
1 / 52

Query Execution (Part 1)

Query Execution + Retrospective



2 / 52

Query Execution (Part 1)

Administrivia

• Assignment 4 and Sheet 4 due on Dec 3.
• Project presentations on Dec 1 and Dec 6.
• Report due on Dec 6.



3 / 52

Query Execution (Part 1)

Today’s Agenda

Query Execution (Part 1)
1.1 Recap
1.2 Processing Models
1.3 Access Methods
1.4 Expression Evaluation
1.5 Retrospective



4 / 52

Query Execution (Part 1) Recap

Recap



5 / 52

Query Execution (Part 1) Recap

Join Algorithms: Summary

Join Algorithm IO Cost Example

Simple Nested Loop Join M + (m x N) 1.3 hours
Block Nested Loop Join M + (M x N) 50 seconds
Index Nested Loop Join M + (M x C) Variable
Sort-Merge Join M + N + (sort cost) 0.75 seconds
Hash Join 3 x (M + N) 0.45 seconds



6 / 52

Query Execution (Part 1) Recap

Query Plan

• The operators are arranged in a tree.
• Data flows from the leaves of the tree

up towards the root.
• The output of the root node is the

result of the query.
SELECT R.id, S.cdate
FROM R, S
WHERE R.id = S.id AND S.value > 100



7 / 52

Query Execution (Part 1) Processing Models

Processing Models



8 / 52

Query Execution (Part 1) Processing Models

Processing Model

• A DBMS’s processing model defines how the system executes a query plan.
▶ Different trade-offs for different workloads.

• Approach 1: Iterator Model
• Approach 2: Materialization Model
• Approach 3: Vectorized / Batch Model



9 / 52

Query Execution (Part 1) Processing Models

Iterator Model

• Each query plan operator implements a Next function.
▶ On each invocation, the operator returns either a single tuple or a null marker if there are

no more tuples.
▶ The operator implements a loop that calls next on its children to retrieve their tuples and

then process them.

• Also called volcano or pipeline model.



10 / 52

Query Execution (Part 1) Processing Models

Iterator Model



11 / 52

Query Execution (Part 1) Processing Models

Iterator Model



12 / 52

Query Execution (Part 1) Processing Models

Iterator Model



13 / 52

Query Execution (Part 1) Processing Models

Iterator Model

• This is used in almost every DBMS. Allows for tuple pipelining.
• Some operators have to block until their children emit all of their tuples.
• These operators are known as pipeline breakers

▶ Joins, Subqueries, Order By

• Output control (e.g., LIMIT) works easily with this approach.
• Examples: SQLite, MySQL, PostgreSQL



14 / 52

Query Execution (Part 1) Processing Models

Materialization Model

• Each operator processes its input all at once and then emits its output all at once.
▶ The operator "materializes" its output as a single result.
▶ The DBMS can push down hints into to avoid scanning too many tuples (e.g., LIMIT).
▶ Can send either a materialized row or a single column.

• The output can be either whole tuples (NSM) or subsets of columns (DSM)



15 / 52

Query Execution (Part 1) Processing Models

Materialization Model



16 / 52

Query Execution (Part 1) Processing Models

Materialization Model



17 / 52

Query Execution (Part 1) Processing Models

Materialization Model



18 / 52

Query Execution (Part 1) Processing Models

Materialization Model

• Better for OLTP workloads because queries only access a small number of tuples at a
time.
▶ Lower execution / coordination overhead.
▶ Fewer function calls.

• Not good for OLAP queries with large intermediate results.
• Examples: MonetDB, VoltDB



19 / 52

Query Execution (Part 1) Processing Models

Vectorization Model

• Like the Iterator Model where each operator implements a Next function in this model.
• Each operator emits a batch of tuples instead of a single tuple.

▶ The operator’s internal loop processes multiple tuples at a time.
▶ The size of the batch can vary based on hardware or query properties.
▶ Useful in in-memory DBMSs (due to fewer function calls)
▶ Useful in disk-centric DBMSs (due to fewer IO operations)



20 / 52

Query Execution (Part 1) Processing Models

Vectorization Model



21 / 52

Query Execution (Part 1) Processing Models

Vectorization Model



22 / 52

Query Execution (Part 1) Processing Models

Vectorization Model



23 / 52

Query Execution (Part 1) Processing Models

Vectorization Model

• Ideal for OLAP queries because it greatly reduces the number of invocations per
operator.

• Allows for operators to use vectorized (SIMD) instructions to process batches of tuples.
• Examples: Vectorwise, Snowflake, SQL Server, Oracle, Amazon RedShift



24 / 52

Query Execution (Part 1) Processing Models

Plan Processing Direction

• Approach 1: Top-to-Bottom
▶ Start with the root and "pull" data up from its children.
▶ Tuples are always passed with function calls.

• Approach 2: Bottom-to-Top
▶ Start with leaf nodes and push data to their parents.
▶ Allows for tighter control of caches/registers in pipelines.



25 / 52

Query Execution (Part 1) Access Methods

Access Methods



26 / 52

Query Execution (Part 1) Access Methods

Access Methods

• An access method is a way that the
DBMS can access the data stored in a
table.
▶ Located at the bottom of the query

plan
▶ Not defined in relational algebra.

• Three basic approaches:
▶ Sequential Scan
▶ Index Scan
▶ Multi-Index / "Bitmap" Scan



27 / 52

Query Execution (Part 1) Access Methods

Sequential Scan

• For each page in the table:
▶ Retrieve it from the buffer pool.
▶ Iterate over each tuple and check

whether to include it.
▶ Uses a buffer for materialization and

vectorization processing models

• The DBMS maintains an internal
cursor that tracks the last page / slot it
examined.



28 / 52

Query Execution (Part 1) Access Methods

Sequential Scan: Optimizations

• This is almost always the worst thing that the DBMS can do to execute a query.
• Sequential Scan Optimizations:

▶ Prefetching
▶ Buffer Pool Bypass
▶ Parallelization
▶ Zone Maps
▶ Late Materialization
▶ Heap Clustering



29 / 52

Query Execution (Part 1) Access Methods

Zone Maps

• Pre-computed aggregates for the
attribute values in a page.

• DBMS checks the zone map first to
decide whether it wants to access the
page.

SELECT *
FROM R
WHERE val > 600



30 / 52

Query Execution (Part 1) Access Methods

Late Materialization

• DSM DBMSs can delay
stitching together tuples until
the upper parts of the query
plan.



31 / 52

Query Execution (Part 1) Access Methods

Late Materialization

• DSM DBMSs can delay
stitching together tuples until
the upper parts of the query
plan.



32 / 52

Query Execution (Part 1) Access Methods

Late Materialization

• DSM DBMSs can delay
stitching together tuples until
the upper parts of the query
plan.



33 / 52

Query Execution (Part 1) Access Methods

Heap Clustering

• Tuples are sorted in the heap’s pages
based on the order specified by the
clustering index.

• If the query accesses tuples using the
clustering index’s attributes, then the
DBMS can jump directly to the pages
that it needs.



34 / 52

Query Execution (Part 1) Access Methods

Index Scan

• The query optimizer picks an index to find the tuples that the query needs.
• Which index to use depends on:

▶ What attributes the index contains
▶ What attributes the query references
▶ The attribute’s value domains
▶ Predicate composition
▶ Whether the index has unique or non-unique keys



35 / 52

Query Execution (Part 1) Access Methods

Index Scan

• Suppose that we a single table with 100 tuples and two indexes:
▶ Index 1: age
▶ Index 2: dept
SELECT *
FROM students
WHERE age < 30

AND dept = 'CS'
AND country = 'US'

▶ Scenario 1: There are 99 people under the age of 30 but only 2 people in the CS
department.

▶ Scenario 2: There are 99 people in the CS department but only 2 people under the age of
30.



36 / 52

Query Execution (Part 1) Access Methods

Multi-Index Scan

• If there are multiple indexes that the DBMS can use for a query:
▶ Compute sets of record ids using each matching index.
▶ Combine these sets based on the query’s predicates (union vs. intersect).
▶ Retrieve the records and apply any remaining predicates.

• Postgres calls this Bitmap Scan.



37 / 52

Query Execution (Part 1) Access Methods

Multi-Index Scan

• With an index on age and an index on dept,
▶ We can retrieve the record ids satisfying age < 30 using the first,
▶ Then retrieve the record ids satisfying dept = ’CS’ using the second,
▶ Take their intersection
▶ Retrieve records and check country = ’US’.

SELECT *
FROM students
WHERE age < 30

AND dept = 'CS'
AND country = 'US'



38 / 52

Query Execution (Part 1) Access Methods

Multi-Index Scan

• Set intersection can be done with
bitmaps, hash tables, or Bloom filters.



39 / 52

Query Execution (Part 1) Access Methods

Index Scan Page Sorting

• Retrieving tuples in the order that
appear in an unclustered index is
inefficient.

• The DBMS can first figure out all the
tuples that it needs and then sort them
based on their page id.



40 / 52

Query Execution (Part 1) Expression Evaluation

Expression Evaluation



41 / 52

Query Execution (Part 1) Expression Evaluation

Expression Evaluation

• The DBMS represents a WHERE clause
as an expression tree.

• The nodes in the tree represent
different expression types:
▶ Comparisons (=, <, >, !=)
▶ Conjunction (AND), Disjunction (OR)
▶ Arithmetic Operators (+, -, *, /, %)
▶ Constant Values
▶ Tuple Attribute References

SELECT R.id, S.cdate
FROM R, S
WHERE R.id = S.id

AND S.value > 100



42 / 52

Query Execution (Part 1) Expression Evaluation

Expression Evaluation



43 / 52

Query Execution (Part 1) Expression Evaluation

Expression Evaluation



44 / 52

Query Execution (Part 1) Expression Evaluation

Expression Evaluation



45 / 52

Query Execution (Part 1) Expression Evaluation

Expression Evaluation

• Evaluating predicates in this manner is
slow.
▶ The DBMS traverses the tree and for

each node that it visits it must figure
out what the operator needs to do.

• Consider the predicate "WHERE 1=1"
• A better approach is to just evaluate

the expression directly.
▶ Think Just-In-Time (JIT) compilation



46 / 52

Query Execution (Part 1) Expression Evaluation

Conclusion

• The same query plan be executed in multiple ways.
• (Most) DBMSs will want to use an index scan as much as possible.
• Expression trees are flexible but slow.



47 / 52

Query Execution (Part 1) Retrospective

Retrospective



48 / 52

Query Execution (Part 1) Retrospective

What did we learn

• You are tired of systems programming
• You are exhausted
• Let’s take a step back and think about what happened



49 / 52

Query Execution (Part 1) Retrospective

Lessons learned

• Systems programming is hard
• Become a better programmer through the study of database systems internals
• Going forth, you should have a good understanding how systems work



50 / 52

Query Execution (Part 1) Retrospective

Big Ideas

• Database systems are awesome – but are not magic.
• Elegant abstractions are magic.
• Declarativity enables usability and performance.
• Building systems software is more than hacking
• There are recurring motifs in systems programming.
• CS has an intellectual history and you can contribute.



51 / 52

Query Execution (Part 1) Retrospective

What Next?

• We have barely scratched the surface. Follow-on course: CS 8803 (DBMS
Implementation - Part II)
▶ Query Optimization
▶ Concurrency Control
▶ Logging and Recovery Methods
▶ Query Compilation + Vectorization

• Stay in touch
▶ Tell me when this course helps you out with future courses (or jobs!)
▶ Ask me cool DBMS questions



52 / 52

Query Execution (Part 1) Retrospective

Parting Thoughts

• You have surmounted several challenges in this course.
• You make it all worthwhile.
• Please share your feedback via CIOS.


	Query Execution (Part 1)
	Recap
	Processing Models
	Access Methods
	Expression Evaluation
	Retrospective


