
1 / 47

Sorting + Aggregation

Lecture 18: Sorting + Aggregation



2 / 47

Sorting + Aggregation

Administrivia

• Assignment 4 and Sheet 4 released
• Guest lecture on Nov 17
• Extra credit exam on Nov 22



3 / 47

Sorting + Aggregation

Today’s Agenda

Sorting + Aggregation
1.1 Recap
1.2 External Merge Sort
1.3 Tree-based Sorting
1.4 Aggregation
1.5 Conclusion



4 / 47

Sorting + Aggregation Recap

Recap



5 / 47

Sorting + Aggregation Recap

A More Detailed Architecture

DB

granularity:
data structures:
 
granularity:

block, file
free space inventory,
extent table ...
track, cylinder, ...

granularity:
data structures:
 
granularity:

page, segment
page table,
block map ...
block, file

granularity:
data structures:
 
granularity:

physical record,...
free space inventory,
page indexes ...
page, segment

granularity:
data structures:
 
granularity:

logical record, key,...
access path,
physical schema ...
physical record, ...

granularity:
data structures:
 
granularity:

relation, view, ...
logical schema,
integrity constraints
logical record, key, ...

granularity: relation, view, ...

Device Interface

File Interface

DB Buffer

Record Access

Record Interface

Query Interface
SQL,...

FIND NEXT record,
STORE record

write record,
insert in B-tree,...

access page j,
release page j

read block k,
write block k

application

logical data

access paths

physical data

page structure

storage allocation

external storage



6 / 47

Sorting + Aggregation Recap

Anatomy of a Database System [Monologue]

• Process Manager
▶ Connection Manager + Admission Control

• Query Processor
▶ Query Parser
▶ Query Optimizer (a.k.a., Query Planner)
▶ Query Executor

• Transactional Storage Manager
▶ Lock Manager
▶ Access Methods (a.k.a., Indexes)
▶ Buffer Pool Manager
▶ Log Manager

• Shared Utilities
▶ Memory, Disk, and Networking Manager

https://dsf.berkeley.edu/papers/fntdb07-architecture.pdf


7 / 47

Sorting + Aggregation Recap

Query Execution

• We are now going to talk about how to execute queries using table heaps and indexes.
• Coming weeks:

▶ Operator Algorithms
▶ Query Processing Models
▶ Runtime Architectures



8 / 47

Sorting + Aggregation Recap

Query Plan

• The operators are arranged in a tree.
• Data flows from the leaves of the tree

up towards the root.
• The output of the root node is the

result of the query.
SELECT A.id, B.value
FROM A, B
WHERE A.id = B.id AND B.value > 100



9 / 47

Sorting + Aggregation Recap

Disk-Oriented DBMS

• We cannot assume that the results of a query fits in memory.
• We are going use the buffer pool to implement query execution algorithms that need

to spill to disk.
• We are also going to prefer algorithms that maximize the amount of sequential access.



10 / 47

Sorting + Aggregation Recap

Today’s Agenda

• External Merge Sort
• Tree-based Sorting
• Aggregation



11 / 47

Sorting + Aggregation External Merge Sort

External Merge Sort



12 / 47

Sorting + Aggregation External Merge Sort

Why do we need to sort?

• Tuples in a table have no specific order.
• But queries often want to retrieve tuples in a specific order.

▶ Trivial to support duplicate elimination (DISTINCT).
▶ Bulk loading sorted tuples into a B+Tree index is faster.
▶ Aggregation (GROUP BY).



13 / 47

Sorting + Aggregation External Merge Sort

Sorting Algorithms

• If data fits in memory, then we can use a standard in-memory sorting algorithm like
quick-sort.

• If data does not fit in memory, then we need to use a technique that is aware of the cost
of writing data out to disk.



14 / 47

Sorting + Aggregation External Merge Sort

External Merge Sort

• Divide-and-conquer sorting algorithm that splits the data set into separate runs and
then sorts them individually.

• Phase 1 – Sorting
▶ Sort blocks of data that fit in main-memory and then write back the sorted blocks to a file

on disk.
• Phase 2 – Merging

▶ Combine sorted sub-files into a single larger file.



15 / 47

Sorting + Aggregation External Merge Sort

2-Way External Merge Sort

• We will start with a simple example of a 2-way external merge sort.
▶ "2" represents the number of runs that we are going to merge into a new run for each pass.

• Data set is broken up into N pages.
• The DBMS has a finite number of B buffer pages to hold input and output data.



16 / 47

Sorting + Aggregation External Merge Sort

2-Way External Merge Sort

• Pass 0
▶ Read every B pages of the table into memory
▶ Sort pages into runs and write them back to disk.

• Passes 1,2,3,. . .
▶ Recursively merge pairs of runs into runs twice as long.
▶ Use three buffer pages (2 for input pages, 1 for output).



17 / 47

Sorting + Aggregation External Merge Sort

2-Way External Merge Sort



18 / 47

Sorting + Aggregation External Merge Sort

2-Way External Merge Sort



19 / 47

Sorting + Aggregation External Merge Sort

2-Way External Merge Sort

• In each pass, we read and write each page in file.
• Number of passes = 1 + ⌈ log2 N ⌉
• Total I/O cost = 2N x (Number of passes)



20 / 47

Sorting + Aggregation External Merge Sort

2-Way External Merge Sort



21 / 47

Sorting + Aggregation External Merge Sort

2-Way External Merge Sort



22 / 47

Sorting + Aggregation External Merge Sort

2-Way External Merge Sort

• This algorithm only requires three buffer pages to perform the sorting (B=3).
• But even if we have more buffer space available (B>3), it does not effectively utilize

them.



23 / 47

Sorting + Aggregation External Merge Sort

Double Buffering Optimization

• Prefetch the next run in the
background and store it in a second
buffer while the system is processing
the current run.
▶ Reduces the wait time for I/O

requests at each step by continuously
utilizing the disk.



24 / 47

Sorting + Aggregation External Merge Sort

General External Merge Sort

• Pass 0
▶ Use B buffer pages.
▶ Produce N / B sorted runs of size B

• Pass 1,2,3,. . .
▶ Merge B-1 runs (i.e., K-way merge).

• Number of passes = 1 + ⌈ logB−1 N/B ⌉
• Total I/O Cost = 2N x (Number of passes)



25 / 47

Sorting + Aggregation External Merge Sort

K-Way Merge Algorithm

• Input: K sorted sub-arrays
• Output: 1 sorted array

▶ Efficiently compute the minimum element of all K sub-arrays.
▶ Repeatedly transfer that element to output array

• Internally maintain a heap to efficiently compute minimum element.



26 / 47

Sorting + Aggregation External Merge Sort

Example

• Sort 108 pages with 5 buffer pages: N=108, B=5
▶ Pass 0: N / B = 108 / 5 = 22 sorted runs of 5 pages each (last run is only 3 pages).
▶ Pass 1: N’ / B-1 = 22 / 4 = 6 sorted runs of 20 pages each (last run is only 8 pages).
▶ Pass 2: N” / B-1 = 6 / 4 = 2 sorted runs, first one has 80 pages and second one has 28 pages.
▶ Pass 3: Sorted file of 108 pages.

• 1+ logB−1 N/B = 1+ ⌈ log422 ⌉ = 1 + ⌈ 2.229 ⌉ = 4 passes



27 / 47

Sorting + Aggregation Tree-based Sorting

Tree-based Sorting



28 / 47

Sorting + Aggregation Tree-based Sorting

Using B+Trees for Sorting

• If the table that must be sorted already has a B+Tree index on the sort attribute(s), then
we can use that to accelerate sorting.

• Retrieve tuples in desired sort order by simply traversing the leaf pages of the tree.
• Cases to consider:

▶ Clustered B+Tree
▶ Unclustered B+Tree



29 / 47

Sorting + Aggregation Tree-based Sorting

Case 1 – Clustered B+Tree

• Traverse to the left-most leaf page, and
then retrieve tuples from all leaf pages.

• This is always better than external
sorting because there is no
computational cost and all disk access
is sequential.



30 / 47

Sorting + Aggregation Tree-based Sorting

Case 2 – Unclustered B+Tree

• Chase each pointer to the page that
contains the data.

• This is almost always a bad idea. In
general, one I/O per data record.



31 / 47

Sorting + Aggregation Aggregation

Aggregation



32 / 47

Sorting + Aggregation Aggregation

Aggregation

• Collapse multiple tuples into a single scalar value.
• Two implementation choices:

▶ Sorting
▶ Hashing



33 / 47

Sorting + Aggregation Aggregation

Sorting Aggregation



34 / 47

Sorting + Aggregation Aggregation

Sorting Aggregation



35 / 47

Sorting + Aggregation Aggregation

Alternatives to Sorting

• What if we do not need the data to be ordered?
▶ Forming groups in GROUP BY (no ordering)
▶ Removing duplicates in DISTINCT (no ordering)

• Hashing is a better alternative in this scenario.
▶ Only need to remove duplicates, no need for ordering.
▶ May be computationally cheaper than sorting.



36 / 47

Sorting + Aggregation Aggregation

Hashing Aggregate

• Populate an ephemeral hash table as the DBMS scans the table.
• For each record, check whether there is already an entry in the hash table:

▶ GROUP BY: Perform aggregate computation.
▶ DISTINCT: Discard duplicates.

• If everything fits in memory, then it is easy.
• If the DBMS must spill data to disk, then we need to be smarter.



37 / 47

Sorting + Aggregation Aggregation

External Hashing Aggregate

• Phase 1 – Partition
▶ Divide tuples into buckets based on hash key.
▶ Write them out to disk when they get full.

• Phase 2 – ReHash
▶ Build in-memory hash table for each partition and compute the aggregation.



38 / 47

Sorting + Aggregation Aggregation

Phase 1 – Partition

• Use a hash function h1 to split tuples into partitions on disk.
▶ We know that all matches live in the same partition.
▶ Partitions are spilled to disk via output buffers.

• Assume that we have B buffers.
• We will use B-1 buffers for the partitions and 1 buffer for the input data.



39 / 47

Sorting + Aggregation Aggregation

Phase 1 – Partition



40 / 47

Sorting + Aggregation Aggregation

Phase 2 – ReHash

• For each partition on disk:
▶ Read it into memory and build an in-memory hash table based on a second hash function

h2.
▶ Then go through each bucket of this hash table to bring together matching tuples.

• This assumes that each partition fits in memory.



41 / 47

Sorting + Aggregation Aggregation

Phase 2 – ReHash



42 / 47

Sorting + Aggregation Aggregation

Phase 2 – ReHash



43 / 47

Sorting + Aggregation Aggregation

Phase 2 – ReHash



44 / 47

Sorting + Aggregation Aggregation

Hashing Summarization

• During the ReHash phase, store pairs of the form (GroupKey −→ RunningVal)
• When we want to insert a new tuple into the hash table:

▶ If we find a matching GroupKey, just update the RunningVal appropriately
▶ Else insert a new GroupKey −→ RunningVal



45 / 47

Sorting + Aggregation Aggregation

Hashing Summarization



46 / 47

Sorting + Aggregation Conclusion

Conclusion



47 / 47

Sorting + Aggregation Conclusion

Conclusion

• Choice of sorting vs. hashing is subtle and depends on optimizations done in each case.
• Next Class

▶ Nested Loop Join
▶ Sort-Merge Join
▶ Hash Join


	Sorting + Aggregation
	Recap
	External Merge Sort
	Tree-based Sorting
	Aggregation
	Conclusion


