
1 / 91

Hash Tables

Lecture 13: Hash Tables



2 / 91

Hash Tables

Administrivia

• Assignment 3 and Sheet 3 has been released.
• We will be having a guest lecture from AWS later this semester.
• Mid-term exam on Oct 18 (in a week)



3 / 91

Hash Tables

Today’s Agenda

Hash Tables
1.1 Recap
1.2 Hash Tables
1.3 Hash Functions
1.4 Static Hashing Schemes
1.5 Dynamic Hashing Schemes



4 / 91

Hash Tables Recap

Recap



5 / 91

Hash Tables Recap

Access Methods

Access methods are alternative ways for retrieving specific tuples from a relation.
• Typically, there is more than one way to retrieve tuples.
• Depends on the availability of indexes and the conditions specified in the query for

selecting the tuples
• Includes sequential scan method of unordered table heap
• Includes index scan of different types of index structures



6 / 91

Hash Tables Recap

Index Structures: Design Decisions

• Meta-Data Organization
▶ How to organize meta-data on disk or in memory to support efficient access to specific

tuples?
• Concurrency

▶ How to allow multiple threads to access the derived data structure at the same time
without causing problems?



7 / 91

Hash Tables Hash Tables

Hash Tables



8 / 91

Hash Tables Hash Tables

Hash Tables

• A hash table implements an unordered associative array that maps keys to values.
▶ mymap.insert(’a’, 50);
▶ mymap[’b’]=100;
▶ mymap.find(’a’)
▶ mymap[’a’]

• It uses a hash function to compute an offset into the array for a given key, from which
the desired value can be found.



9 / 91

Hash Tables Hash Tables

Hash Tables

• Operation Complexity:
▶ Average: O(1)
▶ Worst: O(n)

• Space Complexity: O(n)
• Constants matter in practice.
• Reminder: In theory, there is no difference between theory and practice. But in

practice, there is.



10 / 91

Hash Tables Hash Tables

Naïve Hash Table

• Allocate a giant array that has one slot for every
element you need to store.

• To find an entry, mod the key by the number of
elements to find the offset in the array.



11 / 91

Hash Tables Hash Tables

Naïve Hash Table

• Allocate a giant array that has one slot for every
element you need to store.

• To find an entry, mod the key by the number of
elements to find the offset in the array.



12 / 91

Hash Tables Hash Tables

Assumptions

• You know the number of elements ahead of time.
• Each key is unique (e.g., SSN ID −→ Name).
• Perfect hash function (no collision).

▶ If key1 != key2, then hash(key1) != hash(key2)



13 / 91

Hash Tables Hash Tables

Hash Table: Design Decisions

• Design Decision 1: Hash Function
▶ How to map a large key space into a smaller domain of array offsets.
▶ Trade-off between being fast vs. collision rate.

• Design Decision 2: Hashing Scheme
▶ How to handle key collisions after hashing.
▶ Trade-off between allocating a large hash table vs. additional steps to find/insert keys.



14 / 91

Hash Tables Hash Functions

Hash Functions



15 / 91

Hash Tables Hash Functions

Hash Functions

• For any input key, return an integer representation of that key.
• We want to map the key space to a smaller domain of array offsets.
• We do not want to use a cryptographic hash function for DBMS hash tables.
• We want something that is fast and has a low collision rate.



16 / 91

Hash Tables Hash Functions

Hash Functions

• CRC-64 (1975)
▶ Used in networking for error detection.

• MurmurHash (2008)
▶ Designed to a fast, general purpose hash function.

• Google CityHash (2011)
▶ Designed to be faster for short keys (<64 bytes).
▶ New assembly instructions have been added recently to accelerate hashing

• Facebook XXHash (2012)
▶ From the creator of zstd compression.

• Google FarmHash (2014)
▶ Newer version of CityHash with better collision rates.

https://create.stephan-brumme.com/crc32/
https://github.com/aappleby/smhasher
https://github.com/google/cityhash
http://cyan4973.github.io/xxHash/
https://github.com/google/farmhash


17 / 91

Hash Tables Hash Functions

Hash Function Benchmark

• Source
• Intel Core i7-8700K @ 3.70GHz

https://github.com/apavlo/hash-function-benchmark


18 / 91

Hash Tables Hash Functions

Hash Function Benchmark

• Source
• Intel Core i7-8700K @ 3.70GHz

https://github.com/apavlo/hash-function-benchmark


19 / 91

Hash Tables Static Hashing Schemes

Static Hashing Schemes



20 / 91

Hash Tables Static Hashing Schemes

Static Hashing Schemes

• These schemes are typically used when you have an upper bound on the number of
keys that you want to store in the hash table.

• These are often used during query execution because they are
faster than dynamic hashing schemes.
▶ Approach 1: Linear Probe Hashing
▶ Approach 2: Robin Hood Hashing
▶ Approach 3: Cuckoo Hashing



21 / 91

Hash Tables Static Hashing Schemes

Linear Probe Hashing

• Single giant table of slots
• Resolve collisions by linearly searching for the next free slot in the table.

▶ To determine whether an element is present, hash to a location in the index and scan for it.
▶ Have to store the key in the index to know when to stop scanning.
▶ Insertions and deletions are generalizations of lookups.



22 / 91

Hash Tables Static Hashing Schemes

Linear Probe Hashing



23 / 91

Hash Tables Static Hashing Schemes

Linear Probe Hashing



24 / 91

Hash Tables Static Hashing Schemes

Linear Probe Hashing



25 / 91

Hash Tables Static Hashing Schemes

Linear Probe Hashing



26 / 91

Hash Tables Static Hashing Schemes

Linear Probe Hashing



27 / 91

Hash Tables Static Hashing Schemes

Linear Probe Hashing



28 / 91

Hash Tables Static Hashing Schemes

Linear Probe Hashing



29 / 91

Hash Tables Static Hashing Schemes

Linear Probe Hashing



30 / 91

Hash Tables Static Hashing Schemes

Linear Probe Hashing – Delete

• It is not sufficient to simply delete the key.
• This would affect searches for other keys that have a hash value earlier than the

emptied cell, but that are stored in a position later than the emptied cell.
• Solutions:

▶ Approach 1: Tombstone
▶ Approach 2: Movement



31 / 91

Hash Tables Static Hashing Schemes

Linear Probe Hashing – Delete



32 / 91

Hash Tables Static Hashing Schemes

Linear Probe Hashing – Delete



33 / 91

Hash Tables Static Hashing Schemes

Linear Probe Hashing – Delete



34 / 91

Hash Tables Static Hashing Schemes

Linear Probe Hashing – Delete



35 / 91

Hash Tables Static Hashing Schemes

Linear Probe Hashing – Delete



36 / 91

Hash Tables Static Hashing Schemes

Linear Probe Hashing – Delete



37 / 91

Hash Tables Static Hashing Schemes

Non-Unique Keys

• Choice 1: Separate Linked List
▶ Store values in separate storage area

for each key.
• Choice 2: Redundant Keys

▶ Store duplicate keys entries together
in the hash table.



38 / 91

Hash Tables Static Hashing Schemes

Robin Hood Hashing

• Variant of linear probe hashing that steals slots from rich keys and give them to poor
keys.
▶ Each key tracks the number of positions they are from where its optimal position in the

table.
▶ On insert, a key takes the slot of another key if the first key is farther away from its

optimal position than the second key.



39 / 91

Hash Tables Static Hashing Schemes

Robin Hood Hashing



40 / 91

Hash Tables Static Hashing Schemes

Robin Hood Hashing



41 / 91

Hash Tables Static Hashing Schemes

Robin Hood Hashing



42 / 91

Hash Tables Static Hashing Schemes

Robin Hood Hashing



43 / 91

Hash Tables Static Hashing Schemes

Robin Hood Hashing



44 / 91

Hash Tables Static Hashing Schemes

Robin Hood Hashing



45 / 91

Hash Tables Static Hashing Schemes

Robin Hood Hashing



46 / 91

Hash Tables Static Hashing Schemes

Robin Hood Hashing



47 / 91

Hash Tables Static Hashing Schemes

Cuckoo Hashing

• Use multiple hash tables with different hash function seeds.
▶ On insert, check every table and pick anyone that has a free slot.
▶ If no table has a free slot, evict the element from one of them and then re-hash it find a

new location.

• Look-ups and deletions are always O(1) because only one location per hash table is
checked.



48 / 91

Hash Tables Static Hashing Schemes

Cuckoo Hashing



49 / 91

Hash Tables Static Hashing Schemes

Cuckoo Hashing



50 / 91

Hash Tables Static Hashing Schemes

Cuckoo Hashing



51 / 91

Hash Tables Static Hashing Schemes

Cuckoo Hashing



52 / 91

Hash Tables Static Hashing Schemes

Cuckoo Hashing



53 / 91

Hash Tables Static Hashing Schemes

Cuckoo Hashing



54 / 91

Hash Tables Static Hashing Schemes

Observation

• Static hashing schemes require the DBMS to know the number of keys to be stored.
▶ Otherwise it has to rebuild the table if it needs to grow/shrink the table in size. Why?
▶ You would have to take a latch on the entire hash table to prevent threads from adding

new entries.
• Dynamic hashing schemes resize themselves on demand.

▶ Approach 1: Chained Hashing
▶ Approach 2: Extendible Hashing
▶ Approach 3: Linear Hashing



55 / 91

Hash Tables Dynamic Hashing Schemes

Dynamic Hashing Schemes



56 / 91

Hash Tables Dynamic Hashing Schemes

Chained Hashing

• Maintain a linked list of buckets for each slot in the hash table.
• Resolve collisions by placing all keys with the same hash value into the same bucket.

▶ To determine whether an element is present, hash to its bucket and scan for it.
▶ Insertions and deletions are generalizations of lookups.



57 / 91

Hash Tables Dynamic Hashing Schemes

Chained Hashing

• Unlike static hashing schemes, two different keys may hash to the same offset
• If you want to enforce unique keys, then you have perform an additional comparison

of each key to determine whether they exactly match
• So, unlike static hashing schemes, need to retain the original key in the table



58 / 91

Hash Tables Dynamic Hashing Schemes

Chained Hashing



59 / 91

Hash Tables Dynamic Hashing Schemes

Chained Hashing



60 / 91

Hash Tables Dynamic Hashing Schemes

Chained Hashing



61 / 91

Hash Tables Dynamic Hashing Schemes

Chained Hashing

• The hash table can grow infinitely because you just keep adding new buckets to the
linked list.

• You only need to take a latch on the bucket to store a new entry or extend the linked list.



62 / 91

Hash Tables Dynamic Hashing Schemes

Extendible Hashing

• Chained-hashing approach where we split buckets instead of letting the linked list
grow forever.

• Multiple slot locations can point to the same bucket chain.
• Reshuffling bucket entries on split and increase the number of bits to examine.

▶ Data movement is localized to just the split chain.



63 / 91

Hash Tables Dynamic Hashing Schemes

Extendible Hashing

• The slot array maps hashes to buckets.
• A hash value may occupy an arbitrary number of bits.
• With extendible hashing, the number of bits that the hash table uses to map hashes to

buckets changes over time.
▶ Global counter keeps track of the number of bits that the the hash table uses.
▶ Local counter in each bucket tracks the number of hash bits used by that bucket.



64 / 91

Hash Tables Dynamic Hashing Schemes

Extendible Hashing



65 / 91

Hash Tables Dynamic Hashing Schemes

Extendible Hashing



66 / 91

Hash Tables Dynamic Hashing Schemes

Extendible Hashing



67 / 91

Hash Tables Dynamic Hashing Schemes

Extendible Hashing



68 / 91

Hash Tables Dynamic Hashing Schemes

Extendible Hashing



69 / 91

Hash Tables Dynamic Hashing Schemes

Extendible Hashing



70 / 91

Hash Tables Dynamic Hashing Schemes

Extendible Hashing



71 / 91

Hash Tables Dynamic Hashing Schemes

Extendible Hashing



72 / 91

Hash Tables Dynamic Hashing Schemes

Linear Hashing

• The hash table maintains a pointer that tracks the next bucket to split.
▶ When any bucket overflows, split the bucket at the pointer location.

• Use multiple hashes to find the right bucket for a given key.
• Can use different overflow criterion:

▶ Space Utilization
▶ Average Length of Overflow Chains



73 / 91

Hash Tables Dynamic Hashing Schemes

Linear Hashing



74 / 91

Hash Tables Dynamic Hashing Schemes

Linear Hashing



75 / 91

Hash Tables Dynamic Hashing Schemes

Linear Hashing



76 / 91

Hash Tables Dynamic Hashing Schemes

Linear Hashing



77 / 91

Hash Tables Dynamic Hashing Schemes

Linear Hashing



78 / 91

Hash Tables Dynamic Hashing Schemes

Linear Hashing



79 / 91

Hash Tables Dynamic Hashing Schemes

Linear Hashing



80 / 91

Hash Tables Dynamic Hashing Schemes

Linear Hashing



81 / 91

Hash Tables Dynamic Hashing Schemes

Linear Hashing



82 / 91

Hash Tables Dynamic Hashing Schemes

Linear Hashing - Delete

• Splitting buckets based on the split pointer will eventually get to all overflowed
buckets.
▶ When the pointer reaches the last slot, delete the first hash function and move back to

beginning.

• The pointer can also move backwards when buckets are empty.



83 / 91

Hash Tables Dynamic Hashing Schemes

Linear Hashing – Delete



84 / 91

Hash Tables Dynamic Hashing Schemes

Linear Hashing – Delete



85 / 91

Hash Tables Dynamic Hashing Schemes

Linear Hashing – Delete



86 / 91

Hash Tables Dynamic Hashing Schemes

Linear Hashing – Delete



87 / 91

Hash Tables Dynamic Hashing Schemes

Linear Hashing – Delete



88 / 91

Hash Tables Dynamic Hashing Schemes

Linear Hashing – Delete



89 / 91

Hash Tables Dynamic Hashing Schemes

Linear Hashing vs. Extendible Hashing

• Moving from hashi to hashi+1 in Linear Hashing corresponds to
• Bumping up the global counter in Extendible Hashing
• Linear Hashing

▶ Directory is gradually doubled over the course of a round
▶ A directory can be avoided by a clever choice of the buckets to split
▶ More flexibility: need not always split the appropriate dense bucket



90 / 91

Hash Tables Dynamic Hashing Schemes

Conclusion

• Hash tables are fast data structures that support O(1) look-ups
• Used all throughout the DBMS internals.

▶ Examples: Page Table (Buffer Manager), Lock Table (Lock Manager)

• Trade-off between speed and flexibility.



91 / 91

Hash Tables Dynamic Hashing Schemes

Conclusion

• Hash tables are usually not what you want to use for a indexing tables
▶ Lack of ordering in widely-used hashing schemes
▶ Lack of locality of reference −→ more disk seeks
▶ Persistent data structures are much more complex (logging and recovery)
▶ Reference

• We will cover B+Trees in the next lecture
▶ a.k.a., "The Greatest Data Structure of All Time!"

https://www.evanjones.ca/ordered-vs-unordered-indexes.html

	Hash Tables
	Recap
	Hash Tables
	Hash Functions
	Static Hashing Schemes
	Dynamic Hashing Schemes


