FACILITATING CLINICAL PHENOTYPE DEVELOPMENT AT SCALE:
Optimizing the ClarityNLP Platform Using Clinical Trial Data

Christine Herlihy & Charity Hilton
Fall 2018

CS 8803-DDL
Georgia Tech

PROBLEM STATEMENT & IMPORTANCE

— Computational phenotyping: development of
algorithms to identify patients with particular
observable traits associated with a disease from a
broader clinical population.

- Critical step in pharmaceutical R&D lifecycle.
- Vital for development of precision medicine.

— ClarityNLP is an existing open-source platform used by Gﬁg!é%igi mgﬁz{gh
clinical researchers to build and run patient phenotypes
using structured and unstructured data.

ClarityNLP

- Queries written in NLPQL (custom declarative language).

- Query runtime varies based on dataset size and
complexity of component NLP algorithm(s).

- Built primarily for NLP functionality, not performance.

— Objective: implement a series of optimizations to
reduce expected runtime and system resource usage.

HIGH-LEVEL OVERVIEW OF OUR APPROACH

- Synthetic Query Generation

— Develop a representative corpus of synthetic NLPQL queries that
we can run against available patient records and/or synthetic data
to ensure non-trivial computational load.

- Use synthetic queries to evaluate performance of baseline system.

- Implementation of Platform Optimizations
- Tier | Optimizations: Foundational improvements, including:
- Chaining of queries
— Caching based on hash of query and database contents at time t
— Sequencing of NLPQL operations based on downselection potential
— Pre-computing and indexing common NLP tasks in Solr

- Tier 2 Optimizations: Exploratory/open-ended, including:

— Cache commonly co-occurring query predicates.

— Train DNNs to compute query results (e.g., Boolean set membership)
using vector-valued representation of the NLPQL queries as input.

— Train a model to assign an optimal number of Luigi workers and/or
Luigi batch-size based on system constraints and job criteria.

— Use in-memory databases for active or recent jobs.

- Analysis of Results

- Accuracy varies by optimization configuration; on average, we
achieve an average speedup of 21.89x and a max speedup of
66.23x relative to baseline.

TIER | OPTIMIZATIONS IMPLEMENTED

Op Description ?|Integrated?
Allow cuer Run queries such that queries where all predicates contain only 'AND' are chained. Results
1 chai:in ¥ from NLPQL 1, must complete before NLPQL 2 is ran, and the document set of query 2 is 1
8 limited to only matches found in query 1.
Implement least| Cache commonly used objects in queries, such as documents and Python objects preloaded
2 | recentlyused | with models and regular expressions. Cache results of NLPQL queries given a hash of query 1
(LRU) caching parameters. This was implemented using the cachetools library with a max size of 5000.
Reorder NLPQL
3 clauses based on| Pre-compute downselection of each query primitive. Then, reorder synthetic query so that 1
downselection | sub-clauses containing primitives with greater downselection potential get executed first.
potential
Cote We evaluated existing indices. At this time all commonly used keys are indexed. However, a
. future application might be to use a deep learning model to determine where additional
4 additional | - o . 0
indices indexes would be helpful. In addition, our evaluation is primarily focused on computation and
writes, while indexes generally help on read applications.
Shift
5 computation Note: There has been effort on the main ClarityNLP project to implement this with 0
closer to data MongoDB, but we did not evaluate it for this project.
source
Two common tasks in the ClarityNLP pipeline are segmentation of notes by section and
Precompute and| sentence. The former uses a custom ClarityNLP library and the latter uses spacy. Both are
6 | index common |computationally intense. For every document in the evaluation Solr index, we ran and stored il
NLP tasks in Solr the sections and sentences as arrays in Solr, which can be retrieved rather than re-
computed.

TIER Il OPTIMIZATIONS IMPLEMENTED

Optimization

Description

Implemented? | Integrated?
Cache of commonly Take syntlheltllc query corpus and compute pairwise cooccurrence? of feach
1 A e query primitive; cache query results of commonly cooccuring primitives. 0
predifa(t‘es ¥ Cooccurrence frequency was determined to be too low for this optimization
to result in speedup. We could tweak this in future query generation.
Train a separate deep neual network to classify a given note as 0 or 1 for
Train DNNs to each query primitive. We used stratified sampling and SMOTE to address
2 compute query | class imbalance, but for many primitives, high recall comes at the expense of 0
primitive results precision. High accuracy can be achieved by simply predicting O each time.
Thus, the high-recall DNNs might be more useful as a first-step filter.
Train a model to -) . .
dynamically assign Luigi works are somewhat constrained by CPUs in a system. However, in
optimal number of theory ClarityNLP + Luigi could be evaluated by comparing the same NLPQL
3 Luigi workers query across different configurations of ClarityNLP batch sizes and Luigi 0
o workers. We ran additional configurations to capture performance, but did
and/or Luigi batch i R
A not build a model for this task.
size
. Redis is a commonly used in-memory key-value data store. This activity
Use in-memory :
primarily compares Redis against a LRU cache as discussed above. Redis is
database for] : . - . 1
. . slightly less amenable to data in ClarityNLP, as most cached items require
active/recent jobs e
some serialization.

SUMMARY OF OPTIMIZATION CONFIGURATIONS

) Iru luigi batch | p d dered hained redis results

cache | workers | size seg nlpql queries cache status
baselit N/A 0 4 25 0 0 0 0 complete
batch_size_10 single opt 0 4 10 0 0 0 0 complete
batch_size_100 single opt 0 4 100 0 0 0 0 complete
chained_queries single opt 0 4 25 0 0 i 0 complete
Iru_cache single opt 1 4 25 0 0 0 0 complete
precompute_nlp_tasks single opt 0 4 25 i 0 0 0 complete
redis single opt 0 4 75 0 0 0 1 complete
reorder_nlpql single opt 0 4 25 0 1 0 0 complete
workers_size_5 single opt 0 5 25 0 0 0 0 complete
all_except_chaining combo (4 opts) 1 4 25 i 1 0 1 complete
Iru_cache_precomp_reorder | combo (3 opts) 1 4 25 i 1 0 0 complete
precomp_reorder_redis combo (3 opts) 0 4 25 i 1 0 1 complete
reorder_redis combo (3 opts) 0 4 25 0 1 0 1 complete
reorder_lru_cache combo (2 opts) 1 4 25 0 1 0 0 complete

RESULTS: SPEEDUP ACHIEVED RELATIVE TO BASELINE PLATFORM

config_name average_runtime (h-m-s) speedup

0 redis 00:00:08.824728 66.230891
1 precomp_reorder_redis 00:00:08.828026 66.206152
2 reorder_redis 00:00:08.830098 66.190617
3 all_except_chaining 00:00:11.372663 51.392503
4 cache_precomp_reorder 00:00:36.075572 16.201258
5 reorder_Iru_cache 00:00:36.541302 15.994768
6 Iru_cache 00:00:36.672893 15.937375
7 workers_size_5 00:05:17.154091 1.842857
8 reorder_nlpgl 00:05:40.415931 1.716928
9 batch_size_10 00:05:50.127623 1.669305
10 precompute_nlp_tasks 00:06:52.598290 1.416559
1" baseline 00:09:44.469653 1.000000
12 batch_size_100 00:20:20.067303 0.479047
13 chained_queries 00:44:42.019651 0.217921

redis
precomp_reorder_redis
reorder_redis
all_except_chaining
cache_precomp_reorder
reorder_lru_cache
Iru_cache
workers_size_5
reorder_nlpql
batch_size_10
precompute_nlp_tasks
baseline
batch_size_100

chained_queries

Speedup Relative to Baseline for Each Configuration

0 10 20 30 40 50 60

RESULTS: DISTRIBUTION OF SYNTHETIC QUERY RUNTIMES (n = 96)

Distribution of Query Runtimes By Configuration (query corpus n = 96)
Baseline and Single Optimizations

70 baseline
batch_size_10
Iru_cache
60 precompute_nlp_tasks
redis
50 reorder_nlpql
workers_size 5
Z 40
w
[
@
o
30
20
10
0l : e — :
-15 -1.0 -0.5 0.0 05 10 15 20

Query Runtime {minutes; log-scale)

RESULTS: DISTRIBUTION OF SYNTHETIC QUERY RUNTIMES (n = 96)

Distribution of Query Runtimes By Configuration (query corpus n = 96)
Baseline and Combo Optimizations

baseline
60 all_except_chaining
Iru_cache_precomp_reorder
precomp_reorder_redis
50 reorder_redis
reorder_lru_cache
40
z
w
c
& 0
20
10
0 — T

-10 05 0.0 05 10 15 20
Query Runtime (minutes; log-scale)

VALIDATION: DO QUERIES RUN ON OPTIMIZED PLATFORM MATCH BASELINE RESUL

— Most runs of queries
return similar results.
Most of the differences 0 all_except_chained 0.960000
are due to missing job 1 cache 0.960000
results. This should be

prop_name accuracy

2 precomp_reorder_redis 0.960000
S0elEE| LGN, 3 redis_cache 0.960000
- Che.uned CIEIEE e 4 luigi_workers5 ~ 0.959184
serious bugs. It needs a
. q 5 cache_reorder_nlpgl 0.950000
full re-implementation
before it can be 6 reorder_nipgl 0.930000
validated. 7 precomp_nlpgl 0.927083
— Because batch sizes 8 caching_precomp_reorder 0.920000
affect the Solr query by 9 chained_queries 0.690000
changing the limit, the 10 batch_size10 0.000000
Solr sort becomes " batch size100 0000000
. . atch_size .
unpredictable. Changing
12 reorder_redis 0.000000

batch sizes returns a
similar number of results,
they are not the same
exact results.

NEXT STEPS

- Improve performance of DNNs used
to predict note-level labels for query
primitives, and, if possible, integrate into :szmmzs&s
pipeline as a computationally # YOURE LOOKING AT THIS FILE BECAUSE
inexpensive downselection mechanism. # E FARSE FANCION FINALLY BROKE.

#
[T5 NOT FixABLE. YOU HAVE O REWVRITE (T
SINCERELY, PrsT SELF

- Finalize results for all configurations

considered (a final set of combination DEAR PRST SELE IT'9 KINDA

configs are still running). CREEPY HoW YOU DO THAT.
- To re-integrate our fork to the main repo, #ALSQ IT'S PROBABLY AT LEAST (

e L . # 2013, DID YOU EVER TAKE.

we need realistic primitives. For this, #THAT TRP TO ICELAND?

we must develop standard termsets and STOP JUDGING ME!

query stubs to encourage convergence \ /

and make frequency stats more useful.

Clinical texts and/or regulatory A

guidelines can serve as a baseline for
features to include in some cases.

— A more sophisticated constraint
parser will allow us to handle more
complex queries, including those with
nested sub-clauses. https://xked.com/1421/ 10

