
facilitating clinical phenotype development at scale:
Optimizing the ClarityNLP PlatformUsing Clinical Trial Data

Christine Herlihy & Charity Hilton
Fall 2018

CS 8803-DDL
Georgia Tech



problem statement & importance

– Computational phenotyping: development of
algorithms to identify patients with particular
observable traits associated with a disease from a
broader clinical population.

– Critical step in pharmaceutical R&D lifecycle.
– Vital for development of precision medicine.

– ClarityNLP is an existing open-source platform used by
clinical researchers to build and run patient phenotypes
using structured and unstructured data.

– Queries written in NLPQL (custom declarative language).
– Query runtime varies based on dataset size and
complexity of component NLP algorithm(s).

– Built primarily for NLP functionality, not performance.

– Objective: implement a series of optimizations to
reduce expected runtime and system resource usage.

1



high-level overview of our approach

– Synthetic Query Generation

– Develop a representative corpus of synthetic NLPQL queries that
we can run against available patient records and/or synthetic data
to ensure non-trivial computational load.

– Use synthetic queries to evaluate performance of baseline system.

– Implementation of Platform Optimizations
– Tier I Optimizations: Foundational improvements, including:

– Chaining of queries
– Caching based on hash of query and database contents at time t
– Sequencing of NLPQL operations based on downselection potential
– Pre-computing and indexing common NLP tasks in Solr

– Tier 2 Optimizations: Exploratory/open-ended, including:

– Cache commonly co-occurring query predicates.
– Train DNNs to compute query results (e.g., Boolean set membership)

using vector-valued representation of the NLPQL queries as input.
– Train a model to assign an optimal number of Luigi workers and/or

Luigi batch-size based on system constraints and job criteria.
– Use in-memory databases for active or recent jobs.

– Analysis of Results
– Accuracy varies by optimization configuration; on average, we
achieve an average speedup of 21.89x and a max speedup of
66.23x relative to baseline.

2



tier i optimizations implemented

3



tier ii optimizations implemented

4



summary of optimization configurations

5



results: speedup achieved relative to baseline platform

6



results: distribution of synthetic query runtimes (n = 96)

7



results: distribution of synthetic query runtimes (n = 96)

8



validation: do queries run on optimized platform match baseline results?

– Most runs of queries
return similar results.
Most of the differences
are due to missing job
results. This should be
studied further.

– Chained queries had
serious bugs. It needs a
full re-implementation
before it can be
validated.

– Because batch sizes
affect the Solr query by
changing the limit, the
Solr sort becomes
unpredictable. Changing
batch sizes returns a
similar number of results,
they are not the same
exact results.

9



next steps

– Improve performance of DNNs used
to predict note-level labels for query
primitives, and, if possible, integrate into
pipeline as a computationally
inexpensive downselection mechanism.

– Finalize results for all configurations
considered (a final set of combination
configs are still running).

– To re-integrate our fork to the main repo,
we need realistic primitives. For this,
we must develop standard termsets and
query stubs to encourage convergence
and make frequency stats more useful.
Clinical texts and/or regulatory
guidelines can serve as a baseline for
features to include in some cases.

– A more sophisticated constraint
parser will allow us to handle more
complex queries, including those with
nested sub-clauses. 10


