶ keeps track of all disk blocks allocated to segments
▶ keeps extent lists or page tables or ...

• free space inventory (FSI)
▶ keeps track of free pages
▶ maintains bitmaps or free extents or ...

43 / 52

Memory Management Segments

Public Segments

Public segments built upon these low-level private segments.

Common high-level segments:
• schema
• relations
• temporary segments (created and discarded on demand)
• ...

44 / 52

Memory Management Segments

Slotted Page Segment

Slotted Page Segment
class SPSegment : public buzzdb::Segment {
public:
/// Constructor
SPSegment(uint16_t segment_id, BufferManager &buffer_manager,

SchemaSegment &schema, FSISegment &fsi);
/// Allocate a new record.
TID allocate(uint32_t record_size);
/// Read the data of the record into a buffer.
uint32_t read(TID tid, std::byte *record, uint32_t capacity) const;
/// Write a record.
uint32_t write(TID tid, std::byte *record, uint32_t record_size);
/// Resize a record.
void resize(TID tid, uint32_t new_size);
/// Removes the record from the slotted page
void erase(TID tid);

};

45 / 52

Memory Management Segments

Slotted Page Segment

Slotted Page Segment
class SPSegment : public buzzdb::Segment {
...
protected:
/// Schema segment
SchemaSegment &schema;
/// Free space inventory
FSISegment &fsi;

};

46 / 52

Memory Management System Catalog

System Catalog

47 / 52

Memory Management System Catalog

System Catalog

• A DBMS stores meta-data about databases in its internal catalog.
▶ List of tables, columns, indexes, views
▶ List of users, permissions
▶ Internal statistics (e.g., disk reads, storage space allocation)

• Almost every DBMS stores their catalog as a private database.
▶ Wrap object abstraction around tuples.
▶ Specialized code for “bootstrapping” catalog tables. Why?

48 / 52

Memory Management System Catalog

System Catalog

• You can query the DBMS’s INFORMATION_SCHEMA database to get info.
▶ ANSI standard set of read-only views that provide info about all of the tables, views,

columns, and procedures in a database
▶ DBMSs also have non-standard shortcuts to retrieve this information.

49 / 52

Memory Management System Catalog

Accessing Table Schema

SQL Fiddle: Link

• Task: List all the tables in the database.
--- SQL 92
SELECT * FROM INFORMATION_SCHEMA.TABLES

WHERE table_schema = 'public';

--- PostgreSQL
\d
--- MySQL
SHOW TABLES;
--- SQLite
.tables;

https://bit.ly/3ggswso

50 / 52

Memory Management System Catalog

Accessing Table Schema

• Task: List all the columns in the students table.
--- SQL 92
SELECT * FROM INFORMATION_SCHEMA.COLUMNS

WHERE table_name = 'students';

--- PostgreSQL
\d student
--- MySQL
DESCRIBE student;
--- SQLite
.schema student;

51 / 52

Memory Management System Catalog

Conclusion

• The units of database space allocation are disk blocks, extents, and segments
• A DBMS stores meta-data about databases in its internal catalog

52 / 52

Memory Management System Catalog

Next Class

• Data Representation

	Memory Management
	Recap
	Dynamic Memory Management
	Segments
	System Catalog

