Georgia @‘
Tech

Query Execution + Retrospective

CREATING THE NEXT*

Query Execution (Part 1)

Administrivia

e Assignment 4 and Sheet 4 due on Dec 3.
e Project presentations on Dec 1 and Dec 6.

e Report due on Dec 6.

Georgia
Tech

Today’s Agenda

Query Execution (Part 1)

Query Execution (Part 1)
1.1 Recap
1.2 Processing Models
1.3 Access Methods
1.4 Expression Evaluation
1.5 Retrospective

Georgia
Tech

Query Execution (Part 1) Recap

Recap

Query Execution (Part 1) = Recap.

Join Algorithms: Summary

Join Algorithm IO Cost Example
Simple Nested Loop Join M + (m x N) 1.3 hours
Block Nested Loop Join M + (M x N) 50 seconds
Index Nested Loop Join M+ (M x C) Variable
Sort-Merge Join M + N + (sort cost) 0.75 seconds
Hash Join 3x(M+N) 0.45 seconds

Georgia
Tech

Query Execution (Part 1) = Recap.

Query Plan

: R.id, S.val
e The operators are arranged in a tree. TUr.d, s.value

e Data flows from the leaves of the tree T . .
up towards the root. N R.id=S.id

e The output of the root node is the ‘\(S
result of the query. {lum 0
SELECT R.id, S.cdate R s

FROM R, S
WHERE R.id = S.id AND S.value > 100

Georgia
Tech

Query Execution (Part 1) Processing Models

Processing Models

Query Execution (Part 1) = Processing Models

Processing Model

A DBMS’s processing model defines how the system executes a query plan.

Different trade-offs for different workloads.

Approach 1: Iterator Model

Approach 2: Materialization Model
Approach 3: Vectorized / Batch Model

Georgia
Tech

Query Execution (Part 1) = Processing Models

Iterator Model

e Each query plan operator implements a Next function.
On each invocation, the operator returns either a single tuple or a null marker if there are
no more tuples.
The operator implements a loop that calls next on its children to retrieve their tuples and
then process them.

e Also called volcano or pipeline model.

Georgia
Tech

Iterator Model

Next() [for t in child.Next(): k
.

emit(projection(t))

N,
-
-
-
-
.
.
ay
.

SELECT R.id, S.cdate
FROM R JOIN S
ON R.id = S.id

| WHERE S.value > 100

Next() [for t, in left.NextO:

buildHashTable(t,)
for t, in right.Next(): (.,.

if probe(t,): emit(t,>dt,) '-.,.
AL

Next() [for t in child.Next():
if evalPred(t): emit(t) "~

Next() |[for t in R: Next() [for t in s:
emit(t) emit(t) LET TN

T
"TE R.id, S.value
e,
o t>‘:1 R.id=S.id

"taa,, "ay Gvalu@ma
Ll \
R S

Georgia
Tech

NN NS EEE NS S AN S S EEEEEEEEEEEEEEEEEEEEEnEnne”

Iterator Model

for t in child.Next():
emit(projec‘tion(t))

for t, i ft.Next():
b; dHashTable(t}

fof t, in right.Neft():
if probe(t,): emft(t,>dt,)

/

SELECT R.id, S.cdate
FROM R JOIN S

ON R.id = S.id
WHERE S.value > 100

for t in child.Next():
if evalPred(t): emit(t)

Single Tuple

for t in R:
emit(t)

Georgia
Tech

Tc R.id, S.value
t
MR.id=S.ld

N
/ G value>100
N
R

S

Iterator Model

xecution (Part 1) Pr ng Models

Georgia
Tech

for t in child.Next():
emic(projen{tion(tp

)\

for t, in left.Next():
buildHashTable(t,)
for t, in right.Next():
>dt,)

if probe(g\emit(t,

™~

SELECT R.id, S.cdate
FROM R JOIN S

ON R.id = S.id
WHERE S.value > 100

if evalPredt): efit(t)

for t in S4
emit(t)

”: R.id, S.value

\.‘ D<]r.1d=s.1d
for t in child.Next(): \ |°|

N
/ O ‘aluesi00
N
R S

Query Execution (Part 1) = Processing Models

Iterator Model

This is used in almost every DBMS. Allows for tuple pipelining.

e Some operators have to block until their children emit all of their tuples.
These operators are known as pipeline breakers

Joins, Subqueries, Order By

Output control (e.g., LIMIT) works easily with this approach.
Examples: SQLite, MySQL, PostgreSQL

Georgia
Tech

Query Execution (Part 1) = Processing Models

Materialization Model

e Each operator processes its input all at once and then emits its output all at once.

The operator "materializes" its output as a single result.
The DBMS can push down hints into to avoid scanning too many tuples (e.g., LIMIT).
Can send either a materialized row or a single column.

e The output can be either whole tuples (NSM) or subsets of columns (DSM)

Georgia
Tech

Materialization Model

ution (Part 1) Processing Models

Georgia
Tech

out =[]

return out

for t in child.Output():
out.add(projection(t))

out =[]

for t, in left.Output():
buildHashTable(t,)

for t, in right.Output():
if probe(t,): out.add(t,>dt,)

SELECT R.id, S.cdate
FROM R JOIN S
ON R.id = S.id
WHERE S.value > 100

return out
out =[]
for t in child.Output():
if evalPred(t): out.add(t)

return out

out =[] out = []

for t in R: for t in S:

out.add(t) out.add(t)
return out return out

n R.id, S.value

t
M R.id=s.id
N
G value>100
N

R S

Materialization Model

out =[]
for t in child.Output():
C out.add(projection(t))

[resucoqut

out =[]

for t, in left.Output():
buildHashTable(t,)

for t, in right.Outputf):

if probe(t,): out.add(t,pdt,)
return out

SELECT R.id, S.cdate
FROM R JOIN S
ON R.id = S.id
WHERE S.value > 100

ouf =[]
fgr t in child.Output():
if evalPred(t): out.add(t)

return out
out =[] out =[]
for t in R: for t in S:
out.add(t) out.add(t)
return out return out

Georgia
Tech

Tc R.id, S.value
t
D<]r.id=s.id

N
/ G value>100
™
R S

Materialization Model

out =[]
for t in child.Output():
C out.add(projectiof(t))
[resucaout

out = []
for t, in left.Outpyt():
buildHashTable(t.

SELECT R.id, S.cdate
FROM R JOIN S

ON R.id = S.id
WHERE S.value > 100

out =[]

if evalPredft): o

t()

.ad‘d(t)

out =[] out =[]

for t in R: for t in S:
out.add(t) out.add(t),
return out

return out

Georgia
Tech

n R.id, S.value
1
D<]r.id=s.1d

/ N
value>100
N

R

S

Query Execution (Part 1) = Processing Models

Materialization Model

e Better for OLTP workloads because queries only access a small number of tuples at a
time.

Lower execution / coordination overhead.
Fewer function calls.

e Not good for OLAP queries with large intermediate results.
¢ Examples: MonetDB, VoltDB

Georgia
Tech

Query Execution (Part 1) = Processing Models

Vectorization Model

e Like the Iterator Model where each operator implements a Next function in this model.
e Each operator emits a batch of tuples instead of a single tuple.

The operator’s internal loop processes multiple tuples at a time.

The size of the batch can vary based on hardware or query properties.
Useful in in-memory DBMSs (due to fewer function calls)

Useful in disk-centric DBMSs (due to fewer IO operations)

Georgia
Tech

Vectorization Model

ution (Part 1) sing Models

Georgia
Tech

out =[]

for t in child.Next():
out.add(projection(t))
if |out|>n: emit(out)

out =[]

for t, in left.Next():
buildHashTable(t,)

for t, in right.Next():
if probe(t,): out.add(t,>dt,)
if |out|>n: emit(out)

SELECT R.id, S.cdate
FROM R JOIN S

ON R.id = S.id
WHERE S.value > 100

out =[]

for t in child.Next():
if evalPred(t): out.add(t)
if out|>n: emit(out)

out = [] out =[]
for t in R: for t in S:
out.add(t) out.add(t)
if |out|>n: emit(out) if |out|>n: emit(out)

TC R.id, S.value
t
D<]r.1d=s.1d

N
/ G value>100
N
R S

ution (Part 1) g Models

Vectorization Model

out =[]

ot sasiprosocmiont SELECT R.id, S.cdate

out.add(projection(t))
T~—iflout | >n: emit(out) FROM R JOIN S
N ON R.id = S.id

o R WHERE S.value > 100

ffor t, in left.Next():
buildHashTable(t'
”: R.id, S.value
ogt =[]

for t, in right.Next():
NR.id:S.id
fqr t in child.Next(): \

if probe(t,): out]add(t,dt,)
if Jout|>n: emitdout)

if evalPred(t): out.add(t)

if Jout|>n: emit(out) QO values100

out =[]
for t in S:
out.add(t)

if |out|>n: emit(out)

out = []
for t in R:

Tuple Batch
out.add(t)

if |out|>n: emit(out)

Georgia
Tech

Vectorization Model

xecution (Part 1) Prox

out =[]

for t in child.Next():
out.add(projection(t))

[Ebaut|>n: emit(out)

for t, in right.Ne

out = []
ffor t, in left.Next():

buildHashTable(t

QO:
if probe(t,): out]add(t,>dt)
if |out|>n: emitfout)

1}

SELECT R.id, S.cdate
FROM R JOIN S
ON R.id = S.id
WHERE S.value > 100

t=1C1

r t in child.Next():
if evalPred(t): out.add(t)
s6fout|2p; emit(out)

out = []

C-f
Tuple Batch
for t in R:
out.add(t)

if |out|>n: emit(out)

out =[]
for t in S:
out.add(t)
if |out|>n: emit(out)

n R.id, S.value
1
MR.id:S.id

N
value>100

S

Georgia
Tech

Query Execution (Part 1) = Processing Models

Vectorization Model

e Ideal for OLAP queries because it greatly reduces the number of invocations per
operator.

e Allows for operators to use vectorized (SIMD) instructions to process batches of tuples.
e Examples: Vectorwise, Snowflake, SQL Server, Oracle, Amazon RedShift

Georgia
Tech

Query Execution (Part 1) = Processing Models

Plan Processing Direction

e Approach 1: Top-to-Bottom

Start with the root and "pull" data up from its children.
Tuples are always passed with function calls.

e Approach 2: Bottom-to-Top

Start with leaf nodes and push data to their parents.
Allows for tighter control of caches/registers in pipelines.

Georgia
Tech

Query Execution (Part 1) Access Methods

Access Methods

Query Execution (Part 1) Access Methods

Access Methods
e An access method is a way that the TC =14, s.va
DBMS can access the data stored in a S e
table. 1
Located at the bottom of the query N R.id=s.id
plan . . . \
Not defined in relational algebra. O a1ues100
e Three basic approaches: \\
Sequential Scan
Index Scan R s

Multi-Index / "Bitmap" Scan

Georgia
Tech

Query Execution (Part 1) Access Methods

Sequential Scan

 For each page in the table:
Retrieve it from the buffer pool.
Iterate over each tuple and check :
- : for page in table.pages:
whether to include it. for t in page.tuples:
Uses a.buffer for mat?rialization and if evalPre d.(t) . '
vectorization processing models // Do Something!

e The DBMS maintains an internal
cursor that tracks the last page / slot it
examined.

Georgia
Tech

Query Execution (Part 1) Access Methods

Sequential Scan: Optimizations

e This is almost always the worst thing that the DBMS can do to execute a query.
e Sequential Scan Optimizations:

Prefetching

Buffer Pool Bypass

Parallelization

Zone Maps

Late Materialization

Heap Clustering

Georgia
Tech

Query Execution (Part 1) Access Methods

Zone Maps

e Pre-computed aggregates for the

attribute values in a page. Original Data Zone Map
. val
e DBMS checks the zone map first to o0 T
decide whether it wants to access the 2 » e
page. 400 SuM | 1400
SFLECT 2 400 COUNT 5
FROM R

WHERE val > 600

Georgia
Tech

Query Execution (Part 1)

Late Materialization

Access Methods

e DSM DBMSs can delay
stitching together tuples until
the upper parts of the query
plan.

Georgia
Tech

Ywu(«m 1)

th b=bar.b
/

bar

foo

*
Offsets

SELECT AVG(foo.c)
FROM foo JOIN bar
ON foo.b = bar.b

WHERE foo.a > 100

W=

Query Execution (Part 1) Access Methods

Late Materialization

SELECT AVG(foo.c)
AVG(foo.c) FROM foo JOIN bar
e DSM DBMSs can delay % s =
stitching together tuples until Ofﬁm
the upper parts of the query O}\W Offsets 0
P1ET, bar foo :

Georgia
Tech

Query Execution (Part 1)

Late Materialization

Access Methods

e DSM DBMSs can delay
stitching together tuples until
the upper parts of the query
plan.

Georgia
Tech

¥ AVG(Foo.c)I

Mfcavb:bar.b
/ N
N
bar foo

Result
i 3
Offsets
. 3
Offsets

SELECT AVG(foo.c)
FROM foo JOIN bar
ON foo.b = bar.b

WHERE foo.a > 100

w N =S

Query Execution (Part 1)

Heap Clustering

Access Methods

e Tuples are sorted in the heap’s pages
based on the order specified by the
clustering index.

e If the query accesses tuples using the
clustering index’s attributes, then the
DBMS can jump directly to the pages
that it needs.

Georgia
Tech

AN
Scan Direction
o\

Query Execution (Part 1) Access Methods

Index Scan

e The query optimizer picks an index to find the tuples that the query needs.

e Which index to use depends on:

What attributes the index contains

What attributes the query references

The attribute’s value domains

Predicate composition

Whether the index has unique or non-unique keys

Georgia
Tech

Query Execution (Part 1) Access Methods

Index Scan

e Suppose that we a single table with 100 tuples and two indexes:

Index 1: age
Index 2: dept
SELECT *
FROM students
WHERE age < 30
AND dept = 'CS'
AND country = 'US'

Scenario 1: There are 99 people under the age of 30 but only 2 people in the CS
department.

Scenario 2: There are 99 people in the CS department but only 2 people under the age of
30.

Georgia
Tech

Query Execution (Part 1) Access Methods

Multi-Index Scan

o If there are multiple indexes that the DBMS can use for a query:

Compute sets of record ids using each matching index.
Combine these sets based on the query’s predicates (union vs. intersect).
Retrieve the records and apply any remaining predicates.

e Postgres calls this Bitmap Scan.

Georgia
Tech

Access Methods

Query Execution (Part 1)

Multi-Index Scan

e With an index on age and an index on dept,
We can retrieve the record ids satisfying age < 30 using the first,
Then retrieve the record ids satisfying dept = ‘CS’ using the second,

Take their intersection
Retrieve records and check country = "US’.

SELECT *
FROM students
WHERE age < 30
AND dept = 'CS'
AND country = 'US'

Georgia
Tech

Query Execution (Part 1) Access Methods

Multi-Index Scan

e Set intersection can be done with age<30 dept="CS"’

bitmaps, hash tables, or Bloom filters. record ids

record ids

Setchrecords | ot nys

Georgia
Tech

Query Execution (Part 1) Access Methods

Index Scan Page Sorting

o
Scan Direction

e Retrieving tuples in the order that
appear in an unclustered index is

inefficient.
: . =Page 102 Bl Page 101
e The DBMS can first figure out all the [mbas 102
. Page 104 P 102
tuples that it needs and then sort them mmPsge 102 Page 102
neecs 2 g 3 o
based on their page id. GEe 102 Page 103
EllPage 101 Page 103
ElPage 103 Ell Page 104
Bl page 104 Page 104
Bl Page 103 Page 104

Georgia
Tg%h

Query Execution (Part 1) Expression Evaluation

Expression Evaluation

Query Execution (Part 1) Expression Evaluation

Expression Evaluation

e The DBMS represents a WHERE clause
as an expression tree.

e The nodes in the tree represent
different expression types:
Comparisons (=, <, >, !=)
Conjunction (AND), Disjunction (OR) /_/ \
Arithmetic Operators (+, -, *, /, %) / \ / \
Constant Values Attribute(R.id) | [Attribute(s.id) | [Attribute(value) | [constant(100)
Tuple Attribute References
SEREGIERBI dSSNcdate
FROM R, S
WHERE R.id = S.id
AND S.value > 100

Georgia
Tech

Query Execution (Part 1) Expression Evaluation

Expression Evaluation

Execution Context

SELECT * FROM S

WHERE|B.value = ? +1

Table Schema
S-(int:id, int:value)

Current Tuple
(123, 1000)

» -
—

Query Parameters
(int:999)

Attribute(S.value) +
Parameter(0) Constant(1)

Georgia
Tech

Query Execution (Part 1) Expression Evaluation

Expression Evaluation

Execution Context

SELECT * FROM S

WHERE|B.value = ? +1

Current Tuple
(123, 1000)

Query Parameters Table Schema
(int:999) S-(int:id, int:value)

—

» |Attribute($.va1ue)| +

1000 // \

Parameter(9) Constant(1)

Georgia
Tech

Query Execution (Part 1) Expres:

Expression Evaluation

Execution Context

SELECT x FROM S

WHERE|B.value = ? +1

Table Schema
S.(int:id, int:value)

Current Tuple
(123, 1000)

Query Parameters
(int:999)

— =

Attribute(S.value) +

1000 //
Parameter(0) Constant(1) ‘

999 1

Georgia
Tech

Query Execution (Part 1) ~ Expression Evaluation

Expression Evaluation

e Evaluating predicates in this manner is
slow. =

The DBMS traverses the tree and for / \

each node that it visits it must figure Constant(1y| |Constant(1)
out what the operator needs to do. onstan onstan

e Consider the predicate "WHERE 1=1" ‘
o A better approach is to just evaluate
the expression directly. 1=1

Think Just-In-Time (JIT) compilation

Georgia
Tech

Query Execution (Part 1) Expression Evaluation

Conclusion

e The same query plan be executed in multiple ways.
e (Most) DBMSs will want to use an index scan as much as possible.

» Expression trees are flexible but slow.

Georgia
Tech

Query Execution (Part 1) = Retrospective

Retrospective

Query Execution (Part 1) Retrospective

What did we learn

* You are tired of systems programming
* You are exhausted

* Let’s take a step back and think about what happened

Georgia
Tech

Query Execution (Part 1) Retrospective

Lessons learned

e Systems programming is hard
e Become a better programmer through the study of database systems internals

e Going forth, you should have a good understanding how systems work

Georgia
Tech

Query Execution (Part 1) Retrospective

Big Ideas

Database systems are awesome — but are not magic.

Elegant abstractions are magic.

Declarativity enables usability and performance.

Building systems software is more than hacking

There are recurring motifs in systems programming.

CS has an intellectual history and you can contribute.

Georgia
Tech

Query Execution (Part 1) Retrospective

What Next?

e We have barely scratched the surface. Follow-on course: CS 8803 (DBMS
Implementation - Part II)
Query Optimization
Concurrency Control
Logging and Recovery Methods
Query Compilation + Vectorization
e Stay in touch

Tell me when this course helps you out with future courses (or jobs!)
Ask me cool DBMS questions

Georgia
Tech

Query Execution (Part 1) Retrospective

Parting Thoughts

* You have surmounted several challenges in this course.
e You make it all worthwhile.

e Please share your feedback via CIOS.

Georgia
Tech

	Query Execution (Part 1)
	Recap
	Processing Models
	Access Methods
	Expression Evaluation
	Retrospective

