
DATA ANALYTICS
USING DEEP LEARNING
GT 8803 // FALL 2018 // VENKATA
KISHORE PATCHA & VARSHA ACHAR

RANKING DATABASE SCHEMA SMELLS

GT 8803 // Fall 2018

TODAY’S AGENDA

• Background
• Existing work
• Objectives
• Approach
• Experiment
• Resources

2

http://15721.courses.cs.cmu.edu/

GT 8803 // Fall 2018

BACKGROUND

• Developers are not experts in database design and database
administrators know little about application functionality.

• If recommended practices are not followed, database
antipatterns are introduced.

• “Smelly Relations: Measuring and Understanding Database
Schema Quality”

• How do we identify schema antipattern?
• What difference in performance can an antipattern cause,

compared to ‘good’ alternate schemas?
• How do we rank these antipatterns?

3

http://15721.courses.cs.cmu.edu/
http://www.tusharma.in/preprints/dbSchemaQuality_Preprint_ICSE2018.pdf
http://www.tusharma.in/preprints/dbSchemaQuality_Preprint_ICSE2018.pdf

GT 8803 // Fall 2018

EXISTING WORK

• Open source tool: DbDeo
• Identifies 9 types of schema smells:

Compound Attribute, Adjacency list, Metadata as data,
Multicolumn attribute, Clone tables, Values in attribute definition,
Index abuse, God table, and Overloaded attribute names.

• DbDeo has a meta-model generator component that uses
SQLParse to parse SQL statements and make a meta-model.

4

http://15721.courses.cs.cmu.edu/
https://github.com/tushartushar/DbDeo

GT 8803 // Fall 2018

EXISTING WORK

• Details about antipatterns (including how to identify an
antipattern and a respective solution) is found in the book by Bill
Karwin, “SQL Antipatterns: Avoiding the Pitfalls of Database
Programming”.

http://www.r-5.org/files/books/computers/languages/sql/style/Bill_Karw
in-SQL_Antipatterns-EN.pdf

5

http://15721.courses.cs.cmu.edu/
http://www.r-5.org/files/books/computers/languages/sql/style/Bill_Karwin-SQL_Antipatterns-EN.pdf
http://www.r-5.org/files/books/computers/languages/sql/style/Bill_Karwin-SQL_Antipatterns-EN.pdf

GT 8803 // Fall 2018

OBJECTIVES

 Performance tables for 10
Antipatterns (75% goals)

 Rank antipatterns based on the
DML statements in a project (based on
existence of antipattern and sql usage
from downloaded GitHub projects)
(100% goals)

6

http://15721.courses.cs.cmu.edu/

GT 8803 // Fall 2018

APPROACH

• Synthetic data load for each antipattern and the solution.

• Write queries that perform specific tasks for the good and
bad schema.

• Execute queries and record the time taken for each query
to execute (milliseconds).

• Rank

7

http://15721.courses.cs.cmu.edu/

GT 8803 // Fall 2018

APPROACH

Classification of queries to experiment with
• SELECT a meaningful set of records. Example: get 5 customer details.
• Aggregation operation such as COUNT that visits every row in the table,

making the complexity O(number of rows). Example: How many cars are
there with each color in the cars table?

• UPDATE operation: Update some values in the table in a meaningful
way. Example: update first name.

• JOIN: (if applicable to the particular antipattern) Perform a join
operation between at least 2 tables where at least 1 table’s schema has
the antipattern. Example: How many customers have black car?

8

http://15721.courses.cs.cmu.edu/

GT 8803 // Fall 2018

APPROACH

Developed a framework for easy execution and addition
of a new antipattern using factory design pattern.
usage: measureMain.py [-h] [-d] [-l] [-e] Antipattern_name
optional arguments:
 -h, --help show this help message and exit
 -d Data will be generated for Given Antipattern.
 -l Load Generated Data.
 -e Run experiments.

9

http://15721.courses.cs.cmu.edu/

GT 8803 // Fall 2018

APPROACH

Command line argument Antipattern_name is mapped
with dedicated antipattern implementation through
a mapping object (python dictionary).

We get the performance tables based on
Antipattern_name argument.

10

http://15721.courses.cs.cmu.edu/

GT 8803 // Fall 2018

APPROACH

11

http://15721.courses.cs.cmu.edu/

GT 8803 // Fall 2018

EXPERIMENT

• For each antipattern
– For each Solution

• try each relevant DML query (SELECT, JOIN, AGGREGATION,
UPDATE).
• Note the execution time of the antipattern and solution

12

http://15721.courses.cs.cmu.edu/

GT 8803 // Fall 2018

LIST OF ANTIPATTERNS

● Jaywalking
● 31 Flavors
● ID Required
● Naive Trees
● Entity-Attribute Value

13

● Multicolumn
● Index Overuse
● Index Underuse
● Metadata Tribbles
● Keyless Entry

http://15721.courses.cs.cmu.edu/

GT 8803 // Fall 2018

PERFORMANCE TABLE

14

SELECT AGGREGATION UPDATE JOIN

Bad design 98 ms 115 ms 0 ms 440652 ms

Good design 7 ms 30 ms 0 ms 1982 ms

Antipattern 1: Jaywalking
Number of records: 100,000

http://15721.courses.cs.cmu.edu/

GT 8803 // Fall 2018

PERFORMANCE TABLE

15

SELECT AGGREGATION UPDATE JOIN

Bad design 332 ms 672 ms 31678 ms 0 ms*

Good design 0 ms 178 ms 15891 ms 0 ms*

Antipattern 2: 31 Flavors
Number of records: 1 million.
*Join operation is not applicable for this antipattern (it does not impact
performance). This antipattern only demonstrates the ramifications of
ENUM.

http://15721.courses.cs.cmu.edu/

GT 8803 // Fall 2018

PERFORMANCE TABLE

16

SELECT AGGREGATION UPDATE JOIN

Bad design 4 ms 23 ms 2 ms 0 ms*

Good design 1
(closure table)

3 ms 6 ms 1 ms 0 ms*

Good design 2
(nested set)

2 ms 212 ms 1 ms 0 ms*

Good design 3
(path enumeration)

1 ms 672 ms 1 ms 0 ms*

Antipattern 3: Naive Trees
Number of records: 100,000
Baseline is better than expected since Postgres has inbuilt recursion support. (when the text
book was written, only a few DBMS’s had recursion support)
*Join operation does not impact performance.

http://15721.courses.cs.cmu.edu/

GT 8803 // Fall 2018

PERFORMANCE TABLES

Rest of the numbers can be found here

17

http://15721.courses.cs.cmu.edu/
https://docs.google.com/document/d/1UdDuIbDsTxJmql63L-ubAsviwspaNWKxRqYtcIQK6Gc/edit?usp=sharing

GT 8803 // Fall 2018

PERFORMANCE TABLESTime saved (best
solution - baseline)

18

ANTIPATTERN SELECT AGGREGATE UPDATE JOIN TOTAL

Jaywalking 91 ms 85 ms 0 ms 438670 ms 438846 ms

31 Flavors 332 ms 494 ms 15787 ms - 11613 ms

Multicolumn 1 ms 4738 ms 1 ms - 4 ms 4736 ms

Index Underuse 304 ms 59 ms 1 ms 92 ms 556 ms

Metadata Tribbles 302 ms 305 ms -70 ms - 128 ms 454 ms

ID Required 1 ms 61 ms 280 ms 31 ms 373 ms

Keyless Entry -1 ms 110 ms 15 ms -8 ms 116 ms

Index Overuse 3 ms 9 ms 2 ms 40 ms 54 ms

Naive Trees 1 ms 17 ms 1 ms - 19 ms

Entity Attribute Value -1 ms 11 ms 3 ms 5 ms 18 ms

http://15721.courses.cs.cmu.edu/

GT 8803 // Fall 2018

Time saved Vs # records

19

http://15721.courses.cs.cmu.edu/

GT 8803 // Fall 2018

WHAT’S DONE

Dynamic ranking based on existence of an antipattern
and queries/usage from GitHub repositories.

20

http://15721.courses.cs.cmu.edu/

GT 8803 // Fall 2018

Dynamic ranking steps

1. From our measurements, we made a measurement table which tells the user how much time they
could save with best good design. The measurement table has five columns Antipattern, Select,
Aggregation, update and join. Each cell is a time in milliseconds.

2. Create a count table with the same dimensions as measurement table. We need to update the
count table for every occurrence of antipattern and type of usage (select, aggregation, update and
join). We have a two-pass approach. Both passes will go through each of sql statement in a
project.
a. The first pass writes the required table and column details to a file (metadata details).
b. The second pass will check the usage of tables and columns that have anti-pattern. Second

pass updates counts table accordingly.
3. Dot multiply measurement table with count table. Sum each row. That will give us two column

table (antipattern and summed time). Sort result table in descending order of time. Display order
of antipatterns and respective time, that user can save, to the user.

21

http://15721.courses.cs.cmu.edu/

GT 8803 // Fall 2018

why two passes?

select x, y from table T1 where y like ‘%2,%’ group by y;

Above query can be classified in single pass. It's a Jaywalking
Aggregation.

22

http://15721.courses.cs.cmu.edu/

GT 8803 // Fall 2018

why two passes?

How about 31 flavours antipattern?
create type s as ENUM('NEW', 'IN PROGRESS', 'FIXED');
CREATE TABLE baseline_bugs (
id SERIAL PRIMARY KEY,
status s
);
When we parse create statement, we know antipattern exists but we
don’t know where to count in our count table? (which classification?)
Pass one detects and gets required metadata information.
Pass two uses metadata and counts.

23

http://15721.courses.cs.cmu.edu/

GT 8803 // Fall 2018

Pass one metadata

24

http://15721.courses.cs.cmu.edu/

GT 8803 // Fall 2018

SQL parse

parsed = sqlparse.parse('select *

from foo')[0]

>>> parsed.tokens

[<DML 'select' at 0x7f22c5e15368>,

<Whitespace ' ' at 0x7f22c5e153b0>,

<Wildcard '*' …]

>>>

25

http://15721.courses.cs.cmu.edu/

GT 8803 // Fall 2018

SQL parse

Returned tokens can be analyzed
with the help of:
get_alias()
is_child_of(other)
get_parent_name()
get_real_name()

26

http://15721.courses.cs.cmu.edu/

GT 8803 // Fall 2018

What more can be done

1. Select statements with Subqueries are not
tested. Most Likely needs more coding.
2. Counts can be tested on large set of
projects and publish observations.
3. We don’t know user data loads. If data loads
are available, that can be used as a factor for
ranking.

27

http://15721.courses.cs.cmu.edu/

GT 8803 // Fall 2018

RESOURCES

• Randomly populated
database

• Postgres server
• DbDeo
• Linux server with 500GB

disk
• Python

28

http://15721.courses.cs.cmu.edu/

GT 8803 // Fall 2018

QUESTIONS
or

COMMENTS?

29

http://15721.courses.cs.cmu.edu/

GT 8803 // Fall 2018 30

http://15721.courses.cs.cmu.edu/

