
Caching Statistics to Accelerate
Exploratory Data Analytics

Apaar Shanker

DATA ANALYTICS
USING DEEP LEARNING

GT CS 8803 // FALL 2018 //

GT 8803 // Fall 2018

TODAY’S AGENDA

• Problem Overview
• Key Ideas
• Proposed Solutions
• Validation and Evaluation Methods
• Benchmarks
• Future Work

2

GT 8803 // Fall 2018

Our Objective

3

❖ A typical data scientist’s workflow involves computing certain
functions - such as mean, variance etc., on overlapping, or
hierarchical ranges in the data-table.

❖ Currently, these functions need to be recomputed for the
entire range each time they are invoked.

❖ This involves wasteful recomputation and increases lag. We
want to do better by memoizing operations through use of
statistical primitives and better indexing of data.

Accelerating Statistical Query Process through “aggregation of
primitives” and efficient “adaptive inverse-indexing” techniques.

Courtesy: Data Canopy Paper

GT 8803 // Fall 2018

Different Types of Data

4

- Customers with birthdays on
Monday

- Customers with names starting
with “A”

- Age of Consumers
- Credit Rating of loan seekers

Uniform Distribution Normal Distribution Zipfian Distribution

- Salary of Employees
- Price of Cars
- frequency of words in natural

languages

GT 8803 // Fall 2018

Different Types of Queries

5

Interval Queries Range Queries

SUM(Age[2:10])

Mean(Credit Rating[3:15])

Variance(Age[12:19])

Where(Age>20 and Age < 45)

income = Table[‘John’]].Income()

Where(x>income-10 and Age <
income+10)

GT 8803 // Fall 2018

Accelerating Queries Through Aggregation

6

❖ Where(Age>20 and Age < 45)
❖ SUM(Age[2:10])

Initial Queries are directed to the
database

Queries

Responses

As more
queries are
processed-
aggregates
build up.

Queries are
addressed by
aggregate
based engine.

Aggregates based
Query Processing
Engine

GT 8803 // Fall 2018

For Interval Queries: Segment Trees

7

GT 8803 // Fall 2018

More Information about Segment Tree

8

Segment tree is a static binary tree used for storing information about
intervals or segments

Storage: O(nlog(n))
Build: O(n(log(n)))

This data structure can used to cache information like sum, sum of squares,
min, max etc. for a hierarchy of contiguous ranges in any given data
structure.

GT 8803 // Fall 2018

For Range Queries: Hash-table based Inverted Index

9

Map : A key-Value Store

Keys

1
2
3
.
.
.
.
.
.
.
.
.

nbins

Indexes

31, 33, 78, 90
1, 20, 37
213, 23

.

.

.

.

.

.

.

.

.
61, 44, 28, 77, 89

Hashing Function to bin indexes
according to the the order in data.

Assumes: data falls within a min/max range

GT 8803 // Fall 2018

Adaptive Inverted Indexes: Database Cracking

10

❖ Previous approach leads to an extraordinarily high initial cost.

❖ Also, the data structure is not adaptive and can get unbalanced depending
on the distribution of the underlying data.

❖ A better strategy would be to employ the notion of database cracking.

Range of Data

Region of Interest

Less Than < < Greater Than

Only generate inverted indices for data in
this user queried range.

GT 8803 // Fall 2018

Adaptive Inverted Indexes: Database Cracking

11

Range of Data

Region of
Interestk1 < Greater Than K2 < Greater Than

Only generate inverted indices for data in
this user queried range.

key : Value Pairing
(k1, k2) : [list of indices found in this range]

GT 8803 // Fall 2018

High Level Description of Implementation

12

Database Generator
➢ A 2-D array of floating point values

➢ Populate the columns using
uniform, normal or zipfian
distribution

Workload Generator
➢ Interval Queries: sum(a[i1:i2])

➢ Range Query: greater than, less
than, k1 < x < k2.

Primitive Aggregates
➢ Segment Tree

Inverted Indexes
➢ hashtable for indexes
➢ DB Cracking Solution

GT 8803 // Fall 2018

Hardware Description

Device Used

12 Intel Xeon CPU E5-2650 v4 @ 2.20 GHz
128 gigabytes of RAM,

Running Ubuntu 16.04 OS.

13

GT 8803 // Fall 2018

Evaluation and Validation

14

for i in range(N)
if r1 < data[i] < r2:

store.add(i)

print all i’s in store

Naive Query Implementation
for Validating Correctness

➢ Populate the columns using
uniform, normal or zipfian
distribution

➢ Raise Range Queries and
record processing time.

Database Query Engine

GT 8803 // Fall 2018

Results

15

DB Cracking: Work in Progress!

GT 8803 // Fall 2018

Objectives Achieved

16

➢ 80% : All database components and aggregate generation tool
implemented

➢ 100% : if adaptivity/ database cracking is achieved

➢ 100-110%: Speeding up a practical workflow using Aggregate +
Cracking

GT 8803 // Fall 2018

Future Work

17

➢ Implement persistence and study effect of storage latency

➢ Study impact of cracking on an online query environment

➢ Study different practical workloads

GT 8803 // Fall 2018

References

[1] Abdul Wasay et al. Data Canopy: Accelerating Exploratory Statistical Analysis.
SIGMOD 2017.

[2] Abdul Wasay et al. Queriosity: Automated Data Exploration. 2016

[3] First use of segment tree and original reference

[4] First use of B+ tree

[5] Usage of hashing/B+ trees for orthogonal range queries.

18

GT 8803 // Fall 2018

Examples of Reusable Computation
❖Query 1: The data scientist requests mean

temperatures for each day

❖Query 2: The data scientist requests mean
temperatures for each week.

❖Query 3: The data scientist requests variances
in temperature for every two weeks.

19

GT 8803 // Fall 2018

B+ Tree/ Range Tree (Adaptivity Introduced)

20

An example of a 1-dimensional range tree. Each node which is not a leaf stores the maximum value in its left subtree.

Space:Time:

