
Recap Compression Background Naïve Compression Columnar Compression Dictionary Compression

Lecture 9: Compression

1 / 47



Recap Compression Background Naïve Compression Columnar Compression Dictionary Compression

Administrivia

• EvaDB Assignment 1
▶ Go over the EvaDB application/integration sheet asap.
▶ One-page checkpoint report due on Sep 26.
▶ Two-page final submission report due on Oct 12.

2 / 47



Recap Compression Background Naïve Compression Columnar Compression Dictionary Compression

Today's Agenda

Recap

Compression Background

Naïve Compression

Columnar Compression

Dictionary Compression

3 / 47



Recap Compression Background Naïve Compression Columnar Compression Dictionary Compression

Recap

4 / 47



Recap Compression Background Naïve Compression Columnar Compression Dictionary Compression

Thread Safety

• A piece of code is thread-safe if it functions correctly during simultaneous
execution by multiple threads.

• In particular, it must satisfy the need for multiple threads to access the same
shared data (shared access), and

• the need for a shared piece of data to be accessed by only one thread at any given
time (exclusive access)

5 / 47



Recap Compression Background Naïve Compression Columnar Compression Dictionary Compression

2Q Policy

Maintain two queues (FIFO and LRU)
• Some pages are accessed only once (e.g., sequential scan)
• Some pages are hot and accessed frequently
• Maintain separate lists for those pages
• Scan resistant policy

1 Maintain all pages in FIFO queue
2 When a page that is currently in FIFO is referenced again, upgrade it to the LRU

queue
3 Prefer evicting pages from FIFO queue

Hot pages are in LRU, read-once pages in FIFO.

6 / 47



Recap Compression Background Naïve Compression Columnar Compression Dictionary Compression

Compression Background

7 / 47



Recap Compression Background Naïve Compression Columnar Compression Dictionary Compression

Observation

• I/O is the main bottleneck if the DBMS has to fetch data from disk
• Database compression will reduce the number of pages

▶ So, fewer I/O operations (lower disk bandwith consumption)
▶ But, may need to decompress data (CPU overhead)

8 / 47



Recap Compression Background Naïve Compression Columnar Compression Dictionary Compression

Observation

Key trade-off is decompression speed vs. compression ratio

• Disk-centric DBMS tend to optimize for compression ratio
• In-memory DBMSs tend to optimize for decompression speed. Why?
• Database compression reduces DRAM footprint and bandwidth consumption.

9 / 47



Recap Compression Background Naïve Compression Columnar Compression Dictionary Compression

Real-World Data Characteristics

• Data sets tend to have highly skewed
distributions for attribute values.

▶ Example: Zipfian distribution of the Brown
Corpus

10 / 47

https://en.wikipedia.org/wiki/Brown_Corpus
https://en.wikipedia.org/wiki/Brown_Corpus


Recap Compression Background Naïve Compression Columnar Compression Dictionary Compression

Real-World Data Characteristics

• Data sets tend to have high correlation between attributes of the same tuple.
▶ Example: Zip Code to City, Order Date to Ship Date

11 / 47



Recap Compression Background Naïve Compression Columnar Compression Dictionary Compression

Database Compression

• Goal 1: Must produce fixed-length values.
▶ Only exception is var-length data stored in separate pool.

• Goal 2: Postpone decompression for as long as possible during query execution.
▶ Also known as late materialization.

• Goal 3: Must be a lossless scheme.

12 / 47



Recap Compression Background Naïve Compression Columnar Compression Dictionary Compression

Lossless vs. Lossy Compression

• When a DBMS uses compression, it is always lossless because people don’t like
losing data.

• Any kind of lossy compression is has to be performed at the application level.
• Reading less than the entire data set during query execution is sort of like of

compression…

13 / 47



Recap Compression Background Naïve Compression Columnar Compression Dictionary Compression

Data Skipping

• Approach 1: Approximate Queries (Lossy)
▶ Execute queries on a sampled subset of the entire table to produce approximate

results.
▶ Examples: BlinkDB, Oracle

• Approach 2: Zone Maps (Lossless)
▶ Pre-compute columnar aggregations per block that allow the DBMS to check

whether queries need to access it.
▶ Examples: Oracle, Vertica, MemSQL, Netezza

14 / 47

http://blinkdb.org/
https://oracle-base.com/articles/12c/approximate-query-processing-12cr2
https://docs.oracle.com/database/121/DWHSG/zone_maps.htm
http://www.dbms2.com/2006/09/20/netezza-vs-conventional-data-warehousing-rdbms/


Recap Compression Background Naïve Compression Columnar Compression Dictionary Compression

Zone Maps

• Pre-computed aggregates for blocks of data.
• DBMS can check the zone map first to

decide whether it wants to access the block.

SELECT *
FROM table
WHERE val > 600;

15 / 47



Recap Compression Background Naïve Compression Columnar Compression Dictionary Compression

Observation

• If we want to compress data, the first question is what data do want to compress.
• This determines what compression schemes are available to us

16 / 47



Recap Compression Background Naïve Compression Columnar Compression Dictionary Compression

Compression Granularity

• Choice 1: Block-level
▶ Compress a block of tuples of the same table.

• Choice 2: Tuple-level
▶ Compress the contents of the entire tuple (NSM-only).

• Choice 3: Value-level
▶ Compress a single attribute value within one tuple.
▶ Can target multiple attribute values within the same tuple.

• Choice 4: Column-level
▶ Compress multiple values for one or more attributes stored for multiple tuples

(DSM-only).

17 / 47



Recap Compression Background Naïve Compression Columnar Compression Dictionary Compression

Naïve Compression

18 / 47



Recap Compression Background Naïve Compression Columnar Compression Dictionary Compression

Naïve Compression

• Compress data using a general-purpose algorithm.
• Scope of compression is only based on the type of data provided as input.
• Encoding uses a dictionary of commonly used words

▶ LZ4 (2011)
▶ Brotli (2013)
▶ Zstd (2015)

• Consideration
▶ Compression vs. decompression speed.

19 / 47

https://en.wikipedia.org/wiki/LZ4_(compression_algorithm)
https://en.wikipedia.org/wiki/Brotli
https://en.wikipedia.org/wiki/Zstandard


Recap Compression Background Naïve Compression Columnar Compression Dictionary Compression

Naïve Compression

• Choice 1: Entropy Encoding
▶ More common sequences use less bits to encode, less common sequences use more

bits to encode.
• Choice 2: Dictionary Encoding

▶ Build a data structure that maps data segments to an identifier.
▶ Replace the segment in the original data with a reference to the segment’s position

in the dictionary data structure.

20 / 47



Recap Compression Background Naïve Compression Columnar Compression Dictionary Compression

Case Study: MySQL InnoDB Compression

21 / 47



Recap Compression Background Naïve Compression Columnar Compression Dictionary Compression

Naïve Compression

• The DBMS must decompress data first before it can be read and (potentially)
modified.

▶ This limits the “complexity” of the compression scheme.

• These schemes also do not consider the high-level meaning or semantics of the
data.

22 / 47



Recap Compression Background Naïve Compression Columnar Compression Dictionary Compression

Observation

• We can perform exact-match comparisons and natural joins on compressed data
if predicates and data are compressed the same way.

▶ Range predicates are trickier…

SELECT *
FROM Artists
WHERE name = 'Mozart'

Original Table
Artist Year

Mozart 1756
Beethoven 1770

SELECT *
FROM Artists
WHERE name = 1

Compressed Table
Artist Year

1 1756
2 1770

23 / 47



Recap Compression Background Naïve Compression Columnar Compression Dictionary Compression

Columnar Compression

24 / 47



Recap Compression Background Naïve Compression Columnar Compression Dictionary Compression

Columnar Compression

• Null Suppression
• Run-length Encoding
• Bitmap Encoding
• Delta Encoding
• Incremental Encoding
• Mostly Encoding
• Dictionary Encoding

25 / 47



Recap Compression Background Naïve Compression Columnar Compression Dictionary Compression

Null Suppression

• Consecutive zeros or blanks in the data are replaced with a description of how
many there were and where they existed.

▶ Example: Oracle’s Byte-Aligned Bitmap Codes (BBC)

• Useful in wide tables with sparse data.
• Reference: Database Compression (SIGMOD Record, 1993)

26 / 47

http://dl.acm.org/citation.cfm?id=163096


Recap Compression Background Naïve Compression Columnar Compression Dictionary Compression

Run-length Encoding

• Compress runs of the same value in a single column into triplets:
▶ The value of the attribute.
▶ The start position in the column segment.
▶ The number of elements in the run.

• Requires the columns to be sorted intelligently to maximize compression
opportunities.

• Reference: Database Compression (SIGMOD Record, 1993)

27 / 47

http://dl.acm.org/citation.cfm?id=163096


Recap Compression Background Naïve Compression Columnar Compression Dictionary Compression

Run-length Encoding

SELECT sex, COUNT(*)
FROM users
GROUP BY sex

28 / 47



Recap Compression Background Naïve Compression Columnar Compression Dictionary Compression

Run-length Encoding

29 / 47



Recap Compression Background Naïve Compression Columnar Compression Dictionary Compression

Bitmap Encoding

• Store a separate bitmap for each unique value for an attribute where each bit in
the bitmap corresponds to the value of the attribute in a tuple.

▶ The ith position in the bitmap corresponds to the ith tuple in the table.
▶ Typically segmented into chunks to avoid allocating large blocks of contiguous

memory.

•
• Only practical if the cardinality of the attribute is small.
• Reference: MODEL 204 architecture and performance (HPTS, 1987)

30 / 47

http://dx.doi.org/10.1007/3-540-51085-0_42


Recap Compression Background Naïve Compression Columnar Compression Dictionary Compression

Bitmap Encoding

31 / 47



Recap Compression Background Naïve Compression Columnar Compression Dictionary Compression

Bitmap Encoding: Analysis

CREATE TABLE customer_dim (
id INT PRIMARY KEY,
name VARCHAR(32),
email VARCHAR(64),
address VARCHAR(64),
zip_code INT

);

• Assume we have 10 million tuples.
• 43,000 zip codes in the US.

▶ 10000000 × 32-bits = 40 MB
▶ 10000000 × 43000 = 53.75 GB

• Every time a txn inserts a new tuple, the
DBMS must extend 43,000 different bitmaps.

32 / 47



Recap Compression Background Naïve Compression Columnar Compression Dictionary Compression

Bitmap Encoding: Compression

• Approach 1: General Purpose Compression
▶ Use standard compression algorithms (e.g., LZ4, Snappy).
▶ The DBMS must decompress before it can use the data to process a query.
▶ Not useful for in-memory DBMSs.

• Approach 2: Byte-aligned Bitmap Codes
▶ Structured run-length encoding compression.

33 / 47



Recap Compression Background Naïve Compression Columnar Compression Dictionary Compression

Delta Encoding

• Recording the difference between values that follow each other in the same
column.

▶ Store base value in-line or in a separate look-up table.
▶ Combine with RLE to get even better compression ratios.

34 / 47



Recap Compression Background Naïve Compression Columnar Compression Dictionary Compression

Incremental Encoding

• Variant of delta encoding that avoids duplicating common prefixes/suffixes
between consecutive tuples.

• This works best with sorted data.

35 / 47



Recap Compression Background Naïve Compression Columnar Compression Dictionary Compression

Mostly Encoding

• When values for an attribute are mostly less than the largest possible size for that
attribute’s data type, store them with a more compact data type.

▶ The remaining values that cannot be compressed are stored in their raw form.
▶ Reference: Amazon Redshift Documentation

36 / 47

http://docs.aws.amazon.com/redshift/latest/dg/c_MostlyN_encoding.html


Recap Compression Background Naïve Compression Columnar Compression Dictionary Compression

Dictionary Compression

37 / 47



Recap Compression Background Naïve Compression Columnar Compression Dictionary Compression

Dictionary Compression

• Probably the most useful compression scheme because it does not require
pre-sorting.

• Replace frequent patterns with smaller codes.
• Most pervasive compression scheme in DBMSs.
• Need to support fast encoding and decoding.
• Need to also support range queries.

38 / 47



Recap Compression Background Naïve Compression Columnar Compression Dictionary Compression

Dictionary Compression: Design Decisions

• When to construct the dictionary?
• What is the scope of the dictionary?
• What data structure do we use for the dictionary?
• What encoding scheme to use for the dictionary?

39 / 47



Recap Compression Background Naïve Compression Columnar Compression Dictionary Compression

Dictionary Construction

• Choice 1: All-At-Once Construction
▶ Compute the dictionary for all the tuples at a given point of time.
▶ New tuples must use a separate dictionary, or the all tuples must be recomputed.

• Choice 2: Incremental Construction
▶ Merge new tuples in with an existing dictionary.
▶ Likely requires re-encoding to existing tuples.

40 / 47



Recap Compression Background Naïve Compression Columnar Compression Dictionary Compression

Dictionary Scope

• Choice 1: Block-level
▶ Only include a subset of tuples within a single table.
▶ Potentially lower compression ratio but can add new tuples more easily. Why?

• Choice 2: Table-level
▶ Construct a dictionary for the entire table.
▶ Better compression ratio, but expensive to update.

• Choice 3: Multi-Table
▶ Can be either subset or entire tables.
▶ Sometimes helps with joins and set operations.

41 / 47



Recap Compression Background Naïve Compression Columnar Compression Dictionary Compression

Multi-Attribute Encoding

• Instead of storing a single value per dictionary entry, store entries that span
attributes.

▶ I’m not sure any DBMS implements this.

42 / 47



Recap Compression Background Naïve Compression Columnar Compression Dictionary Compression

Encoding / Decoding

• A dictionary needs to support two operations:
▶ Encode: For a given uncompressed value, convert it into its compressed form.
▶ Decode: For a given compressed value, convert it back into its original form.

• No magic hash function will do this for us.

43 / 47



Recap Compression Background Naïve Compression Columnar Compression Dictionary Compression

Order-Preserving Encoding

• The encoded values need to support sorting in the same order as original values.

SELECT *
FROM Artists
WHERE name LIKE 'M%'

Original Table

Artist Year

Mozart 1756
Max Bruch 1838
Beethoven 1770

SELECT *
FROM Artists
WHERE name BETWEEN 10 AND 20

Compressed Table

Artist Year

10 1756
20 1838
30 1770

44 / 47



Recap Compression Background Naïve Compression Columnar Compression Dictionary Compression

Order-Preserving Encoding

SELECT Artist
FROM Artists
WHERE name LIKE 'M%' -- Must still perform sequential scan

SELECT DISTINCT Artist
FROM Artists
WHERE name LIKE 'M%' -- ??

45 / 47



Recap Compression Background Naïve Compression Columnar Compression Dictionary Compression

Dictionary Data Structures

• Choice 1: Array
▶ One array of variable length strings and another array with pointers that maps to

string offsets.
▶ Expensive to update.

• Choice 2: Hash Table
▶ Fast and compact.
▶ Unable to support range and prefix queries.

• Choice 3: B+Tree
▶ Slower than a hash table and takes more memory.
▶ Can support range and prefix queries.

46 / 47



Recap Compression Background Naïve Compression Columnar Compression Dictionary Compression

Conclusion

• Dictionary encoding is probably the most useful compression scheme because it
does not require pre-sorting.

• The DBMS can combine different approaches for even better compression.
• In the next lecture, we will learn about larger-than-memory databases (advanced

lecture).

47 / 47


	Compression
	Recap
	Compression Background
	Naïve Compression
	Columnar Compression
	Dictionary Compression


