Tech

Georgia @‘

Lecture 13: Hash Tables

CREATING THE NEXT*

Hash Tables

Administrivia

e Assignment 3 and Sheet 3 has been released.
e We will be having a guest lecture from AWS later this semester.

e Mid-term exam on Oct 18 (in a week)

Georgia
Tech

Today’s Agenda

Hash Tables
1.1 Recap
1.2 Hash Tables
1.3 Hash Functions
1.4 Static Hashing Schemes
1.5 Dynamic Hashing Schemes

Georgia
Tech

Hash Tables = Recap

Recap

Access Methods

Access methods are alternative ways for retrieving specific tuples from a relation.

e Typically, there is more than one way to retrieve tuples.

» Depends on the availability of indexes and the conditions specified in the query for
selecting the tuples

* Includes sequential scan method of unordered table heap

e Includes index scan of different types of index structures

Georgia
Tech

Hash Tables = Recap

Index Structures: Design Decisions

e Meta-Data Organization

How to organize meta-data on disk or in memory to support efficient access to specific
tuples?
e Concurrency

How to allow multiple threads to access the derived data structure at the same time
without causing problems?

Georgia
Tech

Hash Tables Hash Tables

Hash Tables

Hash Tables

e A hash table implements an unordered associative array that maps keys to values.

mymap.insert('a’, 50);
mymap|'b’]=100;
mymap.find('a’)
mymap[’a’]
e It uses a hash function to compute an offset into the array for a given key, from which
the desired value can be found.

Georgia
Tech

Hash Tables

Operation Complexity:
Average: O(1)
Worst: O(n)

Space Complexity: O(n)

Constants matter in practice.

Reminder: In theory, there is no difference between theory and practice. But in
practice, there is.

Georgia
Tech

Hash Tables Hash Tables

Naive Hash Table

hash(key)
. 0 |abc
e Allocate a giant array that has one slot for every
element you need to store. 4
e To find an entry, mod the key by the number of 2 de.:f

elements to find the offset in the array.

n [xyz

Georgia
Tech

Hash Tables Hash Tables

Naive Hash Table

e Allocate a giant array that has one slot for every
element you need to store.

e To find an entry, mod the key by the number of
elements to find the offset in the array.

Georgia
Tech

hash(key)

-
abcdefghi

Hash Tables Hash Tables

Assumptions

¢ You know the number of elements ahead of time.
e Each key is unique (e.g., SSN ID — Name).

e Perfect hash function (no collision).
If key1 != key2, then hash(key1) != hash(key2)

Georgia
Tech

Hash Table: Design Decisions

e Design Decision 1: Hash Function

How to map a large key space into a smaller domain of array offsets.
Trade-off between being fast vs. collision rate.

e Design Decision 2: Hashing Scheme

How to handle key collisions after hashing.
Trade-off between allocating a large hash table vs. additional steps to find/insert keys.

Georgia
Tech

Hash Tables Hash Functions

Hash Functions

Hash Tables Hash Functions

Hash Functions

For any input key, return an integer representation of that key.

We want to map the key space to a smaller domain of array offsets.

We do not want to use a cryptographic hash function for DBMS hash tables.

We want something that is fast and has a low collision rate.

Georgia
Tech

Hash Tables Hash Functions

Hash Functions

CRC-64 (1975)

Used in networking for error detection.
MurmurHash (2008)

Designed to a fast, general purpose hash function.
Google CityHash (2011)

Designed to be faster for short keys (<64 bytes).
New assembly instructions have been added recently to accelerate hashing

Facebook XXHash (2012)
From the creator of zstd compression.
Google FarmHash (2014)

Newer version of CityHash with better collision rates.

Georgia
Tech

https://create.stephan-brumme.com/crc32/
https://github.com/aappleby/smhasher
https://github.com/google/cityhash
http://cyan4973.github.io/xxHash/
https://github.com/google/farmhash

Hash Tables Hash Functions

Hash Function Benchmark

Intel Core i7-8700K @ 3.70GHz
—mchd ——gtd::hash —MurmurHash3 —CityHash —FarmHash —XXHash3

Chart Area

S
3
S

Throughput (MB/sec)
S 8
8 8

e
1000 T
0 T T T T T T 1
1 2 3 4 5 6 7 8
Key Size (bytes)

e Source
Georgialntel Core 17-8700K @ 3.70GHz
Tech

https://github.com/apavlo/hash-function-benchmark

Hash Tables Hash Functions

Hash Function Benchmark

Intel Corei7-8700K @ 3.70GHz
—crc64 —std:hash —MurmurHash3 —CityHash —FarmHash —XXHash3

28000

1)
—_
5]
(=}

Throughput (MB/ sec)
=
3
3

1 51 101 151 201 251
Key Size (bytes)

e Source
Georgialntel Core i7-8700K @ 3.70GHz
Tech

https://github.com/apavlo/hash-function-benchmark

Hash Tables ~ Static Hashing Schemes

Static Hashing Schemes

Hash Tables ~ Static Hashing Schemes

Static Hashing Schemes

e These schemes are typically used when you have an upper bound on the number of
keys that you want to store in the hash table.

e These are often used during query execution because they are
faster than dynamic hashing schemes.

Approach 1: Linear Probe Hashing
Approach 2: Robin Hood Hashing
Approach 3: Cuckoo Hashing

Georgia
Tech

Hash Tables ~ Static Hashing Schemes

Linear Probe Hashing

e Single giant table of slots
* Resolve collisions by linearly searching for the next free slot in the table.

To determine whether an element is present, hash to a location in the index and scan for it.
Have to store the key in the index to know when to stop scanning.
Insertions and deletions are generalizations of lookups.

Georgia
Tech

Hash Tables ~ Static Hashing Schemes

Linear Probe Hashing
hash(key)

A

B

c > Alval | <key>|<value>
D

E

F

Georgia

Tech

Hash Tables ~ Static Hashing Schemes

Linear Probe Hashing

hash(key) N B|val
A
g Alval
D
E
F

Georgia
Tech

Hash Tables ~ Static Hashing Schemes

Linear Probe Hashing

hash(key) B|val
[A]
i > Alval
Co—"|
D |
' E |
[F |

Georgia
Tech

Hash Tables ~ Static Hashing Schemes

Linear Probe Hashing

hash(key) B|val
(4]
| B | > Alval

C4—)

D Clval
E |
F |

Georgia
Tech

Hash Tables

Static Hashing Schemes

Linear Probe Hashing
hash(key) B|val
4]
% Alval
D Clval
'E | D|val
F

Georgia
Tech

Hash Tables

Linear Probe Hashing

hash(key) B|val
A
g Alval
D C I val
E D|val
F

Georgia

Tech

Static Hashing Schemes

Hash Tables

Linear Probe Hashing

hash(key) B|val
A
g Alval
D Cl val
E D|val
F E|val

Georgia

Tech

Static Hashing Schemes

Hash Tables

Linear Probe Hashing

hash(key) B|val

A
g Alval
D C| val
E D|val
F E|val
F|val

Georgia
Tech

Static Hashing Schemes

Hash Tables ~ Static Hashing Schemes

Linear Probe Hashing — Delete

e It is not sufficient to simply delete the key.

e This would affect searches for other keys that have a hash value earlier than the
emptied cell, but that are stored in a position later than the emptied cell.

e Solutions:

Approach 1: Tombstone
Approach 2: Movement

Georgia
Tech

Hash Tables

Linear Probe Hashing — Delete

Static Hashing Schemes

hash(key) B|val

[A]
i Alval

Delete mp Ce—" |

D C|val
E | D|val
LF E|val
F|val

Georgia
Tech

Hash Tables

Linear Probe Hashing — Delete

Static Hashing Schemes

Georgia
Tech

B|val

Alval

D|val

E|val

F|val

Hash Tables ~ Static Hashing Schemes

Linear Probe Hashing — Delete

hash(key) B|val
A
g Alval
Find mp|[D ¥ =
E D|val
F E|val
Flval

Georgia
Tech

Hash Tables ~ Static Hashing Schemes

Linear Probe Hashing — Delete

hash(key) B|val
A
g Alval
Find Wp{ De—|" a
E D|val
F E|val
F|val

Georgia
Tech

Hash Tables ~ Static Hashing Schemes

Linear Probe Hashing — Delete

hash(key) B|val
A
g Alval
Find mp| D D|val
E E|val
F Flval

Georgia
Tech

Hash Tables

Linear Probe Hashing — Delete

Static Hashing Schemes

hash(key) B|val
A
IZ‘ /» Alval
Find mp[D ¥ Dlval
f E|val
F > Flval

Georgia
Tech

Hash Tables ~ Static Hashing Schemes

Non-Unique Keys

Value Lists

e Choice 1: Separate Linked List
Store values in separate storage area

for each key.

e Choice 2: Redundant Keys zlvatoe:
Store duplicate keys entries together ABC|valueT
in the hash table. XYZ|value2

XYZ|value3

Georgia
Tech

Hash Tables ~ Static Hashing Schemes

Robin Hood Hashing

e Variant of linear probe hashing that steals slots from rich keys and give them to poor
keys.
Each key tracks the number of positions they are from where its optimal position in the
table.
On insert, a key takes the slot of another key if the first key is farther away from its
optimal position than the second key.

Georgia
Tech

Robin Hood Hashing

Hash Tables

Static Hashing Schemes

hash(key)

| | Of Of &) >

Georgia
Tech

Alval [0]

« # of "Jumps" From First Position

Hash Tables ~ Static Hashing Schemes

Robin Hood Hashing

hash(key) > Blval[0]
A
‘C* Alval[0]
D
E
F

Georgia
Tech

Hash Tables ~ Static Hashing Schemes

Robin Hood Hashing
hash(key) B|val [0]
[4]
B
i~ Alval[e] N alo]--clo]
D Clval [1]
E]
F |
Georgia

Tech

Hash Tables ~ Static Hashing Schemes

Robin Hood Hashing

hash(key) Blval [0]
[A]
% Alval [0]
De——T" Clvall1]) cl1]>D[o]
'E | D|val [1]
| F]

Georgia

Tech

Robin Hood Hashing

Hash Tables

Blval [0]

Alval [0]

Clval [1]

D|val [1]

Static Hashing Schemes

Hash Tables

Robin Hood Hashing
hash(key) Blval [0]
[4]
o Alval [0]
D Clval[1]
E ¢ Elval [2]
[F |

Static Hashing Schemes

Hash Tables ~ Static Hashing Schemes

Robin Hood Hashing
hash(key) Blval [0]
A
g Alval [0] Alo] ==E[o0]
D Clval[1] cl1] ==E[1]
E E|lval[2] D[1]<E[2]
F D|val [2]

Georgia
Tech

Hash Tables

Robin Hood Hashing

Blval [0]

Alval [0]

Clval [1]

Elval [2]

_Tmcmw>

D|val [2]

Flval[1]

Static Hashing Schemes

Hash Tables ~ Static Hashing Schemes

Cuckoo Hashing

e Use multiple hash tables with different hash function seeds.

On insert, check every table and pick anyone that has a free slot.
If no table has a free slot, evict the element from one of them and then re-hash it find a
new location.

e Look-ups and deletions are always O(1) because only one location per hash table is
checked.

Georgia
Tech

Hash Tables ~ Static Hashing Schemes

Cuckoo Hashing

Hash Table #1 Hash Table #2
Insert A

/- hash,(A) hash,(A) \

Georgia
Tech

Cuckoo Hashing

Hash Tables ~ Static Hashing Schemes

Georgia
Tech

Hash Table #1

Alval

:

N

Insert A
hash,(A) hash,(A)

Insert B
hash(B) hash,(B)

Hash Table #2

J

/

:

Hash Tables ~ Static Hashing Schemes

Cuckoo Hashing
Hash Table #1 Hash Table #2
Insert A
hash,(A) hash,(A) B|val
Alval
Insert B
hash,(B) hash,(B)

. Insert C .
L T\ st hasho) / L]

Georgia
Tech

Hash Tables ~ Static Hashing Schemes

Cuckoo Hashing
Hash Table #1 Hash Table #2
Insert A
hash,(A) hash,(A) C|val
Alval
Insert B
hash,(B) hash,(B)

: Insert C :
L o hasnio / [

Georgia
Tech

Hash Tables ~ Static Hashing Schemes

Cuckoo Hashing
Hash Table #1 Hash Table #2
Insert A
hash,(A) hash,(A) C|val
Alwval
Insert B
hash(B) hash,(B)

: I tC :
[] () hash(C) |

hash,(B)

Georgia
Tech

Hash Tables ~ Static Hashing Schemes

Cuckoo Hashing
Hash Table #1 Hash Table #2
Insert A
hash,(A) hash,(A) C|val
B|val
Insert B
hash,(B) hash,(B) L Alval

: I tc ;
| AN | —
hash,(B)
hash,(A)

Georgia
Tech

Hash Tables ~ Static Hashing Schemes

Observation

e Static hashing schemes require the DBMS to know the number of keys to be stored.

Otherwise it has to rebuild the table if it needs to grow/shrink the table in size. Why?
You would have to take a latch on the entire hash table to prevent threads from adding
new entries.

e Dynamic hashing schemes resize themselves on demand.

Approach 1: Chained Hashing
Approach 2: Extendible Hashing
Approach 3: Linear Hashing

Georgia
Tech

Hash Tables = Dynamic Hashing Schemes

Dynamic Hashing Schemes

Hash Tables = Dynamic Hashing Schemes

Chained Hashing

e Maintain a linked list of buckets for each slot in the hash table.
* Resolve collisions by placing all keys with the same hash value into the same bucket.

To determine whether an element is present, hash to its bucket and scan for it.
Insertions and deletions are generalizations of lookups.

Georgia
Tech

Hash Tables = Dynamic Hashing Schemes

Chained Hashing

e Unlike static hashing schemes, two different keys may hash to the same offset

e If you want to enforce unique keys, then you have perform an additional comparison
of each key to determine whether they exactly match

* So, unlike static hashing schemes, need to retain the original key in the table

Georgia
Tech

Chained Hashing

Hash Tables

Dynamic Hashing Schemes

Buckets
|

1
hash(key) — —
._../" e— —
| I— | E—
g C—1 C—1
Y || — C—1

I—

N | —
E\ | E— | E—
| E— | E—
 — —

C—1

Georgia
Tech

Hash Tables = Dynamic Hashing Schemes

Chained Hashing

Buckets
L
hash(key) —
P > —1 L] []
| E— C_—1
ﬁ C—1 C—1
Y || — C—1
g | e— |
B | I—
E\ I.: C—1
| I— | —
| I | I |
C—1

Georgia
Tech

Hash Tables = Dynamic Hashing Schemes

Chained Hashing

Buckets
|
hash(key) — . o . .

C—1 C—1
¢ —1 —1
I || e— C—1

gl | —

N C—1
E\ I:I C—1
C— 1 C—1
1 | I |

C—1

Georgia
Tech

Hash Tables = Dynamic Hashing Schemes

Chained Hashing

e The hash table can grow infinitely because you just keep adding new buckets to the
linked list.

e You only need to take a latch on the bucket to store a new entry or extend the linked list.

Georgia
Tech

Hash Tables = Dynamic Hashing Schemes

Extendible Hashing

e Chained-hashing approach where we split buckets instead of letting the linked list
grow forever.
e Multiple slot locations can point to the same bucket chain.
e Reshuffling bucket entries on split and increase the number of bits to examine.
Data movement is localized to just the split chain.

Georgia
Tech

Hash Tables = Dynamic Hashing Schemes

Extendible Hashing

e The slot array maps hashes to buckets.

e A hash value may occupy an arbitrary number of bits.
e With extendible hashing, the number of bits that the hash table uses to map hashes to
buckets changes over time.

Global counter keeps track of the number of bits that the the hash table uses.
Local counter in each bucket tracks the number of hash bits used by that bucket.

Georgia
Tech

Hash Tables = Dynamic Hashing Schemes

Extendible Hashing

global) 00010... I.
- 01110...

00..
01.. 10101..
10.. 10011...
11..

|

11010...

Georgia
Tech

Extendible Hashing

Hash Tables = Dynamic Hashing Schemes

00010...
01110...

10101...

global
[do.. | @
[Q1.. | @
. | ®
.| o

10011...

Georgia
Tech

~_

11010..

:

local

local

local

Hash Tables = Dynamic Hashing Schemes

Extendible Hashing

global 00010.. local Find A
91110, in
hash(A) =[@1]1 10...

0 0 e —
’@1 10101.. local
10, 10011...

11..
11010.. n local

Georgia
Tg%h

Extendible Hashing

Hash Tables = Dynamic Hashing Schemes

Georgia
Tg%h

global -

00..
01..
10..
11..

2
=
o=

00010...
01110...

10101...

o-

[

10011...

~_

11010... n

local

local

local

Find A
hash(A)=01110...

Insert B
hash(B)=10111...

Extendible Hashing

Hash Tables = Dynamic Hashing Schemes

global

00..
Q1.

Bpio.

11..

Georgia
Tg%h

00010...
01110...
10101...
10011...
10111..
11010.. F

local

local

local

Find A
hash(A)=01110...

Insert B
hash(B) = ..

Extendible Hashing

Hash Tables

Dynamic Hashing Schemes

global

00..
01..

mpio.

11..

Georgia
Tg%h

=
=

00010...
{V 01110...

[o

N

10101...
10011...
10111...

11010... F

local

local

local

Find A
hash(A)=01110...

Insert B
hash(B)=10111...

Insert

hash(C) = 00...

Hash Tables = Dynamic Hashing Schemes

Extendible Hashing
global 00010...
01110... Find A

000..| @ hash(A)=01110...
010..| @ n
100..| o= 10011... Insert B

N hash(B)=10111...
110..[o
001..| & 10101... !l Insert C
011..| & — hash(C) = 10100...
101..[@
111 o 11010..

Georgia

Tech

Hash Tables = Dynamic Hashing Schemes

Extendible Hashing
global 00010... Il
01110... Find A

000..| @ hash(A)=01110...
010..| &= n
100..| o »{[Cioet Insert B

il — hash(B)=10111...
110..[@ -
001.. : 10101... Insert

10100.. _ 0
011..| & 1 hash(C) =[101)00...
mpiol..| e —
111..| @= 11010... F
Georgia

Tech

Hash Tables = Dynamic Hashing Schemes

Linear Hashing

e The hash table maintains a pointer that tracks the next bucket to split.

When any bucket overflows, split the bucket at the pointer location.
e Use multiple hashes to find the right bucket for a given key.

e Can use different overflow criterion:

Space Utilization
Average Length of Overflow Chains

Georgia
Tech

Linear Hashing

Hash Tables

Split
Pointer

»

hash,(key) = key % n

Georgia
Tech

w N = e

adh

=
-
o=
[o

Dynamic Hashing Schemes

Hash Tables = Dynamic Hashing Schemes

Linear Hashing

Split

Pointer 280 Find 6

‘ nre hash,(6)= 6%4=2
1| &= 5
imp2| o 3
P 3] e

hash,(key) = key % n

il

Georgia
Tech

Hash Tables = Dynamic Hashing Schemes

Linear Hashing

Split
Pointer 280 Find 6
’ o[hash,(6)= 6% 4 =2

gl}1 P

2| O~
3| O~

5 Insert 17
hash(17)= 17 % 4 =1

hash,(key) =key %n =

adh

Georgia
Tech

Hash Tables = Dynamic Hashing Schemes

Linear Hashing

Split

Pointer 280 Find 6
» ; P hash(6)= 6 % 4 =2
ha 5 7 1] 1Insert 17
K hash(17)= 17 % 4 =1
Overflow!

hash,(key) = key % n

il

Georgia
Tg%h

Hash Tables = Dynamic Hashing Schemes

Linear Hashing

Split —

Pointer Find 6

» JToa— = hash(6)= 6 % 4 =2
1] & 5 17 Insert 17
ol -y hash(17)= 17 % 4 =1
: k\ 5 Overflow!
4

hash,(key) = key %n o

hash,(key) = key % 2n 11

Georgia
Tg%h

Hash Tables = Dynamic Hashing Schemes

Linear Hashing

Split 3

Pointer Find 6

D @._/ hash(6)= 6 % 4 = 2
1 .'\ 5 17 Insert 17
2| o] -] hash(17)= 17 % 4 = 1
5[ed 13
4| o= 5

hash,(key) = key %n 7 |

hash,(key) = key % 2n] R 20

Georgia
Tg%h

Hash Tables = Dynamic Hashing Schemes

Linear Hashing

Split
Pointer & Find 6
i hash,(6)= 6%4=2

5 17 Insert 17
2 N hash(17)= 17 % 4 =1

pipipitie

ah

hash,(key) = key %n R
hash,(key) = key % 2n | 20

Georgia
Tg%h

Hash Tables = Dynamic Hashing Schemes

Linear Hashing

[

Split =
Pointer Find 6

L J[e— | hash,(6)= 6% 4 =2
» 1] & 5 17 Insert 17

P2 o — X hash(17)= 17 % 4 =1

P e 13 .

s 6 Find 20

hash,(20)= 20 %4 =0
hash,(20) = 20 % 8 = 4

hash,(key) = key %n =5] -)
hash,(key) = key % 2n] 20

Georgia
Tg%h

Linear Hashing

Hash Tables

Dynamic Hashing Schemes

Split =
Pointer
P o - I
B —_J= 17
Po2f e |
N = 13
4| o= 5
hash,(key) = key % n]
hash,(key) = key % 2n | 20

Georgia
Tg%h

Find 6
hash(6)= 6 % 4 = 2

Insert 17
hash(17)= 17 % 4 =1

Find 20
hash,(20)= 20 %4 =0
hash,(20)= 20 % 8 = 4

Find 9
hash,(9)= 9% 4 =1

Hash Tables = Dynamic Hashing Schemes

Linear Hashing - Delete

e Splitting buckets based on the split pointer will eventually get to all overflowed
buckets.

When the pointer reaches the last slot, delete the first hash function and move back to
beginning.

e The pointer can also move backwards when buckets are empty.

Georgia
Tech

Hash Tables

Linear Hashing — Delete

Dynamic Hashing Schemes

Split 3
Pointer
» 1 0-\ 5 17
Po2f e 9
5[] 13
4| @ 5
hash,(key) = key %n N
hash,(key) = key % 2n 1 20

Georgia
Tg%h

Delete 20
hash(20)= 20%4=0

Hash Tables = Dynamic Hashing Schemes

Linear Hashing — Delete

Split 3
Pointer / Delete 20
hash(20)= 20% 4=10
» ?I_: hash(20)= 20 % 8 = 4
5 17
2 0—\ 9|
3o 13
> :
hash,(key) =key %n]
hash,(key) = key % 2n | 20

Georgia
Tg%h

Hash Tables = Dynamic Hashing Schemes

Linear Hashing — Delete

Split
Pointer & Delete 20
e | hash(20)= 20% 4 =0
hash,(20)= 20 % 8 = 4
. 1 0-\ 5 17
2| &y [
H 13
i3 ed
» 4 .'\ -
hash,(key) =key %n =5] -)
hash,(key) = key % 2n] N

Georgia
Tg%h

Hash Tables = Dynamic Hashing Schemes

Linear Hashing — Delete

Split

Pointer 2 Delete 20
; QF/ hash(20)= 20 % 4 =0
=S ot hash,(20)= 20 % 8 =4
5 17
H 2 o—\ 9 -
3o 13
L2 6
hash,(key) = key % n o
hash,(key) = key % 2n 11

Georgia
Tech

Hash Tables

Linear Hashing — Delete

Dynamic Hashing Schemes

Split

Pointer

B o=
1| &=
2| o=
3

hash,(key) =key %n

b

Georgia
Tech

Delete 20
hash(20)= 20 % 4 =0
hash,(20)= 20 %8 =4

Hash Tables = Dynamic Hashing Schemes

Linear Hashing — Delete

Split
Pointer

»

& Delete 20
hash,(20)= 20 % 4 =0
e hash,(20)= 20 % 8 = 4
5 17
|- Insert 21
hash,(21)= 21 %4 =1

o
-
.
C~

w N = e

adl

Overflow!

hash,(key) = key % n

Georgia
Tg%h

Hash Tables = Dynamic Hashing Schemes

Linear Hashing vs. Extendible Hashing

e Moving from hash; to hash;; in Linear Hashing corresponds to
e Bumping up the global counter in Extendible Hashing

e Linear Hashing

Directory is gradually doubled over the course of a round
A directory can be avoided by a clever choice of the buckets to split
More flexibility: need not always split the appropriate dense bucket

Georgia
Tech

Hash Tables = Dynamic Hashing Schemes

Conclusion

e Hash tables are fast data structures that support O(1) look-ups
e Used all throughout the DBMS internals.
Examples: Page Table (Buffer Manager), Lock Table (Lock Manager)

e Trade-off between speed and flexibility.

Georgia
Tech

Hash Tables = Dynamic Hashing Schemes

Conclusion

e Hash tables are usually not what you want to use for a indexing tables
Lack of ordering in widely-used hashing schemes
Lack of locality of reference — more disk seeks
Persistent data structures are much more complex (logging and recovery)
Reference

e We will cover B+Trees in the next lecture
a.k.a., "The Greatest Data Structure of All Time!"

Georgia
Tech

https://www.evanjones.ca/ordered-vs-unordered-indexes.html

	Hash Tables
	Recap
	Hash Tables
	Hash Functions
	Static Hashing Schemes
	Dynamic Hashing Schemes

