
Recap T-Tree Versioned Latch Coupling Latch-Free Bw-Tree Conclusion

Lecture 17: Modern OLTP Indexes
(Part 1)

1 / 87

Recap T-Tree Versioned Latch Coupling Latch-Free Bw-Tree Conclusion

Administrivia

• Assignment 4 has been released

2 / 87

Recap T-Tree Versioned Latch Coupling Latch-Free Bw-Tree Conclusion

Today's Agenda

Recap

T-Tree

Versioned Latch Coupling

Latch-Free Bw-Tree

Conclusion

3 / 87

Recap T-Tree Versioned Latch Coupling Latch-Free Bw-Tree Conclusion

Recap

4 / 87

Recap T-Tree Versioned Latch Coupling Latch-Free Bw-Tree Conclusion

Concurrency Control

• We need to allow multiple threads to safely access our data structures to take
advantage of additional CPU cores and hide disk I/O stalls.

• A concurrency control protocol is the method that the DBMS uses to ensure
”correct” results for concurrent operations on a shared object.

• Physical Correctness: Is the internal representation of the data structure valid?

5 / 87

Recap T-Tree Versioned Latch Coupling Latch-Free Bw-Tree Conclusion

Today’s Agenda

• T-Tree
• Versioned Latch Coupling
• Latch-Free Bw-Tree

6 / 87

Recap T-Tree Versioned Latch Coupling Latch-Free Bw-Tree Conclusion

T-Tree

7 / 87

Recap T-Tree Versioned Latch Coupling Latch-Free Bw-Tree Conclusion

Observation

• The original B+Tree was designed for efficient access of data stored on slow disks.
• Is there an alternative data structure that is specifically designed for
in-memory databases?

• We assume that both the index and the actual data are fully kept in memory

8 / 87

Recap T-Tree Versioned Latch Coupling Latch-Free Bw-Tree Conclusion

T-Tree

• Based on AVL Tree.
• Proposed in 1986 from Univ. of Wisconsin
• Used in early in-memory DBMSs during the 1990s (e.g., TimesTen, DataBlitz).
• Reference

9 / 87

https://dl.acm.org/doi/10.5555/645913.671312

Recap T-Tree Versioned Latch Coupling Latch-Free Bw-Tree Conclusion

T-Tree

• Instead of storing keys in nodes, store pointers to the tuples (a.k.a., data pointers).
• The nodes are still sorted order based on the keys.
• In order to find out the actual value of the key, you have to follow the tuple

pointer.

10 / 87

Recap T-Tree Versioned Latch Coupling Latch-Free Bw-Tree Conclusion

T-Tree

11 / 87

Recap T-Tree Versioned Latch Coupling Latch-Free Bw-Tree Conclusion

T-Tree

12 / 87

Recap T-Tree Versioned Latch Coupling Latch-Free Bw-Tree Conclusion

T-Tree

13 / 87

Recap T-Tree Versioned Latch Coupling Latch-Free Bw-Tree Conclusion

T-Tree: Find K2

14 / 87

Recap T-Tree Versioned Latch Coupling Latch-Free Bw-Tree Conclusion

T-Tree: Find K2

15 / 87

Recap T-Tree Versioned Latch Coupling Latch-Free Bw-Tree Conclusion

T-Tree: Find K2

16 / 87

Recap T-Tree Versioned Latch Coupling Latch-Free Bw-Tree Conclusion

T-Tree: Find K2

17 / 87

Recap T-Tree Versioned Latch Coupling Latch-Free Bw-Tree Conclusion

T-Tree: Find K2

18 / 87

Recap T-Tree Versioned Latch Coupling Latch-Free Bw-Tree Conclusion

T-Tree: Find K2

19 / 87

Recap T-Tree Versioned Latch Coupling Latch-Free Bw-Tree Conclusion

T-Tree: Find K2

20 / 87

Recap T-Tree Versioned Latch Coupling Latch-Free Bw-Tree Conclusion

T-Tree: Advantages

• Uses less memory because it does not store raw keys inside of each node.
• The DBMS evaluates all predicates on a table at the same time when accessing a

tuple (i.e., not just the predicates on indexed attributes).

21 / 87

Recap T-Tree Versioned Latch Coupling Latch-Free Bw-Tree Conclusion

T-Tree: Disadvantages

• Difficult to rebalance.
• Difficult to support safe concurrent access.
• Must chase pointers when scanning range or performing binary search inside of

a node.
▶ This greatly hurts cache locality.

22 / 87

Recap T-Tree Versioned Latch Coupling Latch-Free Bw-Tree Conclusion

Versioned Latch Coupling

23 / 87

Recap T-Tree Versioned Latch Coupling Latch-Free Bw-Tree Conclusion

Latch Coupling

• Protocol to allow multiple threads to access/modify B+Tree at the same time.
• Basic Idea:

▶ Get latch for parent.
▶ Get latch for child
▶ Release latch for parent if “safe”.

• A safe node is one that will not split or mergewhen updated.
▶ Not full (on insertion)
▶ More than half-full (on deletion)

24 / 87

Recap T-Tree Versioned Latch Coupling Latch-Free Bw-Tree Conclusion

Latch Coupling

• Find: Start at root and go down; repeatedly,
▶ Acquire read (R) latch on child
▶ Then unlock the parent node.

• Insert/Delete: Start at root and go down, obtaining write (W) latches as needed.
Once child is locked, check if it is safe:

▶ If child is safe, release all locks on ancestors.

25 / 87

Recap T-Tree Versioned Latch Coupling Latch-Free Bw-Tree Conclusion

Latch Coupling: Insert 40

26 / 87

Recap T-Tree Versioned Latch Coupling Latch-Free Bw-Tree Conclusion

Latch Coupling: Insert 40

27 / 87

Recap T-Tree Versioned Latch Coupling Latch-Free Bw-Tree Conclusion

Latch Coupling: Insert 40

28 / 87

Recap T-Tree Versioned Latch Coupling Latch-Free Bw-Tree Conclusion

Latch Coupling: Insert 40

29 / 87

Recap T-Tree Versioned Latch Coupling Latch-Free Bw-Tree Conclusion

Latch Coupling: Insert 40

30 / 87

Recap T-Tree Versioned Latch Coupling Latch-Free Bw-Tree Conclusion

Latch Coupling: Insert 40

31 / 87

Recap T-Tree Versioned Latch Coupling Latch-Free Bw-Tree Conclusion

Better Latch Coupling

• The basic latch crabbing algorithm always takes a write latch on the root for any
update.

▶ This makes the index essentially single threaded.
• A better approach is to optimistically assume that the target leaf node is safe.

▶ Take R latches as you traverse the tree to reach it and verify.
▶ If leaf is not safe, then do previous algorithm.

• Reference

32 / 87

https://dl.acm.org/doi/10.1007/BF00263762

Recap T-Tree Versioned Latch Coupling Latch-Free Bw-Tree Conclusion

Better Latch Coupling: Delete 44

33 / 87

Recap T-Tree Versioned Latch Coupling Latch-Free Bw-Tree Conclusion

Better Latch Coupling: Delete 44

34 / 87

Recap T-Tree Versioned Latch Coupling Latch-Free Bw-Tree Conclusion

Better Latch Coupling: Delete 44

35 / 87

Recap T-Tree Versioned Latch Coupling Latch-Free Bw-Tree Conclusion

Versioned Latch Coupling

• Optimistic coupling scheme where writers are not blocked on readers.
• Provides the benefits of optimistic coupling without wasting too much work.
• Every latch has a version counter.
• Writers traverse down the tree like a reader

▶ Acquire latch in target node to block other writers.
▶ Increment version counter before releasing latch.
▶ Writer thread increments version counter and acquires latch in a single
compare-and-swap instruction.

• Reference

36 / 87

https://dl.acm.org/doi/10.1145/2933349.2933352

Recap T-Tree Versioned Latch Coupling Latch-Free Bw-Tree Conclusion

Versioned Latch Coupling

• Readers do not acquire latches.
• Readers traverse down the tree optimistically.
• Detect concurrent modifications by checking version counter.
• If version does not match, need to restart operation.
• May lead to unnecessary aborts if the node modification does not actually affect

the reader thread.
• Rely on epoch-based garbage collector of old nodes to ensure node pointers

are valid.

37 / 87

Recap T-Tree Versioned Latch Coupling Latch-Free Bw-Tree Conclusion

Versioned Latch Coupling: Find 44

38 / 87

Recap T-Tree Versioned Latch Coupling Latch-Free Bw-Tree Conclusion

Versioned Latch Coupling: Find 44

39 / 87

Recap T-Tree Versioned Latch Coupling Latch-Free Bw-Tree Conclusion

Versioned Latch Coupling: Find 44

40 / 87

Recap T-Tree Versioned Latch Coupling Latch-Free Bw-Tree Conclusion

Test-and-Set (TAS)

• Takes one parameter: an address
• Sets the contents of the address to one, and returns the old value
• Used for implementing a spin latch
• Very efficient (single instruction to latch/unlatch)
• Example: std::atomic<T>

std::atomic_flag latch; // atomic of boolean type (lock-free)

while (latch.test_and_set(…)) {
^^I// Retry? Yield? Abort?
}

41 / 87

https://en.cppreference.com/w/cpp/atomic/atomic

Recap T-Tree Versioned Latch Coupling Latch-Free Bw-Tree Conclusion

Compare-and-Swap (CAS)

• More flexible and slower than test-and-set instruction.
• Takes three parameters: an address, an expected value for that address, and a
new value for the address

• Atomically compare the contents of the address to an expected value and swap
in the new value if and only if the comparison is true.

42 / 87

Recap T-Tree Versioned Latch Coupling Latch-Free Bw-Tree Conclusion

Compare-and-Swap (CAS)

• Atomically compare the contents of the location to an expected value and swap
in the new value if and only if the comparison is true.

std::atomic<int> ai;

int tst_val= 4;
int new_val= 5;
bool exchanged= false;

ai= 3;

// tst_val != ai ==> tst_val is modified
exchanged= ai.compare_exchange_strong(tst_val, new_val);

// tst_val == ai ==> ai is modified
exchanged= ai.compare_exchange_strong(tst_val, new_val);

43 / 87

Recap T-Tree Versioned Latch Coupling Latch-Free Bw-Tree Conclusion

Latch-Free Bw-Tree

44 / 87

Recap T-Tree Versioned Latch Coupling Latch-Free Bw-Tree Conclusion

Observation

• Because CaS only updates a single address at a time, this limits the design of
our data structures

• We cannot build a latch-free B+Tree because we need to update
multiple pointers on node split/merge operations.

• What if we had an indirection layer that allowed us to update multiple
addresses atomically?

45 / 87

Recap T-Tree Versioned Latch Coupling Latch-Free Bw-Tree Conclusion

Bw-Tree

• Latch-free B+Tree index built for the Microsoft Hekaton project.
• Key Idea 1: Delta Updates

▶ No in-place updates.
▶ Reduces cache invalidation.

• Key Idea 2: Mapping Table
▶ Allows for CaS of physical locations of pages.

• Reference

46 / 87

https://www.microsoft.com/en-us/research/publication/the-bw-tree-a-b-tree-for-new-hardware/

Recap T-Tree Versioned Latch Coupling Latch-Free Bw-Tree Conclusion

Bw-Tree: Mapping Table

47 / 87

Recap T-Tree Versioned Latch Coupling Latch-Free Bw-Tree Conclusion

Bw-Tree: Delta Updates

• Each update to a page produces a
new delta record.

• Delta record physically points to
base page.

• Install delta record’s address in
physical address slot of mapping
table using CaS.

48 / 87

Recap T-Tree Versioned Latch Coupling Latch-Free Bw-Tree Conclusion

Bw-Tree: Delta Updates

49 / 87

Recap T-Tree Versioned Latch Coupling Latch-Free Bw-Tree Conclusion

Bw-Tree: Find

• Traverse tree like a regular B+tree.
• If mapping table points to delta

chain, stop at first occurrence of
search key.

• Otherwise, perform binary search
on base page.

50 / 87

Recap T-Tree Versioned Latch Coupling Latch-Free Bw-Tree Conclusion

Bw-Tree: Conflicting Updates

• Threads may try to install updates to
same page.

• Winner succeeds, any losers must
retry or abort

51 / 87

Recap T-Tree Versioned Latch Coupling Latch-Free Bw-Tree Conclusion

Bw-Tree: Conflicting Updates

• Threads may try to install updates to
same page.

• Winner succeeds, any losers must
retry or abort

52 / 87

Recap T-Tree Versioned Latch Coupling Latch-Free Bw-Tree Conclusion

Bw-Tree: Node Consolidation

• Consolidate updates by creating new page with deltas applied.
• CaS-ing the mapping table address ensures no deltas are missed.
• Old page + deltas are marked as garbage.

53 / 87

Recap T-Tree Versioned Latch Coupling Latch-Free Bw-Tree Conclusion

Bw-Tree: Node Consolidation

54 / 87

Recap T-Tree Versioned Latch Coupling Latch-Free Bw-Tree Conclusion

Garbage Collection

• We need to know when it is safe to reclaim memory for deleted nodes in a
latch-free index.

• Approaches for thread-safe garbage collection:
▶ Reference Counting
▶ Epoch-based Reclamation
▶ Hazard Pointers

55 / 87

Recap T-Tree Versioned Latch Coupling Latch-Free Bw-Tree Conclusion

Garbage Collection

56 / 87

Recap T-Tree Versioned Latch Coupling Latch-Free Bw-Tree Conclusion

Reference Counting

• Maintain a counter for each node to keep track of the number of threads that are
accessing it.

▶ Increment the counter before accessing.
▶ Decrement it when finished.
▶ A node is only safe to delete when the count is zero.

• This has bad performance for multi-core CPUs
▶ Incrementing/decrementing counters causes a lot of cache coherence traffic.

57 / 87

Recap T-Tree Versioned Latch Coupling Latch-Free Bw-Tree Conclusion

Observation

• We don’t care about the actual value of the reference counter. We only need to
know when it reaches zero.

• We don’t have to perform garbage collection immediately when the counter
reaches zero.

58 / 87

Recap T-Tree Versioned Latch Coupling Latch-Free Bw-Tree Conclusion

Epoch-based Garbage Collection

• Maintain a global epoch counter that is periodically updated (e.g., every 10 ms).
▶ Keep track of what threads enter the index during an epoch and when they leave.

• Mark the current epoch of a node when it is marked for deletion.
▶ The node can be reclaimed once all threads have left that epoch (and all preceding

epochs).

• a.k.a., Read-Copy-Update (RCU) in Linux.

59 / 87

Recap T-Tree Versioned Latch Coupling Latch-Free Bw-Tree Conclusion

Bw-Tree: Epoch-based Garbage Collection

• Operations are tagged with an epoch number
• Each epoch tracks the threads that are part of it and the objects that can be

reclaimed.
• Thread joins an epoch prior to each operation
• Garbage for an epoch reclaimed only when all threads have exited the epoch.

60 / 87

Recap T-Tree Versioned Latch Coupling Latch-Free Bw-Tree Conclusion

Bw-Tree: Epoch-based Garbage Collection

61 / 87

Recap T-Tree Versioned Latch Coupling Latch-Free Bw-Tree Conclusion

Bw-Tree: Epoch-based Garbage Collection

62 / 87

Recap T-Tree Versioned Latch Coupling Latch-Free Bw-Tree Conclusion

Bw-Tree: Epoch-based Garbage Collection

63 / 87

Recap T-Tree Versioned Latch Coupling Latch-Free Bw-Tree Conclusion

Bw-Tree: Epoch-based Garbage Collection

64 / 87

Recap T-Tree Versioned Latch Coupling Latch-Free Bw-Tree Conclusion

Bw-Tree: Epoch-based Garbage Collection

65 / 87

Recap T-Tree Versioned Latch Coupling Latch-Free Bw-Tree Conclusion

Bw-Tree: Epoch-based Garbage Collection

66 / 87

Recap T-Tree Versioned Latch Coupling Latch-Free Bw-Tree Conclusion

Bw-Tree: Epoch-based Garbage Collection

67 / 87

Recap T-Tree Versioned Latch Coupling Latch-Free Bw-Tree Conclusion

Bw-Tree: Epoch-based Garbage Collection

68 / 87

Recap T-Tree Versioned Latch Coupling Latch-Free Bw-Tree Conclusion

Bw-Tree: Epoch-based Garbage Collection

69 / 87

Recap T-Tree Versioned Latch Coupling Latch-Free Bw-Tree Conclusion

Bw-Tree: Structure Modification Operations

• Split Delta Record
▶ Mark that a subset of the base page’s key range is now located at another page.
▶ Use a logical pointer to the new page.

• Separator Delta Record
▶ Provide a shortcut in the modified page’s parent on what ranges to find the new

page.

70 / 87

Recap T-Tree Versioned Latch Coupling Latch-Free Bw-Tree Conclusion

Bw-Tree: Structure Modification Operations

71 / 87

Recap T-Tree Versioned Latch Coupling Latch-Free Bw-Tree Conclusion

Bw-Tree: Structure Modification Operations

72 / 87

Recap T-Tree Versioned Latch Coupling Latch-Free Bw-Tree Conclusion

Bw-Tree: Structure Modification Operations

73 / 87

Recap T-Tree Versioned Latch Coupling Latch-Free Bw-Tree Conclusion

Bw-Tree: Structure Modification Operations

74 / 87

Recap T-Tree Versioned Latch Coupling Latch-Free Bw-Tree Conclusion

Bw-Tree: Structure Modification Operations

75 / 87

Recap T-Tree Versioned Latch Coupling Latch-Free Bw-Tree Conclusion

Bw-Tree: Structure Modification Operations

76 / 87

Recap T-Tree Versioned Latch Coupling Latch-Free Bw-Tree Conclusion

Bw-Tree: Structure Modification Operations

77 / 87

Recap T-Tree Versioned Latch Coupling Latch-Free Bw-Tree Conclusion

Bw-Tree: Structure Modification Operations

78 / 87

Recap T-Tree Versioned Latch Coupling Latch-Free Bw-Tree Conclusion

Bw-Tree: Structure Modification Operations

79 / 87

Recap T-Tree Versioned Latch Coupling Latch-Free Bw-Tree Conclusion

Bw-Tree: Structure Modification Operations

80 / 87

Recap T-Tree Versioned Latch Coupling Latch-Free Bw-Tree Conclusion

Bw-Tree: Structure Modification Operations

81 / 87

Recap T-Tree Versioned Latch Coupling Latch-Free Bw-Tree Conclusion

Bw-Tree: Structure Modification Operations

82 / 87

Recap T-Tree Versioned Latch Coupling Latch-Free Bw-Tree Conclusion

Bw-Tree: Structure Modification Operations

83 / 87

Recap T-Tree Versioned Latch Coupling Latch-Free Bw-Tree Conclusion

Bw-Tree: Performance

Source
84 / 87

https://www.microsoft.com/en-us/research/publication/the-bw-tree-a-b-tree-for-new-hardware/

Recap T-Tree Versioned Latch Coupling Latch-Free Bw-Tree Conclusion

Bw-Tree: Performance

Source
85 / 87

https://dl.acm.org/doi/10.1145/3183713.3196895

Recap T-Tree Versioned Latch Coupling Latch-Free Bw-Tree Conclusion

Conclusion

86 / 87

Recap T-Tree Versioned Latch Coupling Latch-Free Bw-Tree Conclusion

Conclusion

• Managing a concurrent index looks a lot like managing a database.
• Versioning and garbage collection are widely used mechanisms for increasing

concurrency.
• BwTree illustrates how to design complex, latch-free data structures with only

CaS instruction.

87 / 87

	Modern OLTP Indexes (Part 1)
	Recap
	T-Tree
	Versioned Latch Coupling
	Latch-Free Bw-Tree
	Conclusion

