
1 / 52

Query Execution (Part 1)

Query Execution + Retrospective

JA



2 / 52

Query Execution (Part 1)

Administrivia

• Assignment 4 and Sheet 4 due on Dec 3.
• Project presentations on Dec 1 and Dec 6.
• Report due on Dec 6.

JA

JA

JA

JA

JA

JA

JA

JA

JA

JA

JA

JA

JA

JA

JA

JA

JA

JA

JA

JA

JA

JA

JA

JA

JA

JA

JA

JA

JA

JA

JA

JA

JA

JA

JA

JA

JA

JA

JA



3 / 52

Query Execution (Part 1)

Today’s Agenda

Query Execution (Part 1)
1.1 Recap
1.2 Processing Models
1.3 Access Methods
1.4 Expression Evaluation
1.5 Retrospective

JA



4 / 52

Query Execution (Part 1) Recap

Recap



5 / 52

Query Execution (Part 1) Recap

Join Algorithms: Summary

Join Algorithm IO Cost Example

Simple Nested Loop Join M + (m x N) 1.3 hours
Block Nested Loop Join M + (M x N) 50 seconds
Index Nested Loop Join M + (M x C) Variable
Sort-Merge Join M + N + (sort cost) 0.75 seconds
Hash Join 3 x (M + N) 0.45 seconds

JA

JA

JA

JA

JA



6 / 52

Query Execution (Part 1) Recap

Query Plan

• The operators are arranged in a tree.
• Data flows from the leaves of the tree

up towards the root.
• The output of the root node is the

result of the query.
SELECT R.id, S.cdate
FROM R, S
WHERE R.id = S.id AND S.value > 100

JA

JA

JA

JA



7 / 52

Query Execution (Part 1) Processing Models

Processing Models



8 / 52

Query Execution (Part 1) Processing Models

Processing Model

• A DBMS’s processing model defines how the system executes a query plan.
▶ Different trade-offs for different workloads.

• Approach 1: Iterator Model
• Approach 2: Materialization Model
• Approach 3: Vectorized / Batch Model

JA

JA

JA

JA

JA

JA

JA

JA

JA

JA

JA

JA

JA



9 / 52

Query Execution (Part 1) Processing Models

Iterator Model

• Each query plan operator implements a Next function.
▶ On each invocation, the operator returns either a single tuple or a null marker if there are

no more tuples.
▶ The operator implements a loop that calls next on its children to retrieve their tuples and

then process them.

• Also called volcano or pipeline model.

JA

JA

JA

JA

JA

JA



10 / 52

Query Execution (Part 1) Processing Models

Iterator Model

JA

JA

JA

JA

JA

JA

JA

JA

JA

JA

JA

JA

JA

JA

JA

JA

JA

JA

JA

JA

JA



11 / 52

Query Execution (Part 1) Processing Models

Iterator Model

JA

JA

JA

JA

JA

JA

JA



12 / 52

Query Execution (Part 1) Processing Models

Iterator Model

JA

JA

JA

JA

JA

JA

JA



13 / 52

Query Execution (Part 1) Processing Models

Iterator Model

• This is used in almost every DBMS. Allows for tuple pipelining.
• Some operators have to block until their children emit all of their tuples.
• These operators are known as pipeline breakers

▶ Joins, Subqueries, Order By

• Output control (e.g., LIMIT) works easily with this approach.
• Examples: SQLite, MySQL, PostgreSQL

JA

JA

JA

JA

JA

JA

JA



14 / 52

Query Execution (Part 1) Processing Models

Materialization Model

• Each operator processes its input all at once and then emits its output all at once.
▶ The operator "materializes" its output as a single result.
▶ The DBMS can push down hints into to avoid scanning too many tuples (e.g., LIMIT).
▶ Can send either a materialized row or a single column.

• The output can be either whole tuples (NSM) or subsets of columns (DSM)

JA

JA

JA

JA

JA

JA

JA

JA

JA

JA

JA

JA

JA



15 / 52

Query Execution (Part 1) Processing Models

Materialization Model

JA

JA

JA

JA

JA



16 / 52

Query Execution (Part 1) Processing Models

Materialization Model

JA



17 / 52

Query Execution (Part 1) Processing Models

Materialization Model



18 / 52

Query Execution (Part 1) Processing Models

Materialization Model

• Better for OLTP workloads because queries only access a small number of tuples at a
time.
▶ Lower execution / coordination overhead.
▶ Fewer function calls.

• Not good for OLAP queries with large intermediate results.
• Examples: MonetDB, VoltDB

JA

JA

JA

JA

JA

JA

JA

JA

JA

JA

JA



19 / 52

Query Execution (Part 1) Processing Models

Vectorization Model

• Like the Iterator Model where each operator implements a Next function in this model.
• Each operator emits a batch of tuples instead of a single tuple.

▶ The operator’s internal loop processes multiple tuples at a time.
▶ The size of the batch can vary based on hardware or query properties.
▶ Useful in in-memory DBMSs (due to fewer function calls)
▶ Useful in disk-centric DBMSs (due to fewer IO operations)

JA

JA

JA

JA

JA

JA

JA

JA



20 / 52

Query Execution (Part 1) Processing Models

Vectorization Model

JA

JA

JA

JA



21 / 52

Query Execution (Part 1) Processing Models

Vectorization Model

JA

JA

JA

JA

JA

JA

JA

JA

JA

JA



22 / 52

Query Execution (Part 1) Processing Models

Vectorization Model



23 / 52

Query Execution (Part 1) Processing Models

Vectorization Model

• Ideal for OLAP queries because it greatly reduces the number of invocations per
operator.

• Allows for operators to use vectorized (SIMD) instructions to process batches of tuples.
• Examples: Vectorwise, Snowflake, SQL Server, Oracle, Amazon RedShift

JA

JA

JA

JA

JA

JA

JA

JA

JA

JA

JA

JA

JA



24 / 52

Query Execution (Part 1) Processing Models

Plan Processing Direction

• Approach 1: Top-to-Bottom
▶ Start with the root and "pull" data up from its children.
▶ Tuples are always passed with function calls.

• Approach 2: Bottom-to-Top
▶ Start with leaf nodes and push data to their parents.
▶ Allows for tighter control of caches/registers in pipelines.

JA

JA

JA

JA

JA

JA

JA

JA



25 / 52

Query Execution (Part 1) Access Methods

Access Methods



26 / 52

Query Execution (Part 1) Access Methods

Access Methods

• An access method is a way that the
DBMS can access the data stored in a
table.
▶ Located at the bottom of the query

plan
▶ Not defined in relational algebra.

• Three basic approaches:
▶ Sequential Scan
▶ Index Scan
▶ Multi-Index / "Bitmap" Scan

JA



27 / 52

Query Execution (Part 1) Access Methods

Sequential Scan

• For each page in the table:
▶ Retrieve it from the buffer pool.
▶ Iterate over each tuple and check

whether to include it.
▶ Uses a buffer for materialization and

vectorization processing models

• The DBMS maintains an internal
cursor that tracks the last page / slot it
examined.

JA

JA

JA

JA



28 / 52

Query Execution (Part 1) Access Methods

Sequential Scan: Optimizations

• This is almost always the worst thing that the DBMS can do to execute a query.
• Sequential Scan Optimizations:

▶ Prefetching
▶ Buffer Pool Bypass
▶ Parallelization
▶ Zone Maps
▶ Late Materialization
▶ Heap Clustering

JA

JA

JA



29 / 52

Query Execution (Part 1) Access Methods

Zone Maps

• Pre-computed aggregates for the
attribute values in a page.

• DBMS checks the zone map first to
decide whether it wants to access the
page.

SELECT *
FROM R
WHERE val > 600

JA

JA



30 / 52

Query Execution (Part 1) Access Methods

Late Materialization

• DSM DBMSs can delay
stitching together tuples until
the upper parts of the query
plan.

JA

JA

JA

JA



31 / 52

Query Execution (Part 1) Access Methods

Late Materialization

• DSM DBMSs can delay
stitching together tuples until
the upper parts of the query
plan.

JA

JA

JA

JA

JA



32 / 52

Query Execution (Part 1) Access Methods

Late Materialization

• DSM DBMSs can delay
stitching together tuples until
the upper parts of the query
plan.



33 / 52

Query Execution (Part 1) Access Methods

Heap Clustering

• Tuples are sorted in the heap’s pages
based on the order specified by the
clustering index.

• If the query accesses tuples using the
clustering index’s attributes, then the
DBMS can jump directly to the pages
that it needs.

JA

JA

JA

JA

JA

JA

JA



34 / 52

Query Execution (Part 1) Access Methods

Index Scan

• The query optimizer picks an index to find the tuples that the query needs.
• Which index to use depends on:

▶ What attributes the index contains
▶ What attributes the query references
▶ The attribute’s value domains
▶ Predicate composition
▶ Whether the index has unique or non-unique keys

JA

JA

JA

JA

JA

JA



35 / 52

Query Execution (Part 1) Access Methods

Index Scan

• Suppose that we a single table with 100 tuples and two indexes:
▶ Index 1: age
▶ Index 2: dept
SELECT *
FROM students
WHERE age < 30

AND dept = 'CS'
AND country = 'US'

▶ Scenario 1: There are 99 people under the age of 30 but only 2 people in the CS
department.

▶ Scenario 2: There are 99 people in the CS department but only 2 people under the age of
30.

JA



36 / 52

Query Execution (Part 1) Access Methods

Multi-Index Scan

• If there are multiple indexes that the DBMS can use for a query:
▶ Compute sets of record ids using each matching index.
▶ Combine these sets based on the query’s predicates (union vs. intersect).
▶ Retrieve the records and apply any remaining predicates.

• Postgres calls this Bitmap Scan.

JA

JA

JA



37 / 52

Query Execution (Part 1) Access Methods

Multi-Index Scan

• With an index on age and an index on dept,
▶ We can retrieve the record ids satisfying age < 30 using the first,
▶ Then retrieve the record ids satisfying dept = ’CS’ using the second,
▶ Take their intersection
▶ Retrieve records and check country = ’US’.

SELECT *
FROM students
WHERE age < 30

AND dept = 'CS'
AND country = 'US'

JA



38 / 52

Query Execution (Part 1) Access Methods

Multi-Index Scan

• Set intersection can be done with
bitmaps, hash tables, or Bloom filters.



39 / 52

Query Execution (Part 1) Access Methods

Index Scan Page Sorting

• Retrieving tuples in the order that
appear in an unclustered index is
inefficient.

• The DBMS can first figure out all the
tuples that it needs and then sort them
based on their page id.

JA

JA



40 / 52

Query Execution (Part 1) Expression Evaluation

Expression Evaluation

JA



41 / 52

Query Execution (Part 1) Expression Evaluation

Expression Evaluation

• The DBMS represents a WHERE clause
as an expression tree.

• The nodes in the tree represent
different expression types:
▶ Comparisons (=, <, >, !=)
▶ Conjunction (AND), Disjunction (OR)
▶ Arithmetic Operators (+, -, *, /, %)
▶ Constant Values
▶ Tuple Attribute References

SELECT R.id, S.cdate
FROM R, S
WHERE R.id = S.id

AND S.value > 100

JA

JA

JA

JA

JA

JA



42 / 52

Query Execution (Part 1) Expression Evaluation

Expression Evaluation

JA



43 / 52

Query Execution (Part 1) Expression Evaluation

Expression Evaluation

JA



44 / 52

Query Execution (Part 1) Expression Evaluation

Expression Evaluation

JA

JA



45 / 52

Query Execution (Part 1) Expression Evaluation

Expression Evaluation

• Evaluating predicates in this manner is
slow.
▶ The DBMS traverses the tree and for

each node that it visits it must figure
out what the operator needs to do.

• Consider the predicate "WHERE 1=1"
• A better approach is to just evaluate

the expression directly.
▶ Think Just-In-Time (JIT) compilation

JA

JA

JA

JA



46 / 52

Query Execution (Part 1) Expression Evaluation

Conclusion

• The same query plan be executed in multiple ways.
• (Most) DBMSs will want to use an index scan as much as possible.
• Expression trees are flexible but slow.



47 / 52

Query Execution (Part 1) Retrospective

Retrospective



48 / 52

Query Execution (Part 1) Retrospective

What did we learn

• You are tired of systems programming
• You are exhausted
• Let’s take a step back and think about what happened



49 / 52

Query Execution (Part 1) Retrospective

Lessons learned

• Systems programming is hard
• Become a better programmer through the study of database systems internals
• Going forth, you should have a good understanding how systems work

JA



50 / 52

Query Execution (Part 1) Retrospective

Big Ideas

• Database systems are awesome – but are not magic.
• Elegant abstractions are magic.
• Declarativity enables usability and performance.
• Building systems software is more than hacking
• There are recurring motifs in systems programming.
• CS has an intellectual history and you can contribute.

JA

JA

JA



51 / 52

Query Execution (Part 1) Retrospective

What Next?

• We have barely scratched the surface. Follow-on course: CS 8803 (DBMS
Implementation - Part II)
▶ Query Optimization
▶ Concurrency Control
▶ Logging and Recovery Methods
▶ Query Compilation + Vectorization

• Stay in touch
▶ Tell me when this course helps you out with future courses (or jobs!)
▶ Ask me cool DBMS questions

JA

JA



52 / 52

Query Execution (Part 1) Retrospective

Parting Thoughts

• You have surmounted several challenges in this course.
• You make it all worthwhile.
• Please share your feedback via CIOS.

JA

JA

JA

JA

JA

JA

JA

JA

JA

JA

JA

JA

JA

JA

JA

JA


	Query Execution (Part 1)
	Recap
	Processing Models
	Access Methods
	Expression Evaluation
	Retrospective


