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ABSTRACT
As video volumes grow, analysts have increasingly turned to deep learn-
ing to process visual data. While these deep networks deliver impressive
levels of accuracy, they execute as much as 10× slower than real time
(3 fps) on a $8,000 GPU, which is infeasible at scale. In addition, de-
ploying these methods requires writing complex, imperative code with
many low-level libraries (e.g., OpenCV, MXNet), an often ad-hoc and
time-consuming process that ignores opportunities for cross-operator
optimization. To address the computational and usability challenges of
video analytics at scale, we introduce BLAZEIT, a system that optimizes
queries over video for spatiotemporal information of objects. BLAZEIT
accepts queries via FRAMEQL, a declarative language for exploratory
video analytics, that enables video-specific query optimization. We pro-
pose new query optimization techniques uniquely suited to video analyt-
ics that are not supported by prior work. First, we adapt control variates
to video analytics and provide advances in specialization for aggregation
queries. Second, we adapt importance-sampling using specialized NNs
for cardinality-limited video search (i.e. scrubbing queries). Third, we
show how to infer new classes of filters for content-based selection. By
combining these optimizations, BLAZEIT can deliver over three order
of magnitude speedups over the recent literature on video processing.
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1 Introduction
Video is rich with semantic information and is a rapidly expanding
source of data at scale. For example, London alone has over 500,000
CCTVs [2], and a single autonomous vehicle can generate terabytes of
data per day [19]. This growing volume of video can provide answers to
queries about the real world. Thus, analysts are increasingly interested
in running exploratory queries to quickly understand higher-level infor-
mation over video. For example, an urban planner working on traffic
meter setting [61] or urban planning [9] may be interested in whether
Mondays have notably different traffic volumes than Tuesdays, and thus
counts the number of cars that pass through an intersection. An analyst
at an autonomous car company may notice the car behaves strangely at
yellow lights, with multiple pedestrians in the crosswalk and searches for
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events of a yellow light, a crosswalk, and at least three pedestrians [20].
However, it is not cost effective and is too time-consuming to manually
watch these growing quantities of video, so automated methods of video
analysis are increasingly important in answering such queries.

Modern computer vision techniques have made great strides in au-
tomating these tasks, with near human-levels of accuracy for some
tasks [32]. In particular, a commonly used approach is to perform ob-
ject detection [16], which returns a sequence of bounding boxes and
object class information for each frame of video, over all the frames in a
video [56]. This information and simple visual features (e.g., colors) can
subsequently be used to answer queries regarding the time and location
of objects.

Unfortunately, there are two significant challenges in deploying these
vision techniques. First, from a usability perspective, using these meth-
ods requires complex, imperative programming across many low-level
libraries, such as OpenCV, Caffe2, and Detectron [24]—an often ad-hoc,
tedious process that ignores opportunity for cross-operator optimization.
Second, from a computational perspective, the naive method of running
object detection on every frame of video is infeasible at scale: state-of-
the-art object detection (e.g., Mask R-CNN [31]) runs at ˜3 frames per
second (fps), which would take 8 decades of GPU time to process 100
cameras over a month of video.

Prior work has shown that certain video queries can be highly op-
timized [6, 36, 41]. For example, NOSCOPE [41] and FOCUS [36]
optimize the task of binary detection (presence or absence of a target
class). While promising, using these pipelines face the same usability
challenges as above, requiring interfacing with low-level libraries. Addi-
tionally, these pipelines are typically limited in scope (e.g., only binary
detection for NOSCOPE).

To address these usability and computational challenges, we present
BLAZEIT, a video query system with a declarative query language and
three novel optimizations for video analytics queries not supported by
prior work. To our knowledge, BLAZEIT is the first system to combine
a declarative query language and an optimizer to automatically gener-
ate query-specific pipelines for video analytics at scale (as opposed to
prior works such as NOSCOPE, which implement fixed-function video
processing pipelines).

System Architecture. BLAZEIT consists of two components: 1) a
declarative query language called FRAMEQL, and 2) a query optimiza-
tion and execution engine.

BLAZEIT’s first component, called FRAMEQL, is its SQL-like query
language, which lets users query the set of visible objects as a relation.
Using a SQL-like language has two major benefits. First, as SQL is
widely used, BLAZEIT can be quickly adopted by analysts and users.
Second, a declarative language enables data independence, separating
the specification of the system from the implementation, thus enabling
new, video-specific query optimization. In Section 4, we demonstrate
how, when combined with the standard relational algebra, FRAMEQL’s
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schema enables a range of queries for spatiotemporal information of
objects in video.

The second component of BLAZEIT is an end-to-end query optimizer
and novel optimizations for several common classes of video queries:
instead of simply running object detection to populate the rows in an
FRAMEQL table, BLAZEIT leverages a range of techniques and a query
optimizer to speed up query execution. BLAZEIT focuses on exploratory
queries (Section 2), so BLAZEIT lazily populates rows and examines
frames only when necessary. We show that using video-specific infor-
mation enables enables several forms of query optimization beyond
traditional relational databases.

Optimizations. BLAZEIT introduces three novel optimizations for
common types video queries, which are not present in existing systems
for querying video (Section 11):

Aggregation. First, we study the problem of optimizing aggregate
queries, which can be used to provide higher-level statistics over video,
(e.g., the average number of cars per hour). As in approximate query
processing (AQP) [5, 33], BLAZEIT allows users to specify an error
tolerance and therefore samples from the video, as opposed to perform-
ing object detection over every frame to compute the exact statistic
(e.g., number of cars). However, as object detection remains the com-
putational bottleneck, BLAZEIT further reduces the number of object
detection calls by 1) rewriting queries using specialized neural networks
(NNs) or 2) adapting the method of control variates [26] to video ana-
lytics. Specialized NNs [29, 41] are small NNs trained to predict the
output of a larger network for a specific query. Prior work has used
specialized NNs for binary classification, and in BLAZEIT we show
that they can also learn to provide accurate statistics in some cases.
However, in many cases, specialized NNs are not accurate enough. For
these cases, we adapt the method of control variates [26], in which
specialized NNs are used as a cheap to compute, correlated measure that
is used to approximate an expensive statistic (i.e. object detection) to
reduce sampling variance. Control variates are only beneficial when the
cost of computing the control variate is significantly cheaper than the
true statistic (e.g., specialized NNs vs object detection). In traditional
relational DBs, the cost of materializing a row is not significantly higher
than the cost of processing the row, so control variates do not reduce
computation. We show that, when applied to video processing, these
techniques can give up to three order-of-magnitude speedups over naive
methods (e.g., using NOSCOPE to filter frames with no objects and
applying object detection) and up to a 8.7× speedups over AQP.

Scrubbing. Second, we study the problem of optimizing cardinality-
limited scrubbing queries [49,50], in which a fixed number of frames
that match a target predicate are returned (e.g., Tesla’s autopilot is known
to behave anomalously with lane dividers [45] so an analyst may look
for such frames). Searching for these events sequentially or randomly
is prohibitively slow when these events are rare (e.g., one event per
hour). To address this problem, we adapt importance sampling from
the rare-event simulation literature [40] to video analytics. Specifically,
BLAZEIT uses the confidence score of a specialized NN as a proxy sig-
nal to choose which frames to perform full object detection. Intuitively,
this biases the search for requested events towards sections that are more
likely to contain them. We demonstrate this biased sampling can deliver
up to 500× speedups over naive methods (e.g., using NOSCOPE to filter
out frames with no objects and subsequently applying object detection).

Selection. Third, we study the problem of optimizing selection queries,
in which users perform content-based filtering of objects (e.g., searching
for red tour buses, as in Figure 1). These queries must perform object
detection to obtain bounding boxes, which is computationally expensive.
Thus, to reduce this computational overhead, BLAZEIT learns a set
of conservative filters from the FRAMEQL query to discard irrelevant

(a) Red tour bus. (b) White transit bus.

Figure 1: Examples of buses in taipei.

frames or parts of frames before applying object detection. We show that
BLAZEIT can infer and train for classes of filters: 1) NOSCOPE’s label-
based filtering, 2) content-based filtering (using simple visual features),
3) temporal filtering (skipping parts of the video or subsampling frames),
and 3) spatial filtering (cropping parts of the video). BLAZEIT inspects
the query contents to determine which filters to apply and how to set
the filter parameters. For example, if the FRAMEQL query were for
red buses comprised of at least 512×512 pixels in the bottom right for
at least one second, BLAZEIT can 1) filter frames for a certain redness
content, 2) sample at a rate of 0.5s, and 3) crop the video to the bottom
right. We demonstrate that these filters can achieve up to a 50× speedup
over naive methods.

In summary, we make the following contributions:

1. We introduce FRAMEQL, a query language for spatiotemporal
information of objects in videos, and show it can answer a variety
of real-world queries (Section 4).

2. We introduce an aggregation algorithm that uses the method of
control variates to leverage imprecise specialized NNs for more
efficient aggregation than existing AQP methods (Section 6).

3. We introduce a scrubbing algorithm that leverages specialized
NNs in importance sampling for finding rare events (Section 7).

4. We introduce a selection algorithm that can infer filters for dis-
carding irrelevant frames can be inferred from FRAMEQL queries
and can be applied to content-based selection for up to 50×
speedups (Section 8).

5. We demonstrate that these optimizations can give up to three
orders-of-magnitude speedups over naively applying object de-
tection or NOSCOPE (Section 10).

2 Use Cases
BLAZEIT focuses on exploratory queries: queries that can help a user
understand a video quickly, e.g., queries for aggregate statistics (e.g.,
number of cars) or relatively rare events (e.g., events of many birds at
a feeder) in videos. We assume a large amount of archival video (i.e.
the batch analytics setting) and that the full object detector has not been
run over the whole video, as this would be be prohibitively expensive.
However, we assume that a small representative sample of the video is
annotated with an object detector: this data is used as training data for
filters and specialized NNs. We denote this data as the labeled set (which
can further be split into training data and held-out data). This labeled set
can be constructed once, offline, and shared for multiple queries later.

We give several scenarios where BLAZEIT could apply:

Urban planning. Given a set of traffic cameras at various locations,
an urban planner performs traffic metering based on the number of cars
that pass by different intersections, and determine which days and times
are the busiest [61]. The urban planner is interested in how public transit
interacts with congestion [14] and look for times with at least one bus
and at least five cars. Then, the planner seeks to understand how tourism
affects traffic and looks for red buses as a proxy for tour buses (shown
in Figure 1).
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Figure 2: System diagram for BLAZEIT. BLAZEIT accepts FRAMEQL
queries and chooses a query plan depending on the type of query.

Autonomous vehicle analysis. An analyst at an autonomous vehicle
company notices anomalous behavior of the driving software when the
car is in front of a yellow light and there are multiple pedestrians in the
crosswalk [20]. Then, the analyst looks for events of a yellow light, a
crosswalk, and at least three pedestrians.

Store planning. A retail store owner places a CCTV in the store [59].
The owner segments the video into aisles and counts the number of
people that walk through each aisle to understand which products are
popular and which ones are not. This information can be used for
planning store layout, aisle layout, and product placement.

Ornithology. An ornithologist (a scientist who studies birds) may be in-
terested in understanding bird feeding patterns. The ornithologist might
place a webcam in front of a bird feeder [1]. Then, the ornithologist
might put different bird feed on the left and right side of the feeder.
Finally, the ornithologist can count the number of birds that visit the left
and right side of the feeder. As a proxy for species, the ornithologist
might then select red or blue birds.

These queries can be answered using spatiotemporal information of
objects in the video, along with simple functions over the content of the
boxes. Thus, these applications illustrate a need for a unified method
of expressing such queries.

3 BLAZEIT System Overview
In this section, we give a brief overview of BLAZEIT’s system architec-
ture: BLAZEIT’s query language, FRAMEQL, its query optimizer, and
its execution engine.

FRAMEQL is a SQL-like declarative query language that allows users
to express queries for spatiotemporal information of objects in video
(further details are given in Section 4). The key challenge we address in
this work is efficient execution of FRAMEQL queries: while performing
object detection, entity resolution, and UDFs over each frame can an-
swer FRAMEQL queries, this procedure is prohibitively slow. Therefore,
we present optimizations for three common classes of queries: aggre-
gation (Section 6), scrubbing (Section 7), and content-based selection
(Section 8). Implementation details are given in Section 9. A system
diagram of BLAZEIT is shown in Figure 2.

Configuration. As user needs are distinct, BLAZEIT contains several
configurable components: the object detection method, the entity resolu-
tion method (resolving object across frames), and optional UDFs. While
we provide defaults, depending on the users needs, these components
can be changed. For example, a license plate reader could be used for
resolving the identity of cars. The UDFs can be used to answer more
complex queries, such as determining color, filtering by object size or
location, or fine-grained classification. UDFs are functions that accept
a timestamp, mask, and rectangular set of pixels. As an example, to

compute the “redness” of an object, the UDF could use OpenCV to
average the red channel of the pixels.

Filters. Many filters BLAZEIT uses are statistical in nature, so the
optimizer must account for their error rates (Section 8). For example,
consider a content-based selection for red buses. BLAZEIT will train
a specialized NN to filter for frames with buses, but the specialized
NN may not be accurate on every frame (in this case, BLAZEIT will
call the object detection method on uncertain frames). To account for
this error rate, BLAZEIT a uses held-out set of frames to estimate the
selectivity and error rate. Given an error budget, BLAZEIT’s query
optimizer selects between the filters and uses rule-based optimization
to select the fastest query plan. Finally, BLAZEIT can always ensure
no false positives by running the most accurate method on the relevant
frames.

Specialized neural networks. Throughout, we use specialized NNs
as a core primitive [41]. A specialized NN is a neural network that has
been trained to mimic a larger NN (e.g., Mask R-CNN) on a simplified
task, i.e. on a marginal distribution of the larger NN. For example,
NOSCOPE’s simplified task (i.e. marginal) is the binary detection
task. As the specialized NN is predicting a simpler output, they can
run dramatically faster. Prior work has specialized NNs for binary
detection [29,41], but we extend specialization to count and perform
multi-class classification. Additionally, we apply various statistical
methods over the results of specialized NNs to accurately answer queries
such as aggregation or scrubbing.

Bootstrapping filters. To bootstrap and train the filters and specialized
NNs, we assume the presence of a labeled set: a small, representative
sample that the object detector was run over. Notably, this procedure
can be done automatically.

3.1 Limitations

While BLAZEIT can answer significantly more classes of video queries
than prior work, we highlight several limitations.

Model Drift. Our current implementation assumes the labeled set for
the filters obtained in BLAZEIT’s optimizer is from the same distribution
as the remaining video to be analyzed. If the distribution changes
dramatically in the new video (e.g., a sunny day vs an extremely foggy
day), BLAZEIT will need to re-train the filters. To our knowledge,
tracking model drift in visual data has not been well characterized and
existing systems such as NOSCOPE [41] do not handle model drift.
Thus we view the automatic detection and mitigation of model drift as
an exciting area of future research.

Labeled set. Currently, BLAZEIT requires the object detection method
to be run over a portion of the data to obtain data for training specialized
NNs and filters. We view the problem of warm-starting filters and
specialized NNs as an exciting area of future work.

Object detection. BLAZEIT is dependent on the user-defined object
detection method and does not support object classes outside what
the method returns. For example, the pretrained version of Mask R-
CNN [24,31] can detect cars, but cannot distinguish between sedans
and SUVs. However, users could supply UDFs for these queries.

4 FrameQL: A Query Language for Complex
Visual Queries over Video

To address the need for a unifying query language over video analytics,
we introduce FRAMEQL, a SQL-like language for querying spatiotem-
poral information of objects in video. We choose a declarative language
for two reasons. First, encoding queries via a declarative language inter-
face separates the specification and implementation of the system, which
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Field Type Description
timestamp float Time stamp
class string Object class (e.g., bus, car, person)
mask (float, float)* Polygon containing the object

of interest, typically a rectangle
trackid int Unique identifier for a

continuous time segment
when the object is visible

features float* The feature vector output by the
object detection method.

Table 1: FRAMEQL’s data schema contains spatiotemporal and content
information related to objects of interest, as well as metadata (class,
identifiers). Each record represents an object appearing in one frame;
thus a frame may have many or no records. The features can be used
for downstream tasks.

enables query optimization (discussed later). Second, as SQL is the lin-
gua franca of data analytics, FRAMEQL can be easily learned by users
familiar with SQL and enables interoperability with relational algebra.

FRAMEQL allows users to query the frame-level contents of a given
video feed, specifically the objects appearing in the video over space and
time by content and location. FRAMEQL represents videos (stored and
possibly compressed in formats such as H.264) as relations, with one
relation per video. As in SQL, FRAMEQL allows selection, projection,
and aggregation of objects, and, by returning relations, can be composed
with standard relational operators. By providing a table-like schema
using the standard relational algebra, we enable users with only famil-
iarity with SQL to query videos, whereas implementing these queries
manually would require expertise in deep learning, computer vision,
and programming.

We show FRAMEQL’s data schema in Table 1. FRAMEQL’s data
schema contains fields relating to the time, location, and class of objects,
scene and global identifiers, the box contents, and the features from
the object detection method (described below). While BLAZEIT pro-
vides a default method of populating the schema, the user can specify
the object detection method (which will populate mask, class, and
features) and the entity resolution method (which will populate
trackid). For example, an ornithologist may use an object detector
that can detect different species of birds, but an autonomous vehicle ana-
lyst may not need to detect birds at all. Given these methods, BLAZEIT
can automatically populate the data schema. BLAZEIT aims to be as
accurate as the configured methods, specifically BLAZEIT does not aim
to be more accurate than the configured methods.

Prior visual query engines have proposed similar schemas, but as-
sume that the schema is already populated [42,46], i.e. that the data
has been created through external means (typically by humans). In con-
trast, FRAMEQL’s schema can be automatically populated by BLAZEIT.
However, as we focus on exploratory queries in this work, FRAMEQL’s
schema is virtual and rows are only populated as necessary for the query
at hand. This is similar to an unmaterialized view. This form of laziness
enables a variety of optimizations via query planning.

FRAMEQL’s schema. We briefly describe the fields in FRAMEQL.
Recall that a record corresponds to an object that appears in a frame.

• timestamp is the timestamp of the object. There is a one-to-
one correspondence between timestamps and frames of the video.

• class is the object type (e.g., car or bus). The specificity of
class is determined by the object detection method (e.g., by
default Mask R-CNN on MS-COCO does not support sedan vs
SUV).

• mask is the polygon that encloses the object. We only consider
mask in the form of bounding boxes, but semantic segmenta-
tion [23] could be used for finer grained masks.

Syntactic element Description
FCOUNT Frame-averaged count. Equivalent to

COUNT(*) / MAX(timestamp). Also
equivalent to a time-averaged count.

ERROR WITHIN Absolute error tolerance
FPR WITHIN Allowed false positive rate
FNR WITHIN Allowed false negative rate
CONFIDENCE Confidence interval
GAP Minimum distance between

returned frames

Table 2: Additional syntactic elements in FRAMEQL. Some of these
were taken from BlinkDB.

• trackid is a unique identifier for the object as it is visible
through a continuous segment in time. If the object exists and
re-enters the scene, it will be assigned a new trackid.

• content is the pixels in as contained by mask.

• features are the features output by the object detection method.
The features can be used for downstream tasks, such as finer-
grained classification.

Syntactic sugar. FRAMEQL provides additional syntactic sugar be-
yond standard SQL as shown in Table 2; several were taken from
BlinkDB [5]. We briefly provide the motivation behind each additional
piece of syntax.

First, as in BlinkDB [5], users may wish to have fast response to
queries and may tolerate some error. Thus, we allow the user to specify
error bounds in the form of absolute error, false positive rate, and false
negative rate, along with a specified confidence (see below for exam-
ples). NOSCOPE’s pipeline can be replicated with FRAMEQL using
these constructs. We choose absolute error bounds in this work, as they
allow for adaptive sampling procedures (Section 6).

Second, as we provide absolute error bounds, we provide a short-hand
for returning a frame-averaged count, which we denote as FCOUNT.
For example, consider two videos: 1) a 10,000 frame video with one
car in every frame, 2) a 10 frame video with a car only in the first frame.
Then, FCOUNT for the average number of cars per frame would return
1 in the first video and 0.1 in the second video. As videos vary in length,
this allows for a normalized way of computing errors. FCOUNT can
easily be transformed into a time-averaged count.

Finally, when the user selects timestamps, the GAP keyword pro-
vides a way to ensure that the returned frames are at least GAP frames
apart. For example, if 10 consecutive frames contains a car and GAP
=100, only one frame of the 10 would be returned.

FRAMEQL examples. We first describe how the examples from
Section 2 can be written in FRAMEQL. In the following examples, we
assume the video is recorded at 30 fps.

Figure 3a shows how to count the average number of cars in a frame.
Here, the query uses FCOUNT as the error bound are computed per-
frame.

Figure 3b shows how to select frames with at least one bus and at least
five cars. This query uses the GAP keyword to ensure the events found
are a certain time apart. As the video is 30 fps, GAP 300 corresponds
to 10 seconds.

Figure 3c shows how to exhaustively select frames with red buses.
Here, redness and area are UDFs, as described in Section 3.
Here, 15 frames corresponds to 0.5 seconds.

The other example use-cases can be answered in a similar manner.
We give further examples of queries to illustrate FRAMEQL’s syntactic
elements.

First, counting the number of distinct cars can be written as:
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SELECT FCOUNT(*)
FROM taipei
WHERE class = 'car'
ERROR WITHIN 0.1
AT CONFIDENCE 95%

(a) The FRAMEQL query for
counting the frame-averaged
number of cars within a specified
error and confidence.

SELECT timestamp
FROM taipei
GROUP BY timestamp
HAVING SUM(class='bus')>=1

AND SUM(class='car')>=5
LIMIT 10 GAP 300

(b) The FRAMEQL query for selecting
10 frames of at least one bus and
five cars, with each frame at least 10
seconds apart (at 30 fps, 300 frames
corresponds to 10s).

SELECT *
FROM taipei
WHERE class = 'bus'
AND redness(content) >= 17.5
AND area(mask) > 100000

GROUP BY trackid
HAVING COUNT(*) > 15

(c) The FRAMEQL query for selecting all the information of red buses at least
100,000 pixels large, in the scene for at least 0.5s (at 30 fps, 0.5s is 15 frames).
The last constraint is for noise reduction.

Figure 3: Three FRAMEQL example queries.

SELECT COUNT (DISTINCT trackid)
FROM taipei
WHERE class = 'car'

which is not the same as counting the average number of cars in a frame,
as this query looks for distinct instances of cars using trackid (cf.
Figure 3a).

Second, error rates can be set using syntax similar to BlinkDB [5]:

SELECT COUNT(*)
FROM taipei
WHERE class = 'car'
ERROR WITHIN 0.1 CONFIDENCE 95%

Third, NOSCOPE can be replicated as FRAMEQL queries of the form:

SELECT timestamp
FROM taipei
WHERE class = 'car'
FNR WITHIN 0.01
FPR WITHIN 0.01

Finally, a UDF could be used to classify cars:

SELECT *
FROM taipei
WHERE class = 'car'
AND classify(content) = 'sedan'

5 BLAZEIT Query Execution Overview
When the user issues an FRAMEQL query, BLAZEIT’s query engine
optimizes and executes the query. BLAZEIT’s primary challenge is ex-
ecuting the query efficiently: naive methods, such as performing object
detection on every frame or using NOSCOPE [41] as a filter, are often
prohibitively slow. To optimize and execute the query, BLAZEIT in-
spects the query contents to see if optimizations can be applied. For
example, BLAZEIT cannot optimize SELECT *, but can optimize
aggregation queries with a user-specified error tolerance. Currently,
BLAZEIT uses a rule-based optimizer.

Because object detection is the major computational bottleneck,
BLAZEIT’s optimizer primarily attempts to reduce the number of object

detection calls while achieving the target accuracy. As object detection
methods have increased in accuracy, they have similarly increased in
computational complexity. For example, YOLOv2 [56] runs at approx-
imately 80 fps, with an mAP score of 25.4 on MS-COCO [47] (mAP is
an object detection metric, with values between 0 and 100, higher being
better), but the most accurate version of Mask R-CNN [31] provided by
the Detectron framework [24] run at 3 fps with a mAP of 45.2. As a re-
sult, object detection is, by far, the most computationally expensive part
of a FRAMEQL query; for reference, the specialized NNs we use in this
work run at 10,000 fps and some of our simple filters run at 100,000 fps.

BLAZEIT leverages existing techniques from NOSCOPE and three
novel optimizations to reduce the computational cost of object detection,
targeting aggregation (Section 6), scrubbing (Section 7), and content-
based selection (Section 8). As the filters and specialized NNs we
consider in these optimizations are cheap compared to the object de-
tection methods, they are almost always worth calling: a filter that
runs at 100,000 fps would need to filter 0.003% of the frames to be
effective. Thus, we have found a rule-based optimizer to be sufficient
in optimizing FRAMEQL queries.

We describe BLAZEIT’s novel optimizations in turn.

6 Optimizing Aggregates
In an aggregation query, the user is interested in some statistic over
the data, such as the average number of cars per frame. To exactly an-
swer these queries, BLAZEIT must call object detection on every frame,
which is prohibitively slow. However, if the user specifies an error
tolerance (Section 4), BLAZEIT can leverage a range of optimizations
for accelerated query execution.

When the user issues a aggregation query with an error tolerance,
BLAZEIT can efficiently execute the query using a range of techniques:
1) traditional AQP (Section 6.1), 2) query rewriting using specialized
NNs (Section 6.2), 3) the method of control variates using specialized
NNs (Section 6.3).

The overall procedure to optimize an aggregation query is shown in
Algorithm 1.

The first step is determining whether a specialized NN can be trained
for the query. Specifically, there must be sufficient training data. In
cases where the training data does not contain a sufficient number of
examples of interest (e.g., in a video of a street intersection, there are
likely to be no examples of bears), BLAZEIT will default to traditional
AQP. We present a slightly modified adaptive sampling algorithm that
respects the user’s error bound (Section 6.1), which is inspired by Online
Aggregation [33] and BlinkDB [5]. Notably, this adaptive sampling
algorithm will terminate based on the sample variance, which allows
for variance reduction methods (i.e. control variates) to execute faster.

When there is sufficient training data, BLAZEIT will a specialized
NN and estimate its error rate on a held-out set. If the error is within the
user-specified error and confidence level, it will then execute the special-
ized NN on the unseen data and return the answer directly, foregoing the
object detection method entirely. As specialized NNs are significantly
faster than object detection, this results in much faster execution.

When the specialized NN is not accurate enough, it is used as a
control variate: an auxiliary variable that is cheap to compute but highly
correlated with the true statistic. We give full details below.

6.1 Sampling

When the query contains a tolerated error rate, BLAZEIT can sample
from the video and only populate a small number of rows (or not pop-
ulate them at all) for dramatically faster execution. Similar to online ag-
gregation [33], we provide absolute error bounds. However, we present a
sampling procedure that terminates based on the sampling variance and a
CLT bound [48], so that variance reduction methods can terminate early.
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Data: Training data, held-out data, unseen video, uerr←
user’s requested error rate, conf← user’s confidence level

Result: Estimate of requested quantity
train specialized NN on training data;
err← specialized NN error rate on held-out data;
τ← average of specialized NN over unseen video;
if P(err<uerr)<conf then

return τ ;
else

m̂← result of control variates;
return m̂;

end
Algorithm 1: BLAZEIT’s procedure to return the results of an
aggregate query. This is performed when there are enough examples
to train a specialized NN.

Regardless of the confidence level, for an absolute error bound of ε,
we require at least K

ε
samples, whereK is the range of the estimated

quantity (derived from an ε-net argument [30]). For example, if the
user queries for the average number of cars per frame,K would be the
maximum number of cars over all frames plus one.

Thus, in BLAZEIT’s adaptive sampling procedure, we being with K
ε

samples. At every step, we linearly increase the number of samples. We
terminate when the CLT bound gives that the error rate is satisfied at
the given confidence level, namely,

Q(1− δ
2
)·σ̂N<ε

where δ is the confidence interval, σ̂N is the sample standard deviation
at roundN , andQ is the percent point function (i.e. the inverse of the cu-
mulative distribution function) for the normal distribution [33]. We use
the finite sample correction to compute the sample standard deviation.

6.2 Specialized Networks for Query Rewriting

In cases where the specialized NN is accurate enough (the accuracy of
the specialized NN depends on the noisiness of the video and object
detection method), BLAZEIT can return the answer directly from the
specialized NN for dramatically faster execution. In this work, we
study counting the average number of an object in a frame, which is
accomplished using multi-class classification.

To train the specialized NN, BLAZEIT selects the number of classes
equal to the highest count that is at least 1% of the video plus one (e.g.,
if 1% of the video contains 3 cars, BLAZEIT will train a specialized NN
with 4 classes, corresponding to 0, 1, 2, and 3 cars in a frame). BLAZEIT
uses 150,000 frames for training and uses a standard training procedure
for NNs (SGD with momentum [32]) for one epoch.

BLAZEIT estimates the error of the specialized NN on a held-out
set using the bootstrap [15]. In this work, we assume no model drift
(Section 3.1), thus we assume that the held-out set is representative of
the unseen data. If the error is low enough at the given confidence level,
BLAZEIT will process the unseen data using the specialized NN and
return the result.

6.3 Control Variates

Unfortunately, specialized NNs are not always accurate enough to an-
swer a query on their own. In these cases, BLAZEIT introduces a novel
method to take advantage of the specialized NNs while still achieving
high accuracy, by combining specialized NNs with AQP-like sampling.
In particular, we adopt the method of control variates [26] to video
analytics (to our knowledge, control variates have not been applied
to database query optimization or video analytics). Specifically, con-
trol variates is a method of variance reduction (variance reduction is a

standard technique in Monte Carlo sampling [58] and stochastic opti-
mization [39]) in which specialized NNs are used as a proxy for the
statistic of interest. Intuitively, by reducing the variance of sampling, we
can reduce the number of frames that have to be sampled and processed
by the full object detector.

To formalize this intuition, suppose we wish to estimate the expecta-
tion of a quantitym and we have access to an auxiliary variable t. The
desiderata for t are that: 1) t is cheaply computable, 2) t is correlated
with m. We further assume we can compute E[t] = τ and V ar(t)
exactly. Then,

m̂=m+c(t−τ)

is an unbiased estimator ofm for any choice of c. Standard analysis [26]
shows that the optimal choice of c is

c=−Cov(m,t)
V ar(t)

and using this choice of c gives that

V ar(m̂)=V ar(m)−Cov(m,t)
2

V ar(t)

=(1−Corr(m,t)2)V ar(m).

As an example, suppose t=m. Then, m̂=m+c(m−E[m])=E[m]
and V ar(m̂)=0.

This formulation works for any choice of t, but choices where t is cor-
related withm give the best results. As we demonstrate in Section 10.2,
specialized networks can provide a correlated signal to the ground-truth
object detection method for several queries.

As an example, suppose we wish to count the number of cars per
frame. Then,m is the random variable denoting the number of cars the
object detection method returns. In BLAZEIT, we train a specialized NN
to count the number of cars per frame. Ideally, the specialized model
would exactly mimic the object detection counts, but this is typically
not the case. However, the specialized NNs are typically correlated with
the true counts. Thus, the random variable t would be the output of the
specialized NN. As our choice of specialized NNs are extremely cheap
to compute, we can calculate its mean and variance exactly on all the
frames. In BLAZEIT’s adaptive sampling procedure, the covariance is
estimated at every round.

7 Optimizing Scrubbing Queries
In cardinality-limited scrubbing queries, the user is typically interested
in a rare event, such as a clip of a bus and five cars (if the event is
common, the user can simply watch the video). To answer this query,
BLAZEIT could run the object detection method over every frame to
search for the event. However, if the event occurs infrequently, naive
methods of random sampling or sequentially processing the video can
be prohibitively slow (e.g., at a frame rate of 30 fps, an event that occurs,
on average, once every 30 minutes corresponds to a rate of 1.9×10−5).

Our key intuition is to bias the search towards regions of the video
that likely contain the event. To bias the search, we use specialized
NNs, and combine them with techniques from the rare-event simulation
literature [40]. As an example of rare-event simulation, consider the
probability of flipping 80 heads out of 100 coin flips. Using a fair coin,
the probability of encountering this event is astronomically low (rate
of 5.6×10−10), but using a biased coin with p=0.8 can be orders of
magnitude more efficient (rate of 1.2×10−4) [40].

In BLAZEIT, we use specialized NNs to bias which frames to sample.
For a given query, BLAZEIT trains a specialized NN to recognize frames
that satisfy the query. While we could train a specialized NN as a binary
classifier of the frames that satisfy the predicate and that do not, we have
found that rare queries have extreme class imbalance. Thus, we train the
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specialized NN to incorporate as much information as possible; this pro-
cedure has the additional benefit of allowing the trained specialized NN
to be reused for other queries such as aggregation. For example, suppose
the user wants to find frames with at least one bus and at least five cars.
Then, BLAZEIT trains a specialized NN to simultaneously count buses
and cars. The signal BLAZEIT uses is the sum of the probability of the
frame having at least one bus and at least five cars. BLAZEIT takes the
most confident frames until the requested number of frames is found.

7.1 Planning Algorithm

BLAZEIT currently supports scrubbing queries searching for at leastN
of an object class (e.g., at least one bus and at least five cars). If there
are no instances of the query in the training set, BLAZEIT will default
to running the object detection method over every frame and applying
applicable filters as described in Section 8. If there are instances of the
query in the training set, BLAZEIT trains a specialized NN to count
instances as above. In the case of multiple object classes, BLAZEIT
trains a single NN to detect each object class separately (e.g., instead
of jointly detecting “car” and “bus”, the specialized NN would return
a separate confidence for “car” and “bus”). As with the counting case,
we choose this procedure for class imbalance reasons.

Once the specialized NN is trained, the unseen data is labeled using
the specialized NN. BLAZEIT rank-orders the frames by confidence
and runs the object detection method over the frames in this order, until
the requested number of frames is found. As a result, the frames are not
returned in a particular order and may be in a different order compared
to a brute-force sequential scan.

8 Optimizing Content-based Selection
In a content-based selection, the user is interested information about
the mask or content of every instance of an event, e.g., finding red
buses (Figure 3c). In these queries, the object detection method must
be called to obtain the mask. As object detection is the overwhelming
computational bottleneck, BLAZEIT aims to call object detection as few
times as possible.

To achieve this, BLAZEIT infers filters to discard frames irrelevant to
the query before running object detection on them. BLAZEIT currently
supports four classes of filters: 1) label-based filtering, 2) content-based
filtering, 3) temporal filtering, and 4) spatial filtering (described in detail
below). Importantly, these filter types and parameters are automatically
selected from the query and training data.

While some filters can be applied with no false positives, others filters
are statistical in nature and may have some error rate. The error rate of
these filters can be estimated on a held-out set, as in cross-validation [21].
However, as prior work, such as NOSCOPE [41], has considered how to
set these error rates, we only consider the case where the filters are set
to have no false negatives on the held-out set. Assuming the held-out set
is representative of the unseen data (i.e. no model drift, see Section 3.1),
this will incur few false negatives on the unseen data.

In BLAZEIT, we present instantiations of each class of filter to demon-
strate their effectiveness. We describe each class of filter and BLAZEIT’s
instantiations of the filter class.

Label-based filtering. In label-based filtering, the video is filtered
based on the desired labels. We leverage similar techniques to NO-
SCOPE [41] for this type of filter.

Content-based filtering. In content-based filtering, the video is filtered
based on fast to compute, low-level visual features, such as average
color. If an analyst were to query for “red buses”, we could filter the
video to have a certain number of red pixels, or a certain level of red.

For certain classes of filters, BLAZEIT can infer a filter to apply
on the whole image from the filter that the user applies on the mask.
For example, we define a UDF redness that returns a measure of

redness of an image, or portion of an image. In searching for red objects,
we can filter frames that are not a certain level of red.

BLAZEIT currently only supports UDFs that return continuous values.

Temporal filtering. In temporal filtering, the video is filtered based
on temporal cues. For example, the analyst may want to find buses in
the scene for at leastK frames. In this case, BLAZEIT subsamples the
video at a rate of K−1

2
. We additionally support basic forms of filtering

such as “query the video from 10AM to 11AM.”

Spatial filtering. In spatial filtering, only regions of interest (ROIs) of
the scene are considered. For example, a street may have cars parked
on the side but the analyst may only be interested in vehicles in transit,
so the analyst specifies in the query which parts of the scene contain
moving vehicles. The ROI is specified by the user and can be used in
smaller models for faster inference, and activity outside the ROI can be
ignored, which can increase the selectivity of other filters.

Finally, standard object detectors run faster when the input is more
square: in most existing detectors, the input image is resized so that the
short-edge is a specific size and the aspect ratio is held constant [31,57]
(for a fixed short-edge size, reducing the long-edge size will make the
image smaller). As the computation scales with the resolution, square
images result in the least computation. Thus, BLAZEIT makes images
more square if the given ROI allows such an operation. For example,
if the query only looks for objects with xmax(mask) < 720 in a
1280×720 video, BLAZEIT will resize the frames to be 720×720.

8.1 Plan Selection

BLAZEIT will infer which filters can be applied from the user’s query.
We describe how each class of filter can be inferred from the query.

First, if the user selects an area of the video, BLAZEIT resizes the
frame to be as square as possible, while keeping the area (along with
some padding) visible. This resizing is done because object detection
methods typically run faster on square images.

Second, BLAZEIT infers the times in the video and the subsampling
rate from the query to achieve exact results. For example, if the user
queries for objects in the frame at least 30 frames (1 second), BLAZEIT
can sample once very 14 frames.

Third, if the user selects a class or set of classes, BLAZEIT trains a
specialized NN to detect these classes, as in NoScope. Then, BLAZEIT
estimates the threshold on unseen data to ensure no false negatives.

Fourth, if the user selects a UDF over the content (e.g., determining
the color of the object), BLAZEIT can apply the UDF over the entire
frame (as opposed to the box), and filter frames that do not satisfy the
UDF at the frame level. For this procedure to be effective, the UDF
must return a continuous value (which can be scaled to a confidence)
and return meaningful results at the frame level. Consider two possible
UDFs for redness: 1) a UDF which returns true if the over 80% of the
pixels have a red-channel value of at least 200 (out of 256), 2) a UDF that
returns the average of the red-channel values. In estimating thresholds
at the frame-level, BLAZEIT will learn that the first UDF can filter no
frames, but the second that filter a large fraction of the frames (based on
data from the held-out set). Thus, BLAZEIT can learn which filters can
be used effectively as filters. To save computation, we allow users to
specify which UDFs will likely be effective, and thus not compute the
thresholds for UDFs that will likely not be effective. BLAZEIT sets UDF
filter thresholds similar to how it sets thresholds for specialized NNs.

9 Implementation
We implement an open-source1 BLAZEIT prototype that implements the
above query optimizer (currently, the plans are hard-coded; we plan on
creating a parser later). We implement our prototype in Python 3.5 as the

1https://github.com/stanford-futuredata/blazeit
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deep learning frameworks we use for object detection require Python.
To interface with these libraries, we implement the control plane in
Python. For efficiency purposes, we implement the non-NN filters in
C++. We use PyTorch v0.4 for the training and evaluation of specialized
models. For object detection, we use FGFA [64] using MXNet v1.2
and Mask R-CNN [31] using the Detectron framework [24] in Caffe
v0.8. We modify the implementations to accept arbitrary parts of video.
For FGFA, we use the provided pre-trained weights and for Mask R-
CNN, we use the pretrained X-152-32x8d-FPN-IN5k weights.
We ingest video via OpenCV.

Currently, BLAZEIT uses a rule-based optimizer for query rewrit-
ing [54], which supports the queries in Section 4. Most queries follow
the following general steps: 1) train specialized neural networks and
filters for the query at hand, 2) compute statistics on a held-out dataset
to estimate the error or selectivity of the NNs and filters, 3) choose a
plan for the unseen data, 4) execute the plan.

We briefly overview different parts of the implementation.

Video ingestion. BLAZEIT initially loads the video using OpenCV,
resizes the frames to the appropriate size for each model (65×65 for
specialized NNs, short side of 600 pixels for object detection methods),
and normalizes the pixel values appropriately. Additionally, we can
preprocess the video and directly store the result for faster ingestion.

Specialized NN training. We train the specialized NNs using PyTorch
v0.4. Video are ingested and resized to 65×65 pixels and normalized
using standard ImageNet normalization [32]. Standard cross-entropy
loss is used for training, with a batch size of 16. We used SGD with a
momentum of 0.9. Our specialized NNs use a “tiny ResNet” architec-
ture, a modified version of the standard ResNet architecture [32], which
has 10 layers and a starting filter size of 16.

Identifying objects across frames. Our default implementation for
computing trackid use motion IOU [64], but is configurable. Given
the set of objects in two consecutive frames, we compute the pairwise
IOU of each object in the two frames. We use a cutoff of 0.7 to call an
object the same across consecutive frames.

10 Evaluation
We evaluated BLAZEIT on a variety of FRAMEQL queries on real-world
video stream in three scenarios: 1) aggregate queries, 2) scrubbing
queries for rare events, and 3) accurate, spatiotemporal queries over a
variety of object classes. We illustrate that:

1. BLAZEIT achieves up to 4000× increased throughput compared
to a naive baseline, a 2500× speedup compared to NOSCOPE,
and up to a 8.7× speedup over AQP (Section 10.2).

2. BLAZEIT achieves up to 1000× speedup compared to a naive
baseline and a 500× speedup compared to NOSCOPE for video
scrubbing queries (Section 10.3).

3. BLAZEIT achieves up to 50× speedup for content-based selec-
tion over naive methods by automatically inferring filters to apply
before object detection (Section 10.4).

10.1 Experimental Setup

Evaluation queries and videos. We evaluated BLAZEIT on six
videos shown in Table 3, which were scraped from YouTube. taipei,
night-street, amsterdam, and archie were from the same
cameras as in NOSCOPE (the other streams were removed from YouTube,
so we were unable to use them) and we collected two other streams. We
only consider times where the object detection method can perform well
(due to lighting conditions), which resulted in 6-11 hours of video per
day. These datasets vary in object class (car, bus, boat), occupancy (12%
to 90%), and average duration of object appearances (1.4s to 10.7s).

For each webcam, we used three days of video: one day for training
labels, one day for threshold computation, and one day for testing (as
in [41]).

We evaluated on queries similar to Figure 3, in which the class and
video were changed.

Choice of object detection method. We labeled a portion of each
video using Mask R-CNN [31], FGFA [64], and YOLOv2 [56], and
manually selected the object detection that was the most accurate for
each video. As object detection methods have improved since NO-
SCOPE was published, we did not select YOLOv2 for any of the videos.

Data preprocessing. The literature reports that state-of-the-art object
detection methods still suffer in performance for small objects [31,64],
which we have empirically observed even for newer detectors. Thus, we
only consider regions where objects are large relative to the size of the
frame (these regions are video dependent). Object detectors will return a
set of boxes and confidences values. Wwe manually selected confidence
thresholds for each video and object class for when to consider an object
present, shown in Table 3.

Evaluation metrics. We computed all accuracy measures with respect
to the object detection method, in which we treat the object detection
method as ground truth. For aggregate statistical queries, we report the
absolute error. For scrubbing queries, we guarantee only true positives
are returned, thus we only report throughput. Finally, for queries that
require detailed information about object (i.e. queries that require per-
forming object detection), all our errors are false negatives, because
every frame chosen by our methods is passed to the object detector.
Thus, we report the false negative rate for these queries.

In this work, we consider accuracy at the frame-level, as we have
empirically found that modern object detection methods can return
frame-level accurate results. This is in contrast to to the one-second
binning that is used in [41] to mitigate label flickering in NOSCOPE.

We measure throughput by timing the complete end-to-end system
excluding the time taken to decode video, as is standard [41]. We addi-
tionally assume the labeled set is computed offline one, so we exclude
the time to generate the labeled set (as in [41], we currently use a day
of video for training and a day of video for the held-out set). Unlike
in [41], we also show runtime numbers when the training time of the
specialized model is included (excluded in [41]). We include this time as
BLAZEIT focuses on exploratory queries, whereas NOSCOPE focuses
on long-running streams of data. We additionally show numbers where
the training time is excluded, which could be achieved if the specialized
NNs were indexed ahead of time.

Hardware Environment. We perform our experiments on a server
with an NVIDIA Tesla P100 GPU and two Intel Xeon E5-2690v4 CPUs
(56 threads). The system has a total of 504 GB of RAM.

10.1.1 NoScope Baseline Configuration

To our knowledge, NOSCOPE is the closest system to BLAZEIT. NO-
SCOPE focuses on binary detection: the presence or absence of a par-
ticular object class. Namely, NOSCOPE cannot directly answer queries
in the form of counting or scrubbing for multiple instances of an object
or objects.

As NOSCOPE is not directly applicable to the tasks we consider,
where relevant, we compare against a NOSCOPE oracle, namely a
method that returns (on a frame-by-frame basis) whether or not an ob-
ject class is present in the scene. We assume the oracle is free to query.
Thus, this oracle is strictly more powerful—both in terms of accuracy
and speed—than NOSCOPE. We describe how the NOSCOPE oracle
can be used to answer each type of query.

Aggregates. As NOSCOPE cannot distinguish between one and several
objects, whenever NOSCOPE detects an object class is present, it must
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Video Name Object Occupancy Average
duration

Distinct
count Resol. FPS # Eval

frames
Length
(hrs)

Object detection
method Thresh

taipei bus 11.9% 2.82s 1749 720p 30 1188k 33 FGFA 0.2
car 64.4% 1.43s 32367

night-street car 28.1% 3.94s 3191 720p 30 973k 27 Mask 0.8
rialto boat 89.9% 10.7s 5969 720p 30 866k 24 Mask 0.8
grand-canal boat 57.7% 9.50s 1849 1080p 60 1300k 18 Mask 0.8
amsterdam car 44.7% 7.88s 3096 720p 30 1188k 33 Mask 0.8
archie car 51.8% 0.30s 90088 2160p 30 1188k 33 Mask 0.8

Table 3: Video streams and object labels queried in our evaluation. While there are three days of video total for each stream, we show the data from
the test set, as the data from the test set will influence the runtime of the baselines and BLAZEIT.

call the object detection method to identify the individual objects. Thus,
to count cars in taipei would require performing object detection
on 64.4% of the frames (i.e. the occupancy rate of cars).

Cardinality-limited scrubbing. As above, NOSCOPE can be used to
filter frames that do not contain the objects of interest. For example, if
the query were searching for at least one bus and at least five cars in
taipei, NOSCOPE can be used to remove frames that do not have a
bus and a car. Object detection will then be performed on the remaining
frames until the requested number of events is found. Thus, for finding
rare events, NOSCOPE fares poorly.

Content-based selection. NOSCOPE can only use label-based filtering,
but not the other filters classes.

10.2 Aggregate Queries
We evaluate BLAZEIT on six aggregate queries across six videos. The
queries are similar to Query 3a (shown in Section 2), with the video and
object class changed. We ran five variants of each query:

• Naive: object detection on every frame.
• NOSCOPE oracle: the object detection method on every frame

with the object class present.
• Naive AQP: sample from the video.
• BLAZEIT: we use specialized NNs and control variates for effi-

cient sampling.
• BLAZEIT (no train): we exclude the training time from BLAZEIT.

There are two qualitatively different modes in which BLAZEIT ex-
ecutes these queries: 1) where BLAZEIT rewrites the query using a
specialized NN, and 2) when BLAZEIT samples using specialized NNs
as control variates, and select between these methods as described in
Section 6. We analyze these cases separately.

Query rewriting via specialized NNs. We evaluate the runtime and
accuracy of specialized networks when the query can be entirely rewrit-
ten by running the specialized NN instead. We ran each query with a
target error rate of 0.1 and a confidence interval of 95%. We show the
average of three runs. The results are shown in Figures 4. The special-
ized NNs were unable to achieve this accuracy target for archie, so
we exclude it. However, we show below that specialized NNs can be
used as a control variate even in this case.

As shown, the BLAZEIT can achieve up to 8500× speedup if the
model is cached and a 3200× speedup when including the training time
and the time to compute thresholds. In contrast, [41] does not include
this time in their evaluation. The NOSCOPE oracle baseline does not per-
form well when the video has many objects of interest (e.g., rialto).

In some cases, naive AQP outperform BLAZEIT when BLAZEIT
trains the specialized NNs from scratch. However, in all cases, BLAZEIT
outperform AQP when the models are cached.

While specialized NNs do not provide a guarantee for error on unseen
data, we show that the absolute error stays within the 0.1 for the given
videos in Table 4. Thus, we empirically demonstrate that specialized
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Figure 4: End-to-end runtime of baselines and BLAZEIT on aggregate
queries where the query is rewritten with a specialized network,
measured in seconds. Note the y-axis is on a log-scale. All queries
targeted an error of 0.1.

Video Name Error
taipei 0.043
night-street 0.022
rialto -0.031
grand-canal 0.081
amsterdam 0.050

Table 4: Average error over 3 runs of query-rewriting using a specialized
NN for counting. These videos stayed within the requested 0.1 error
bound.

NNs can be used for query rewriting while respecting the user’s error
bounds.

Sampling and control variates. We evaluate the runtime and accuracy
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Video
Name

Pred
(day 1)

Actual
(day 1)

Pred
(day 2)

Actual
(day 2)

taipei 0.86 0.85 1.21 1.17
night-street 0.76 0.84 0.40 0.38
rialto 2.25 2.15 2.34 2.37
grand-canal 0.95 0.99 0.87 0.81

Table 5: Estimated and true counts for specialized NNs run on two
different days of video.
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Figure 5: Sample complexity of naive AQP and AQP with control
variates. Note the y-axis is on a log-scale.

of using sampling and sampling with control variates. Because of the
extreme computational cost of running object detection, we ran the
object detection method once and recorded the results. Thus, the run
times in this section are estimated from the number of object detection
calls.

We targeted error rates of 0.01, 0.02, 0.03, 0.04, 0.05, and 0.1. Each
query was run with a confidence interval of 95%. We averaged the
number of samples for each error level over 100 runs.

The results are shown in Figure 5. As shown, using specialized NNs
as a control variate can deliver up to a 2× reduction in sample com-
plexity. As predicted by theory, the reduction in variance depends on
the correlation coefficient between the specialized NNs and the object
detection methods. Specifically, as the correlation coefficient increases,
the sample complexity decreases.

Specialized NNs do not learn the average. A potential concern of
specialized NNs is that they simply learn the average number of cars.
To demonstrate that they do not, we swap the day of video for choosing
thresholds and testing data. We show the true counts for each day and

Video name Object Number Instances
taipei car 6 70
night-street car 5 29
rialto boat 7 51
grand-canal boat 5 23
amsterdam car 4 86
archie car 4 102

Table 6: Query details and number of instances. We selected rare events
with at least 10 instances.

the average of 3 runs in Table 5. Notably, we see that the specialized
NNs return different results for each day. This shows that the specialized
NNs do not learn the average and return meaningful results.

10.3 Cardinality-limited Scrubbing Queries
We evaluate BLAZEIT on six scrubbing queries, in which frames of in-
terest are returned to the user, up to the requested number of frames. The
queries are similar to Query 3b, as shown in Section 2. We show in Ta-
ble 6 query details and the number of instances of each query. If the user
queries more than the maximum number of instances, BLAZEIT must
query every frame. Thus, we chose queries with at least 10 instances.

In scrubbing queries, BLAZEIT will only return true positives (as it
calls the full object detection method to verify frames of interest), thus
we only report the runtime. Additionally, if we suppose that the videos
are pre-indexed with the output of the specialized NNs, we can simply
query the frames using information from the index. This scenario might
occur if, for example, the user executed an aggregate query as above.
Thus, we additionally report sample complexity as an objective metric
across object detection methods.

We run the following variants:

• Naive: the object detection method is run until the requested
number of frames is found.
• NOSCOPE: the object detection method is run over the frames

containing the object class(es) of interest until the requested num-
ber of frames is found.
• BLAZEIT: specialized NNs are used as a proxy signal to rank the

frames (Section 7).
• BLAZEIT (indexed): we assume the specialized NN has been

trained and run over the remaining data, as might happen if a user
runs queries about some class repeatedly.

Single object class. As shown in Figure 6, BLAZEIT can achieve
over a 1000× speedup compared to several baselines. We see that
the non-specialized baselines do poorly in finding rare objects, where
BLAZEIT’s specialized NNs can serve as a high-fidelity signal for the
query at hand.

We additionally varied the number of cars in taipei to see if
BLAZEIT could also search for common objects. The results are shown
in Figure 7. For both the naive method and the NOSCOPE oracle,
the same complexity increases as the number of cars increases. How-
ever, for up to 5 cars, BLAZEIT’s sample complexity remains nearly
constant, which demonstrates the efficacy of biased sampling. While
BLAZEIT shows degraded performance with 6 cars, there are only 70
such instances, and is thus significantly harder to find.

Multiple object classes. We additionally test BLAZEIT on multiple
object classes by searching for at least one bus and at least five cars in
taipei. There are 63 instances of such events in the test set.

The end-to-end speedups are shown in Figure 8. Searching for mul-
tiple object classes is favorable for the NOSCOPE oracle, as it becomes
more selective. Nonetheless, BLAZEIT significantly outperforms the
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Figure 6: End-to-end runtime of baselines and BLAZEIT on scrubbing
queries. Note the y-axis is on a log-scale. All queries looked for 10
events. The average over three runs is shown.
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log-scale. All queries looked for 10 events.

NOSCOPE oracle, giving up to a 81× performance increase. BLAZEIT
also significantly outperforms the naive baseline, giving over a 966×
speedup.

Additionally, we show the sample complexity as a function of the
LIMIT in Figure 9 of BLAZEIT and the baselines, for taipei. We
see that BLAZEIT can be up to 5 orders of magnitude more sample
efficient over both the naive baseline and NoScope.

10.4 Content-based Selection Queries

To illustrate the effectiveness of content-based filters, we evaluate
BLAZEIT on the query shown in Figure 3c.
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Figure 8: End-to-end runtime of baselines and BLAZEIT on finding
at least one bus and at least five cars in taipei. Note the y-axis is
on a log scale.
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Figure 9: Sample complexity of BLAZEIT, NoScope and the naive
method when searching for at least one bus and at least five cars in
taipei. The x-axis is the number of requested frames. Note the
y-axis is on a log scale.

We run the following variants:

• Naive: we run the object detection method on every frame.
• NOSCOPE oracle: we run the object detection method on the

frames that contain the object class of interest.
• BLAZEIT: we apply the filters described in Section 8.

For each query, BLAZEIT’s CBO trained, estimated the selectivity,
and computed the threshold for each filter applicable to the query (which
was determined by BLAZEIT’s rule-based optimizer). We include the
time to train the filters and select the thresholds in the runtime. Due to
the large computational cost of running the object detector, we extrap-
olate its cost by multiplying the number of calls by the runtime of the
object detector.

End-to-end performance. The results for the end-to-end runtime of
the naive baseline, the NoScope oracle, and BLAZEIT are shown in
Figure 10. As buses are relatively rare (12% occupancy, see Table 3),
NOSCOPE performs well on this query, giving a 8.4× performance
improvement over the naive method. However, BLAZEIT outperforms
the NOSCOPE oracle by 6.4×, due to its extended classes of filters.
Furthermore, BLAZEIT delivers up to 54× improved throughput over
naive methods for this query.

Factor analysis. We performed a factor analysis and lesion study to
understand the impact of each class of filter. In the factor analysis, we
added the filters one at a time. In the lesion study, we individually
removed the filters.

Results are shown in Figure 11. As shown in the factor analysis,
every filter adds a non-trivial speedup. Additionally, removing any
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Figure 11: Factor analysis and lesion study of BLAZEIT’s filters on
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class of filter reduces performance. Thus, every class of filter improves
performance for this query.

11 Related Work
BLAZEIT builds on a long tradition of data management for multimedia
and video, and on recent advances in computer vision. We outline some
relevant parts of the literature below.

Approximate Query Processing. In AQP systems, the result of a
query is returned significantly faster by subsampling the data [18].
Typically, the user specifies an error bound [5], or the error bound is
refined over time [33]. Prior work has leveraged various sampling
methods [4,11], histograms [3,13,25,53], and sketches [10,34,38].

We leverage ideas from this space and introduce a new form of vari-
ance reduction in the form of control variates [26] by using specialized
networks. This form of variance reduction, and others involving aux-
iliary variables, does not make sense in a traditional relational database:
the cost of materializing a tuple must be disproportionally large com-
pared to computing the auxiliary variable.

Additionally, we use specialized NNs as a form of importance sam-
pling to bias the search for cardinality-limited scrubbing queries.

Visual Data Management. Visual data management has aimed to or-
ganize and query visual data, starting from systems such as Chabot [51]
and QBIC [17]. These systems were followed by a range of “multi-
media” database for storing [8, 44], querying [7, 43, 52], and manag-
ing [22,37,62] video data. Many of these systems use classic computer
vision techniques such as low-level image features (e.g colors, textures)
and rely on textual annotations for semantic queries. However, recent

advances in computer vision allow the automatic population of semantic
data and thus we believe it is critical to reinvestigate these systems.

Modern video analytics. Systems builders have created systems for
analyzing video; perhaps the most related is NOSCOPE [41]. NOSCOPE
is a highly tuned pipeline for binary detection: it returns the presence
or absence of a particular object class in video. Similar to NOSCOPE,
other systems, such as FOCUS [36] and TAHOMA [6] have optimized
binary detection. However, these systems are inflexible and cannot
adapt to user’s queries. Additionally, as NOSCOPE does not focus on
the exploratory setting, it does not aim to minimize the training time of
specialized NNs. In BLAZEIT, we leverage and extend specialization
and present novel optimizations for aggregation, scrubbing, and content-
based selection, which these systems do not support.

Other systems, such as VideoStorm [63], aim to reduce latency of live
queries that are pre-defined as a computation graph. As the computation
is specified as a black-box, VideoStorm cannot perform cross-operator
optimization. In BLAZEIT, we introduce FRAMEQL and an optimizer
that can infer optimizations from the given query. Additionally, we
focus on the batch analytics setting. However, we believe BLAZEIT
could be run on a system such as VideoStorm for live analytics.

In the batch setting, SCANNER [55] takes a pre-defined computation
graph and executes the graph using all the hardware resources available.
However, SCANNER does not do automatic cross-operator optimizations
or use specialization. We believe BLAZEIT could be run on SCANNER
for scale-out.

Speeding up deep networks. We briefly discuss two of the many
forms of improving deep network efficiency.

First, a large body of work changes model architecture or weights for
improved inference efficiency, that preserve the full generality of these
models. Model compression uses a variety of techniques from prun-
ing [28] to compressing [12] weights from the original model, which
can be amenable to hardware acceleration [27]. Model distillation uses a
large model to train a smaller model [35]. However, these methods aim
to retain or nearly retain the accuracy of the original model. These meth-
ods do not allow for adapting to the task at hand, as BLAZEIT does. Ad-
ditionally, these methods are largely orthogonal to BLAZEIT, and reduc-
ing the cost of object detection would also improve BLAZEIT’s runtime.

Second, model specialization [41,60] aims to dramatically improve
inference speeds by training a smaller model to mimic the larger model
on a reduced task. However, specialization has typically been applied in
specific pipelines, such as NOSCOPE’s binary detection. In BLAZEIT,
we leverage and extend specialization to counting and multi-class clas-
sification.

12 Conclusions

Querying video for semantic information has become possible with re-
cent advances in computer vision, but these models run as much as 10×
slower than real-time. Additionally, deploying these models requires
complex programming with low-level libraries. In response, we present
a declarative language for video analytics, FRAMEQL, and BLAZEIT, a
system that accepts, automatically optimizes, and executes FRAMEQL
queries up to three orders of magnitude faster. We demonstrate that
FRAMEQL can answer a range of real-world queries, of which we
focus on exploratory queries in the form of aggregates and searching for
rare events. BLAZEIT introduces new techniques based on AQP, Monte
Carlo sampling, and rare-event simulation, and extends specialization
to answer these exploratory queries up to three orders of magnitude
faster. These results suggest that large video datasets can be explored
with orders of magnitude lower computational cost.
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