
Recap BuzzDB Buffer Pool Manager Buffer Pool Optimizations Buffer Replacement Policies

Lecture 7: Buffer Management

1 / 57



Recap BuzzDB Buffer Pool Manager Buffer Pool Optimizations Buffer Replacement Policies

Administrivia

• EvaDB Assignments
▶ EvaDB Assignment 1: checkpoint on Sep 26, final submission on Oct 12
▶ EvaDB Assignment 2: checkpoint on Oct 31, final submission on Nov 21

• 5-min presentations by students with the top-10 projects in class

2 / 57



Recap BuzzDB Buffer Pool Manager Buffer Pool Optimizations Buffer Replacement Policies

Collaboration Guidelines

• Student collaboration:
▶ Explain your code to your class-mate to see if they know why it doesn’t work.
▶ Help your class-mate debug if they’ve run into a wall.

3 / 57



Recap BuzzDB Buffer Pool Manager Buffer Pool Optimizations Buffer Replacement Policies

Today's Agenda

Recap

BuzzDB

Buffer Pool Manager

Buffer Pool Optimizations

Buffer Replacement Policies

4 / 57



Recap BuzzDB Buffer Pool Manager Buffer Pool Optimizations Buffer Replacement Policies

Recap

5 / 57



Recap BuzzDB Buffer Pool Manager Buffer Pool Optimizations Buffer Replacement Policies

Data Representation

• INTEGER/BIGINT/SMALLINT/TINYINT
▶ C/C++ Representation

• FLOAT/REAL vs. NUMERIC/DECIMAL
▶ IEEE-754 Standard / Fixed-point Decimals

• VARCHAR/VARBINARY/TEXT/BLOB
▶ Header with length, followed by data bytes.

• TIME/DATE/TIMESTAMP
▶ 32/64-bit integer of (micro)seconds since Unix epoch

6 / 57



Recap BuzzDB Buffer Pool Manager Buffer Pool Optimizations Buffer Replacement Policies

Workload Characterization

• On-Line Transaction Processing (OLTP)
▶ Fast operations that only read/update a small amount of data each time.
▶ OLTP Data Silos

• On-Line Analytical Processing (OLAP)
▶ Complex queries that read a lot of data to compute aggregates.
▶ OLAP Data Warehouse

• Hybrid Transaction + Analytical Processing
▶ OLTP + OLAP together on the same database instance

7 / 57



Recap BuzzDB Buffer Pool Manager Buffer Pool Optimizations Buffer Replacement Policies

BuzzDB

8 / 57



Recap BuzzDB Buffer Pool Manager Buffer Pool Optimizations Buffer Replacement Policies

BuzzDB

• BuzzDB – version 8
• BuzzDB – version 9
• BuzzDB – version 10
• BuzzDB – version 11
• BuzzDB – version 12

9 / 57

https://github.com/jarulraj/buzzdb/blob/main/08-buzzdb.cpp
https://github.com/jarulraj/buzzdb/blob/main/09-buzzdb.cpp
https://github.com/jarulraj/buzzdb/blob/main/10-buzzdb.cpp
https://github.com/jarulraj/buzzdb/blob/main/11-buzzdb.cpp
https://github.com/jarulraj/buzzdb/blob/main/12-buzzdb.cpp


Recap BuzzDB Buffer Pool Manager Buffer Pool Optimizations Buffer Replacement Policies

C++: Serializing and Deserializing

std::string filename = ”page.dat”;

// Serialize to disk
db.page.write(filename);

// Deserialize from disk
Page page2;
page2.read(filename);

10 / 57



Recap BuzzDB Buffer Pool Manager Buffer Pool Optimizations Buffer Replacement Policies

C++: Serializing a Database Page
// Write this page to a file.
void write(const std::string& filename) const {
std::ofstream out(filename);
// First write the number of tuples.
size_t numTuples = tuples.size();
out.write(reinterpret_cast<const char*>(&numTuples), sizeof(numTuples));

// Then write each tuple.
for (const auto& tuple : tuples) {

// Write the number of fields in the tuple.
size_t numFields = tuple->fields.size();
out.write(reinterpret_cast<const char*>(&numFields), sizeof(numFields));

// Then write each field.
...

}

out.close();
}

11 / 57



Recap BuzzDB Buffer Pool Manager Buffer Pool Optimizations Buffer Replacement Policies

C++: Serializing a Database Page

// Write this page to a file.
void write(const std::string& filename) const {

// Then write each field.
for (const auto& field : tuple->fields) {

// Write the type of the field.
out.write(reinterpret_cast<const char*>(&field->type), sizeof(field->type));
// Write the length of the field.
out.write(reinterpret_cast<const char*>(&field->data_length), sizeof(field->data_length));
// Then write the field data.
out.write(field->data.get(), field->data_length);

}
}

out.close();
}

12 / 57



Recap BuzzDB Buffer Pool Manager Buffer Pool Optimizations Buffer Replacement Policies

C++: Deserializing a Database Page

// Read this page from a file.
void read(const std::string& filename) {

std::ifstream in(filename);

// First read the number of tuples.
size_t numTuples;
in.read(reinterpret_cast<char*>(&numTuples), sizeof(numTuples));

std::cout << ”Num Tuples: ” << numTuples << ”\n”;

// Then read each tuple.
for (size_t i = 0; i < numTuples; ++i) {

auto tuple = std::make_unique<Tuple>();
..

}
}

13 / 57



Recap BuzzDB Buffer Pool Manager Buffer Pool Optimizations Buffer Replacement Policies

C++: Deserializing a Database Page

// Read this page from a file.
void read(const std::string& filename) {

// Read the number of fields in the tuple.
size_t numFields;
in.read(reinterpret_cast<char*>(&numFields), sizeof(numFields));

// Then read each field.
for (size_t j = 0; j < numFields; ++j) {

// Read the type of the field.
FieldType type;
in.read(reinterpret_cast<char*>(&type), sizeof(type));
// Read the length of the field.
size_t data_length;
in.read(reinterpret_cast<char*>(&data_length), sizeof(data_length));
// Then read the field data.
std::unique_ptr<char[]> data(new char[data_length]);
in.read(data.get(), data_length);

}
}

14 / 57



Recap BuzzDB Buffer Pool Manager Buffer Pool Optimizations Buffer Replacement Policies

C++: Deserializing a Tuple

// Read this page from a file.
void read(const std::string& filename) {

// Read the number of fields in the tuple.
size_t numFields;
in.read(reinterpret_cast<char*>(&numFields), sizeof(numFields));

// Then read each field.
for (size_t j = 0; j < numFields; ++j) {

// Read the type of the field.
FieldType type;
in.read(reinterpret_cast<char*>(&type), sizeof(type));
// Read the length of the field.
size_t data_length;
in.read(reinterpret_cast<char*>(&data_length), sizeof(data_length));
// Then read the field data.
std::unique_ptr<char[]> data(new char[data_length]);
in.read(data.get(), data_length);

}
}

15 / 57



Recap BuzzDB Buffer Pool Manager Buffer Pool Optimizations Buffer Replacement Policies

C++: Deserializing a Tuple
// Read this page from a file.
void read(const std::string& filename) {

// Add the field to the tuple.
switch(type){

case INT:
{

int val = *reinterpret_cast<int*>(data.get());
auto field = std::make_unique<Field>(val);
tuple->addField(std::move(field));
break;

}
case STRING:
{

char* val = reinterpret_cast<char*>(data.get());
auto field = std::make_unique<Field>(std::string(val, data_length));
tuple->addField(std::move(field));
break;

}
}

}

16 / 57



Recap BuzzDB Buffer Pool Manager Buffer Pool Optimizations Buffer Replacement Policies

C++: Persiting Changes to Disk

// Serialize to disk
db.page.write(filename);

// Deserialize from disk
auto loadedPage = Page::deserialize(filename);

// PROBLEM: Deletion only in memory, not on disk
loadedPage->deleteTuple(0);

// Deserialize again from disk -- page unchanged
auto loadedPage2 = Page::deserialize(filename);

17 / 57



Recap BuzzDB Buffer Pool Manager Buffer Pool Optimizations Buffer Replacement Policies

C++: Persiting Changes to Disk
// Serialize to disk
db.page.write(filename);

// Deserialize from disk
auto loadedPage = SlottedPage::deserialize(filename);

loadedPage->print();

std::cout << ”Deleting slots 0 and 7 \n”;
loadedPage->deleteTuple(0);
loadedPage->deleteTuple(7);

loadedPage->write(filename);

// Deserialize again from disk -- page is updated this time
auto loadedPage2 = SlottedPage::deserialize(filename);

loadedPage2->print(); 18 / 57



Recap BuzzDB Buffer Pool Manager Buffer Pool Optimizations Buffer Replacement Policies

C++: Extending Database File Automatically

bool status = try_to_insert(key, value);

// Try again after extending the database file
if(status == false){

extendDatabaseFile();
..

}

19 / 57



Recap BuzzDB Buffer Pool Manager Buffer Pool Optimizations Buffer Replacement Policies

C++: Extending Database File Automatically

void extendDatabaseFile() {
//std::cout << ”Extending database file \n”;

// Create a buffer with PAGE_SIZE bytes
auto empty_slotted_page = std::make_unique<SlottedPage>();

// Write the buffer to the file, extending it
file.seekp(0, std::ios::end);
file.write(empty_slotted_page->page_data.get(), PAGE_SIZE);
file.flush();

// Update number of pages
num_pages += 1;

// Load page into memory
auto page_itr = num_pages - 1;
auto loadedPage = SlottedPage::deserialize(file, page_itr);
pages.push_back(std::move(loadedPage));

}

20 / 57



Recap BuzzDB Buffer Pool Manager Buffer Pool Optimizations Buffer Replacement Policies

Database Storage

• Problem 1: How the DBMS represents the database in files on disk.
• Problem 2: How the DBMS manages its memory and moves data back-and-forth

from disk.

21 / 57



Recap BuzzDB Buffer Pool Manager Buffer Pool Optimizations Buffer Replacement Policies

Buffer Pool Manager

22 / 57



Recap BuzzDB Buffer Pool Manager Buffer Pool Optimizations Buffer Replacement Policies

Database Storage

• Spatial Control:
▶ Where to write pages on disk.
▶ The goal is to keep pages that are used together often as physically close together as

possible on disk.
• Temporal Control:

▶ When to read pages into memory, and when to write them to disk.
▶ The goal is minimize the number of stalls from having to read data from disk.

23 / 57



Recap BuzzDB Buffer Pool Manager Buffer Pool Optimizations Buffer Replacement Policies

Buffer Pool Organization

• Memory region organized as an array of
fixed-size pages.

• An array entry is called a frame.
• When the DBMS requests a page, an exact

copy of the data on disk is placed into one of
these frames.

24 / 57



Recap BuzzDB Buffer Pool Manager Buffer Pool Optimizations Buffer Replacement Policies

Buffer Pool Meta-Data

• The page table keeps track of pages that are
currently in memory.

• Also maintains additional meta-data per
page:

▶ Dirty Flag
▶ Pin/Reference Counter

25 / 57



Recap BuzzDB Buffer Pool Manager Buffer Pool Optimizations Buffer Replacement Policies

Locks vs. Latches

• Locks:
▶ Protects the database’s logical contents from other transactions.
▶ Held for transaction duration.
▶ Need to be able to rollback changes.

• Latches:
▶ Protects the critical parts of the DBMS’s internal data structure from other threads.
▶ Held for operation duration.
▶ Do not need to be able to rollback changes.
▶ C++: std::mutex

26 / 57

https://en.cppreference.com/w/cpp/thread/mutex


Recap BuzzDB Buffer Pool Manager Buffer Pool Optimizations Buffer Replacement Policies

Page Table vs. Page Directory

• The page directory is the mapping from page ids to page locations in the
database files.

▶ All changes must be recorded on disk to allow the DBMS to find on restart.
• The page table is the mapping from page ids to a copy of the page in buffer pool

frames.
▶ This is an in-memory data structure that does not need to be stored on disk.

27 / 57



Recap BuzzDB Buffer Pool Manager Buffer Pool Optimizations Buffer Replacement Policies

Buffer Manager Interface

Basic interface:
1 FIX (uint64_t page_id, bool is_shared)
2 UNFIX (uint64_t page_id, bool is_dirty)

Pages can only be accessed (or modified) when they are fixed in the buffer pool.

28 / 57



Recap BuzzDB Buffer Pool Manager Buffer Pool Optimizations Buffer Replacement Policies

Buffer Manager Implementation
Hash
Table

PageNo Latch LSN State Data

Buffer
Frames

The buffer manager itself is protected by one or more latches. 29 / 57



Recap BuzzDB Buffer Pool Manager Buffer Pool Optimizations Buffer Replacement Policies

Buffer Frame
Maintains the state of a certain page within the buffer pool.

pageNo the page number
latch a read/writer latch to protect the page

(note: must not block access to unrelated pages!)
LSN LSN of the last change to the page, for recovery

(buffer manager must force the log record containing the changes to disk before writing the page to disk)
state clean/dirty/newly created etc.
data the actual data contained on the page

(will usually contain extra information for buffer replacement)

Usually kept in a hash table.
30 / 57



Recap BuzzDB Buffer Pool Manager Buffer Pool Optimizations Buffer Replacement Policies

Buffer Pool Optimizations

31 / 57



Recap BuzzDB Buffer Pool Manager Buffer Pool Optimizations Buffer Replacement Policies

Buffer Pool Optimizations

• Multiple Buffer Pools
• Pre-Fetching
• Scan Sharing
• Buffer Pool Bypass
• Background Writing
• Other Pools

32 / 57



Recap BuzzDB Buffer Pool Manager Buffer Pool Optimizations Buffer Replacement Policies

Multiple Buffer Pools

• The DBMS does not always have a single buffer pool for the entire system.
▶ Multiple buffer pool instances
▶ Per-database buffer pool
▶ Per-page type buffer pool

• Helps reduce latch contention and improve locality. Why?

33 / 57



Recap BuzzDB Buffer Pool Manager Buffer Pool Optimizations Buffer Replacement Policies

Multiple Buffer Pools

• Approach 1: Object Id
▶ Embed an object identifier in record ids and then maintain a mapping from objects

to specific buffer pools.
▶ Example: <object_id, page_id, slot_number>
▶ ObjectId −→ Buffer Pool Number

• Approach 2: Hashing
▶ Hash the page id to select whichbuffer pool to access.
▶ Example: HASH(page_id) % (Number of Buffer Pools)

34 / 57



Recap BuzzDB Buffer Pool Manager Buffer Pool Optimizations Buffer Replacement Policies

Pre-Fetching: Sequential Scans

• The DBMS can prefetch pages based on a
query plan.

▶ Sequential Scans

35 / 57



Recap BuzzDB Buffer Pool Manager Buffer Pool Optimizations Buffer Replacement Policies

Pre-Fetching: Index Scans

• The DBMS can prefetch pages based on a
query plan.

▶ Index Scans

SELECT *
FROM A
WHERE val BETWEEN 100 AND 250;

36 / 57



Recap BuzzDB Buffer Pool Manager Buffer Pool Optimizations Buffer Replacement Policies

Pre-Fetching: Index Scans

• The DBMS can prefetch pages based on a
query plan.

▶ Index Scans

SELECT *
FROM A
WHERE val BETWEEN 100 AND 250;

37 / 57



Recap BuzzDB Buffer Pool Manager Buffer Pool Optimizations Buffer Replacement Policies

Scan Sharing

• Queries can reuse data retrieved from storage or operator computations.
▶ This is different from result caching.

• Allow multiple queries to attach to a single cursor that scans a table.
▶ Queries do not have to be exactly the same.
▶ Can also share intermediate results.

38 / 57



Recap BuzzDB Buffer Pool Manager Buffer Pool Optimizations Buffer Replacement Policies

Scan Sharing

• If a query starts a scan and if there one already doing this, then the DBMS will
attach to the second query’s cursor.

▶ The DBMS keeps track of where the second query joined with the first so that it can
finish the scan when it reaches the end of the data structure.

• Fully supported in IBM DB2 and MSSQL.
• Oracle only supports cursor sharing for identical queries.

39 / 57



Recap BuzzDB Buffer Pool Manager Buffer Pool Optimizations Buffer Replacement Policies

Scan Sharing

Q1: SELECT SUM(val) FROM A;
Q2: SELECT AVG(val) FROM A;
Q3: SELECT AVG(val) FROM A LIMIT 100;

40 / 57



Recap BuzzDB Buffer Pool Manager Buffer Pool Optimizations Buffer Replacement Policies

Buffer Pool Bypass

• The sequential scan operator will not store fetched pages in the buffer pool to
avoid overhead.

▶ Memory is local to running query.
▶ Works well if operator needs to read a large sequence of pages that are contiguous

on disk. What is it called?
▶ Can also be used for temporary data (sorting, joins).

• Called light scans in Informix.

41 / 57



Recap BuzzDB Buffer Pool Manager Buffer Pool Optimizations Buffer Replacement Policies

OS Page Cache

• Most disk operations go through the OS API.
• Unless you tell it not to, the OS maintains its own filesystem cache.
• Most DBMSs use direct I/O (O_DIRECT) to bypass the OS’s cache.

▶ Redundant copies of pages.
▶ Different eviction policies.

42 / 57



Recap BuzzDB Buffer Pool Manager Buffer Pool Optimizations Buffer Replacement Policies

BackgroundWriting

• The DBMS can periodically walk through the page table and write dirty pages to
disk.

• When a dirty page is safely written, the DBMS can either evict the page or just
unset the dirty flag.

• Need to be careful that we don’t write dirty pages before their log records have
been written to disk.

43 / 57



Recap BuzzDB Buffer Pool Manager Buffer Pool Optimizations Buffer Replacement Policies

Other Memory Pools

• The DBMS needs memory for things other than just tuples and indexes.
• These other memory pools may not always backed by disk. Depends on

implementation.
▶ Sorting + Join Buffers
▶ Query Caches
▶ Maintenance Buffers
▶ Log Buffers
▶ Dictionary Caches

44 / 57



Recap BuzzDB Buffer Pool Manager Buffer Pool Optimizations Buffer Replacement Policies

Buffer Replacement Policies

45 / 57



Recap BuzzDB Buffer Pool Manager Buffer Pool Optimizations Buffer Replacement Policies

Buffer Replacement

• When the DBMS needs to free up a frame to make room for a new page, it must
decide which page to evict from the buffer pool.

• Goals:
▶ Correctness
▶ Accuracy
▶ Speed
▶ Meta-data overhead

• Page State:
▶ clean pages can be simply discarded
▶ dirty pages have to be written back first

46 / 57



Recap BuzzDB Buffer Pool Manager Buffer Pool Optimizations Buffer Replacement Policies

Buffer Replacement Policies

buffer size

pa
ge

 fa
ul

t r
at

e

OPT

RANDOM
replacement
strategies

47 / 57



Recap BuzzDB Buffer Pool Manager Buffer Pool Optimizations Buffer Replacement Policies

Buffer Replacement Policy - FIFO

First In - First Out (FIFO)
• Simple replacement strategy
• Buffer frames are kept in a linked list (queue)
• Pages inserted at the end, removed from the head
• Keeps the pages that were most recently added to the buffer pool

Does not retain frequently-used pages

48 / 57



Recap BuzzDB Buffer Pool Manager Buffer Pool Optimizations Buffer Replacement Policies

Buffer Replacement Policy - LFU

Least Frequently Used (LFU)
• Remember the number of accesses per page
• Infrequently used pages are removed first
• Maintain a priority queue of pages

Sounds plausible, but too expensive in practice.

49 / 57



Recap BuzzDB Buffer Pool Manager Buffer Pool Optimizations Buffer Replacement Policies

Buffer Replacement Policy - LRU

Least-Recently Used (LRU)
• Maintain a timestamp of when each page was last accessed.
• When the DBMS needs to evict a page, select the one with the
oldest access timestamp.

▶ Keep the pages in sorted order to reduce the search time on eviction.
▶ Buffer frames are kept in a double-linked list
▶ Remove from the head
▶ When a frame is unfixed, move it to the end of the list
▶ “Hot” pages are retained in the buffer

A very popular policy.

50 / 57



Recap BuzzDB Buffer Pool Manager Buffer Pool Optimizations Buffer Replacement Policies

Problems

• LRU is susceptible to sequential flooding.
▶ A query performs a sequential scan that reads every page.
▶ This pollutes the buffer pool with pages that are read once and then never again.

• The most recently used page is actually the most unneeded page.
Q1: SELECT * FROM A WHERE id = 1;
Q2: SELECT AVG(val) FROM A; -- Sequential Scan

51 / 57



Recap BuzzDB Buffer Pool Manager Buffer Pool Optimizations Buffer Replacement Policies

Sequential Flooding

52 / 57



Recap BuzzDB Buffer Pool Manager Buffer Pool Optimizations Buffer Replacement Policies

Better Policies - LRU-K

• Track the history of last K references to each page as timestamps and compute
the interval between subsequent accesses.

• The DBMS then uses this history to estimate the next time that page is going to be
accessed.

• Degenerates to classic LRU when K = 1
• Scan resistant policy

53 / 57



Recap BuzzDB Buffer Pool Manager Buffer Pool Optimizations Buffer Replacement Policies

Better Policies - 2Q

Maintain two queues (FIFO and LRU)
• Some pages are accessed only once (e.g., sequential scan)
• Some pages are hot and accessed frequently
• Maintain separate lists for those pages
• Scan resistant policy

1 Maintain all pages in FIFO queue
2 When a page that is currently in FIFO is referenced again, upgrade it to the LRU

queue
3 Prefer evicting pages from FIFO queue

Hot pages are in LRU, read-once pages in FIFO.

54 / 57



Recap BuzzDB Buffer Pool Manager Buffer Pool Optimizations Buffer Replacement Policies

Better Policies - Priority Hints

• The DBMS knows what the context of each page during query execution.
• It can provide hints to the buffer pool on whether a page is important or not.
• 2Q tries to recognize read-once pages
• But the DBMS knows this already!
• It could therefore give hintswhen unfixing
• Example: will-need orwill-not-need hint will determine which queue the page

is added to

55 / 57



Recap BuzzDB Buffer Pool Manager Buffer Pool Optimizations Buffer Replacement Policies

Conclusion

• The DBMS can manage that sweet, sweet memory better than the OS.
• Leverage the semantics about the query plan to make better decisions:

▶ Evictions
▶ Allocations
▶ Pre-fetching

56 / 57



Recap BuzzDB Buffer Pool Manager Buffer Pool Optimizations Buffer Replacement Policies

Next Class

• Buffer Management Implementation

57 / 57


	Buffer Management
	Recap
	BuzzDB
	Buffer Pool Manager
	Buffer Pool Optimizations
	Buffer Replacement Policies


