
1 / 52

Larger-than-Memory Databases

Lecture 10: Larger-than-Memory Databases

JA



2 / 52

Larger-than-Memory Databases

Administrivia

• Project proposal due on Sep 29 (Wednesday).
• Submit 2-page PDF + 3-minute recording by Tuesday @ 11:59 PM via Gradescope.
• Recordings must be named “Team-5-proposal.mp4”.

JA

JA

JA

JA

JA

JA

JA

JA

JA



3 / 52

Larger-than-Memory Databases Recap

Recap



4 / 52

Larger-than-Memory Databases Recap

Naïve Compression

• Choice 1: Entropy Encoding
▶ More common sequences use less bits to encode, less common sequences use more bits to

encode.
• Choice 2: Dictionary Encoding

▶ Build a data structure that maps data segments to an identifier.
▶ Replace the segment in the original data with a reference to the segment’s position in the

dictionary data structure.

JA

JA

JA

JA

JA

JA

JA

JA



5 / 52

Larger-than-Memory Databases Recap

Columnar Compression

• Null Suppression
• Run-length Encoding
• Bitmap Encoding
• Delta Encoding
• Incremental Encoding
• Mostly Encoding
• Dictionary Encoding

JA

JA

JA

JA



6 / 52

Larger-than-Memory Databases Background

Background



7 / 52

Larger-than-Memory Databases Background

Observation

• DRAM is expensive (roughly $? per GB)
▶ Expensive to buy.
▶ Expensive to maintain (e.g., energy associated with refreshing DRAM state).

• SSD is $? times cheaper than DRAM (roughly $? per GB)
• It would be nice if an in-memory DBMS could use cheaper storage without having to

bring in the entire baggage of a disk-oriented DBMS.

JA

JA

JA

JA

JA

JA

JA

JA

JA

JA

JA



8 / 52

Larger-than-Memory Databases Background

Larger-than-Memory Databases

• Allow an in-memory DBMS to store/access data on disk without bringing back all the
slow parts of a disk-oriented DBMS.
▶ Minimize the changes that we make to the DBMS that are required to deal with

disk-resident data.
▶ It is better to have only the buffer manager deal with moving data around
▶ Rest of the DBMS can assume that data is in DRAM.

• Need to be aware of hardware access methods
▶ In-memory Access = Tuple-Oriented. Why?
▶ Disk Access = Block-Oriented.

JA

JA

JA

JA

JA

JA

JA

JA

JA

JA

JA

JA



9 / 52

Larger-than-Memory Databases Background

OLAP

• OLAP queries generally access the
entire table.

• Thus, an in-memory DBMS may
handle OLAP queries in the same a
disk-oriented DBMS does.

• All the optimizations in a disk-oriented
DBMS apply here (e.g., scan sharing,
buffer pool bypass).

JA

JA

JA

JA

JA

JA



10 / 52

Larger-than-Memory Databases Background

OLTP

• OLTP workloads almost always have hot and cold portions of the database.
▶ We can assume txns will almost always access hot tuples.

• Goal: The DBMS needs a mechanism to move cold data out to disk and then retrieve it
if it is ever needed again.

JA

JA

JA

JA

JA

JA

JA

JA

JA

JA

JA

JA



11 / 52

Larger-than-Memory Databases Background

Larger-than-Memory Databases

JA

JA

JA



12 / 52

Larger-than-Memory Databases Background

Larger-than-Memory Databases

JA

JA

JA



13 / 52

Larger-than-Memory Databases Background

Larger-than-Memory Databases

JA

JA

JA

JA

JA

JA

JA

JA

JA

JA

JA

JA



14 / 52

Larger-than-Memory Databases Background

Larger-than-Memory Databases

SELECT *
FROM table
WHERE id = <Tuple 01>

JA

JA

JA



15 / 52

Larger-than-Memory Databases Design Decisions

Design Decisions



16 / 52

Larger-than-Memory Databases Design Decisions

Design Decisions

• Run-time Operation
▶ Cold Data Identification: When the DBMS runs out of DRAM space, what data should we

evict?
• Eviction Policies

▶ Timing: When to evict data?
▶ Evicted Tuple Metadata: During eviction, what meta-data should we keep in DRAM to

track disk-resident data and avoid false negatives?
• Data Retrieval Policies

▶ Granularity: When we need data, how much should we bring in?
▶ Merging: Where to put the retrieved data?

Reference

https://hstore.cs.brown.edu/slides/hstore-damon16-ltm.pdf
JA

JA

JA

JA

JA

JA

JA



17 / 52

Larger-than-Memory Databases Design Decisions

Cold Data Identification

• Choice 1: On-line
▶ The DBMS monitors txn access patterns and tracks how often tuples/pages are used.
▶ Embed the tracking meta-data directly in tuples/pages.

• Choice 2: Off-line
▶ Maintain a tuple access log during txn execution.
▶ Process in background to compute frequencies.

JA

JA

JA

JA

JA

JA

JA

JA

JA

JA

JA



18 / 52

Larger-than-Memory Databases Design Decisions

Eviction Timing

• Choice 1: Threshold
▶ The DBMS monitors memory usage and begins evicting tuples when it reaches a

threshold.
▶ The DBMS must manually move data.

• Choice 2: On Demand
▶ The DBMS/OS runs a replacement policy to decide when to evict data to free space for

new data that is needed.

JA

JA

JA

JA



19 / 52

Larger-than-Memory Databases Design Decisions

Evicted Tuple Metadata

• Choice 1: Tuple Tombstones
▶ Leave a marker that points to the on-disk tuple.
▶ Update indexes to point to the tombstone tuples.

• Choice 2: Bloom Filters
▶ Use an in-memory, approximate data structure for each index.
▶ Only tells us whether tuple exists or not (with potential false positives)
▶ Check on-disk index to find actual location

• Choice 3: DBMS Managed Pages
▶ DBMS tracks what data is in memory vs. on disk.

• Choice 4: OS Virtual Memory
▶ OS tracks what data is on in memory vs. on disk.

JA

JA

JA

JA

JA

JA

JA

JA

JA

JA

JA



20 / 52

Larger-than-Memory Databases Design Decisions

Evicted Tuple Metadata

JA



21 / 52

Larger-than-Memory Databases Design Decisions

Evicted Tuple Metadata



22 / 52

Larger-than-Memory Databases Design Decisions

Evicted Tuple Metadata

JA

JA



23 / 52

Larger-than-Memory Databases Design Decisions

Evicted Tuple Metadata

JA

JA

JA

JA

JA



24 / 52

Larger-than-Memory Databases Design Decisions

Data Retrieval Granularity

• Choice 1: All Tuples in Block
▶ Merge all the tuples retrieved from a block regardless of whether they are needed.
▶ More CPU overhead to update indexes.
▶ Tuples are likely to be evicted again.

• Choice 2: Only Tuples Needed
▶ Only merge the tuples that were accessed by a query back into the in-memory table heap.
▶ Requires additional bookkeeping to track holes.

JA

JA

JA

JA

JA

JA



25 / 52

Larger-than-Memory Databases Design Decisions

Merging Threshold

• Choice 1: Always Merge
▶ Retrieved tuples are always put into table heap.

• Choice 2: Merge Only on Update
▶ Retrieved tuples are only merged into table heap if they are used in an UPDATE statement.
▶ All other tuples are put in a temporary buffer.

• Choice 3: Selective Merge
▶ Keep track of how often each block is retrieved.
▶ If a block’s access frequency is above some threshold, merge it back into the table heap.

JA

JA

JA



26 / 52

Larger-than-Memory Databases Design Decisions

Retrieval Mechanism

• Choice 1: Abort-and-Restart
▶ Abort the txn that accessed the evicted tuple.
▶ Retrieve the data from disk and merge it into memory with a separate background thread.
▶ Restart the txn when the data is ready.
▶ Requires MVCC to guarantee consistency for large txns that access data that does not fit in

memory.
• Choice 2: Synchronous Retrieval

▶ Stall the txn when it accesses an evicted tuple while the DBMS fetches the data and
merges it back into memory.

JA

JA

JA

JA

JA

JA



27 / 52

Larger-than-Memory Databases Case Studies

Case Studies



28 / 52

Larger-than-Memory Databases Case Studies

Case Studies

• Tuple-Oriented Systems
▶ H-Store – Anti-Caching
▶ Hekaton – Project Siberia
▶ EPFL’s VoltDB Prototype
▶ Apache Geode – Overflow Tables

• Block-Oriented Systems
▶ LeanStore – Hierarchical Buffer Pool
▶ Umbra – Variable-length Buffer Pool
▶ MemSQL – Columnar Tables

JA

JA

JA

JA

JA

JA

JA

JA

JA

JA

JA



29 / 52

Larger-than-Memory Databases Case Studies

H-Store – Anti-Caching

• Cold Tuple Identification: On-line Identification
• Eviction Timing: Administrator-defined Threshold
• Evicted Tuple Metadata: Tombstones
• Retrieval Mechanism: Abort-and-restart Retrieval
• Retrieval Granularity: Block-level Granularity
• Merging Threshold: Always Merge
• Reference

https://www.vldb.org/pvldb/vol6/p1942-debrabant.pdf
JA

JA

JA

JA

JA

JA

JA

JA



30 / 52

Larger-than-Memory Databases Case Studies

HEKATON – PROJECT SIBERIA

• Cold Tuple Identification: Off-line Identification
• Eviction Timing: Administrator-defined Threshold
• Evicted Tuple Metadata: Bloom Filters
• Retrieval Mechanism: Synchronous Retrieval
• Retrieval Granularity: Tuple-level Granularity
• Merging Threshold: Always Merge
• Reference

https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/p1016-eldawy.pdf
JA

JA

JA

JA

JA

JA



31 / 52

Larger-than-Memory Databases Case Studies

EPFL VOLTDB

• Cold Tuple Identification: Off-line Identification
• Eviction Timing: OS Virtual Memory
• Evicted Tuple Metadata: N/A
• Retrieval Mechanism: Synchronous Retrieval
• Retrieval Granularity: Page-level Granularity
• Merging Threshold: Always Merge
• Reference

https://dl.acm.org/doi/10.1145/2485278.2485285
JA

JA

JA

JA



32 / 52

Larger-than-Memory Databases Case Studies

EPFL VOLTDB

JA

JA

JA

JA

JA

JA

JA



33 / 52

Larger-than-Memory Databases Case Studies

EPFL VOLTDB

JA



34 / 52

Larger-than-Memory Databases Case Studies

EPFL VOLTDB



35 / 52

Larger-than-Memory Databases Case Studies

EPFL VOLTDB

JA

JA

JA

JA

JA



36 / 52

Larger-than-Memory Databases Case Studies

EPFL VOLTDB

JA



37 / 52

Larger-than-Memory Databases Case Studies

APACHE GEODE – OVERFLOW TABLES

• Cold Tuple Identification: On-line Identification
• Eviction Timing: Administrator-defined Threshold
• Evicted Tuple Metadata: Tombstones (?)
• Retrieval Mechanism: Synchronous Retrieval
• Retrieval Granularity: Tuple-level Granularity
• Merging Threshold: Merge Only on Update (?)
• Reference

http://geode.docs.pivotal.io/docs/managing/disk_storage/how_disk_stores_work.html
JA

JA

JA

JA



38 / 52

Larger-than-Memory Databases Case Studies

Observation

• The systems that we have discussed so far are tuple-oriented.
▶ The DBMS must track meta-data about individual tuples.
▶ Does not reduce storage overhead of indexes.
▶ Indexes may occupy up to 60% of DRAM in an OLTP database.

• Goal: Need an unified way to evict cold data from both tables and indexes with low
overhead. . .

JA

JA

JA

JA

JA

JA



39 / 52

Larger-than-Memory Databases Case Studies

LeanStore

• In-memory storage manager from TUM that supports larger-than-memory databases.
▶ Handles both tuples + indexes
▶ Not part of the HyPer project.

• Hierarchical + Randomized Block Eviction
▶ Use pointer swizzling to determine whether a block is evicted or not.
▶ Instead of tracking when pages are accessed, randomly evict pages and then track

whether they ended up getting used.
▶ If yes, put it back in the hot space.
▶ If not, then evict it.

• Reference

https://db.in.tum.de/~leis/papers/leanstore.pdf
JA

JA

JA

JA

JA

JA

JA

JA



40 / 52

Larger-than-Memory Databases Case Studies

Pointer Swizzling

• Switch the contents of pointers based on whether the target object resides in memory
or on disk.

• Decentralized way to track whether a page is in memory or not.
• We track everything with 64-bit pointers, but currently only use 48-bits.

▶ Use first bit in address to tell what kind of address it is.
▶ Only works if there is only one pointer to the object.

JA

JA

JA

JA

JA



41 / 52

Larger-than-Memory Databases Case Studies

Pointer Swizzling

JA

JA

JA

JA



42 / 52

Larger-than-Memory Databases Case Studies

Pointer Swizzling

JA

JA

JA



43 / 52

Larger-than-Memory Databases Case Studies

Replacement Strategy

• Randomly select blocks for eviction.
▶ Don’t have to maintain meta-data every time a txn accesses a hot block.
▶ Only track accesses for cold data, which should be rare if it is cold.

• Unswizzle their pointer but leave in memory.
▶ Add to a FIFO queue of blocks staged for eviction.
▶ If page is accessed again, remove from queue.
▶ Otherwise, evict pages when reaching front of queue.

JA

JA

JA

JA

JA

JA



44 / 52

Larger-than-Memory Databases Case Studies

Block Hierarchy

• Blocks are organized in a tree hierarchy.
▶ Each page has only one parent, which means that there is only a single pointer.
▶ No centralized page table (as is the case in a disk-oriented DBMS).

• The DBMS can only evict a block if its children are also evicted.
▶ This avoids the problem of evicting blocks that contain swizzled pointers
▶ Otherwise, these pointers are invalid because they will point to old locations in memory.
▶ If a block is selected but it has in-memory children, then it automatically switches to select

one of its children.

JA

JA

JA

JA

JA

JA

JA



45 / 52

Larger-than-Memory Databases Case Studies

Block Hierarchy

JA

JA

JA

JA

JA



46 / 52

Larger-than-Memory Databases Case Studies

Block Hierarchy

JA

JA

JA

JA



47 / 52

Larger-than-Memory Databases Case Studies

Block Hierarchy



48 / 52

Larger-than-Memory Databases Case Studies

Umbra

• New DBMS from HyPer team at TUM.
▶ Low overhead buffer pool with variable-sized pages.
▶ Employs the same hierarchical organization and randomized block eviction algorithm

from LeanStore.
▶ Uses virtual memory to allocate storage but the DBMS manages block eviction on its own.

• DBMS stores relations as index-organized tables, so there is no separate management
needed to handle index blocks.

• Reference

http://cidrdb.org/cidr2020/papers/p29-neumann-cidr20.pdf
JA

JA

JA

JA

JA

JA



49 / 52

Larger-than-Memory Databases Case Studies

Variable-Sized Buffer Pool

JA

JA

JA



50 / 52

Larger-than-Memory Databases Case Studies

Variable-Sized Buffer Pool

JA

JA

JA

JA



51 / 52

Larger-than-Memory Databases Case Studies

MEMSQL – Columnar Tables

• Administrator manually declares a table as a disk-resident columnar table with zone
maps.
▶ Pre-2017: Used mmap but this was a bad idea.
▶ Current: Unified single logical table format that combines mutable delta store with

immutable column store.

• Evicted Tuple Metadata: None
• Retrieval Mechanism: Synchronous Retrieval
• Merging Threshold: Always Merge
• Reference

http://docs.memsql.com/docs/columnstore
JA

JA

JA

JA

JA

JA

JA

JA

JA



52 / 52

Larger-than-Memory Databases Case Studies

Conclusion

• Today we focused on working around the block-oriented access granularity and lower
bandwidth of secondary storage.

• We will learn about how recently-released byte-addressable, non-volatile memory
(2019) changes the hardware landscape.

JA

JA

JA

JA


	Larger-than-Memory Databases
	Recap
	Background
	Design Decisions
	Case Studies


