Caching Statistics to Accelerate Georgia Tech

Apaar Shanker

DATA ANALYTICS USING DEEP LEARNING GT CS 8803 // FALL 2018 //

CREATING THE NEXT[®]

TODAY'S AGENDA

- Problem Overview
- Key Ideas
- Proposed Solutions
- Validation and Evaluation Methods
- Benchmarks
- Future Work

Our Objective

- A typical data scientist's workflow involves computing certain functions - such as mean, variance etc., on overlapping, or hierarchical ranges in the data-table.
- Currently, these functions need to be recomputed for the entire range each time they are invoked.
- This involves wasteful recomputation and increases lag. We want to do better by memoizing operations through use of statistical primitives and better indexing of data.

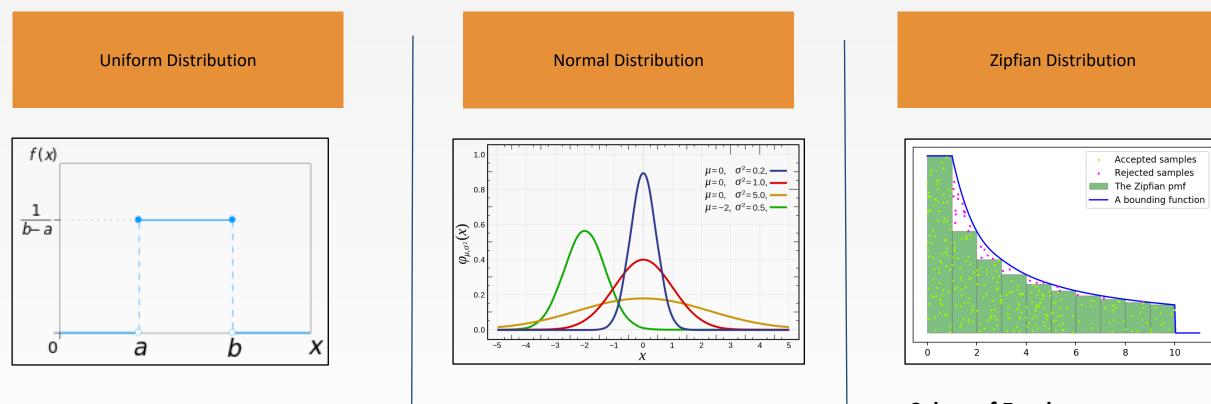
Statist	Basic Aggregates						
Туре	Formula	$\sum x$	$\sum x^2$	$\sum xy$	Σy^2	Σy	
Mean (avg)	$\frac{\sum x_i}{n}$						
Root Mean Square (rms)	$\sqrt{\frac{1}{n} \cdot \sum x^2}$						
Variance (var)	$\frac{\sum x_i^2 - n \cdot \operatorname{avg}(x)^2}{n}$						
Standard Deviation (std)	$\sqrt{\frac{\sum x_i^2 - n \cdot \operatorname{avg}(x)^2}{n}}$						
Sample Kurtosis (kur)	$\frac{1}{n}\sum_{x_i=\operatorname{avg}(x)} \sum_{\operatorname{std}(x)} (\frac{x_i-\operatorname{avg}(x)}{\operatorname{std}(x)})^4 - 3$						
Sample Covariance (cov)	$\frac{\sum x_i \cdot y_i}{n} = \frac{\sum x_i \cdot \sum y_i}{n^2}$						
Simple Linear Regression (slr)	$\frac{\operatorname{cov}(x,y)}{\operatorname{var}(x)}$, $\operatorname{avg}(x)$, $\operatorname{avg}(y)$						
Sample Correlation (corr)	$\frac{n \cdot \sum x_i \cdot y_i - \sum x_i \cdot \sum y_i}{\sqrt{n \cdot \sum x_i^2 - (\sum x_i)^2} \sqrt{n \cdot \sum y_i^2 - (\sum y_i)^2}}$						

Table 1: Data Canopy synthesizes statistics from a library of basic aggregates.

Courtesy: Data Canopy Paper

Accelerating Statistical Query Process through "aggregation of primitives" and efficient "adaptive inverse-indexing" techniques.

Different Types of Data



- Customers with birthdays on Monday
- Customers with names starting with "A"

Georgia

Tech

- Age of Consumers
- Credit Rating of loan seekers

- Salary of Employees
- Price of Cars
- frequency of words in natural languages

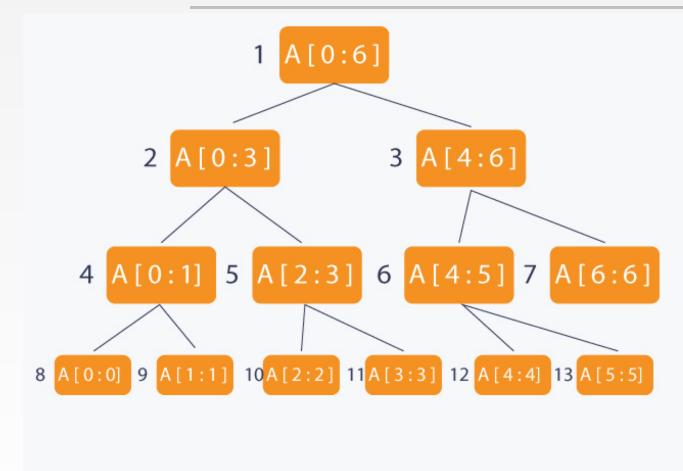
Different Types of Queries

Interval Queries						R	ange Queries	
			Index	Name	Age	Income	Credit Rating	
			1	adam	23	10000	650	
		/	2	ben	24	20000	655	
		/	3	charlie	25	30000	660	
		//	4	david	26	40000	665	
			5	emily	27	50000	670	M/here(Acc) = 20 and $Acc < 4E$
			6	fiona	28	60000	675	Where(Age>20 and Age < 45)
SUM(Age[2:1	0])		7	giovanni	29	70000	680	
			8	harry	30	80000	685	
			9	idris	31	90000	690	
			10	jemima	32	100000	695	
			11	katie	33	110000	700	
Mean(Credit Ratin	g[3:15])		12	Issac	34	120000	705	<pre>income = Table['John']].Income()</pre>
			13	monica	35	130000	710	
			14	nigel	36	140000	715	
Variance(Age[12:19])		15	oprah	37	150000	720	Where(x>income-10 and Age <	
		16	peter	38	160000	725	income+10)	
		17	quasim	39	170000	730	income i zoj	
		18	ross	40	180000	735		
			19	sharon	41	190000	740	
Georgia Tech				GT 8	3803 // Fa	II 2018		5

Accelerating Queries Through Aggregation

					Index	Name	Age	Income	Credit Rating
	Initial Queries	are di	lirecte	ed to the	1	adam	23	10000	650
	database		meett		2	ben	24	20000	655
	3	charlie	25	30000	660				
 Where(Age>20 and Age < 45) SUM(Age[2:10]) 	Queries					david	26	40000	665
	Queries					emily	27	50000	670
	Responses					fiona	28	60000	675
	Kespt		7	giovanni	29	70000	680		
	_	14			8	harry	30	80000	685
	As more		C	Queries are	9	idris	31	90000	690
	queries are		a	ddressed by	10	jemima	32	100000	695
	processed-			•	11	katie	33	110000	700
				aggregate	12	Issac	34	120000	705
	aggregates		based engine.	13	monica	35	130000	710	
	build up.	4			14	nigel	36	140000	715
								150000	720
	16	peter	38	160000	725				
	17	quasim	39	170000	730				
	Query Processing							180000	735
Engine						sharon	41	190000	740
Georgia									

For Interval Queries: Segment Trees



Segment Tree

tree [1] = A[0:6]tree [2] = A[0:3]tree [3] = A[4:6]tree [4] = A[0:1]tree [5] = A[2:3]tree [6] = A[4:5]tree [7] = A[6:6]tree [8] = A[0:0]tree [9] = A[1:1]tree [10] = A[2:2]tree [11] = A[3:3]tree [12] = A[4:4]tree [13] = A[5:5]

Segment Tree represented as linear array

More Information about Segment Tree

Segment tree is a **static binary tree** used for storing information about intervals or segments

Storage: O(nlog(n)) Build: O(n(log(n)))

This data structure can used to cache information like sum, sum of squares, min, max etc. for a hierarchy of contiguous ranges in any given data structure.

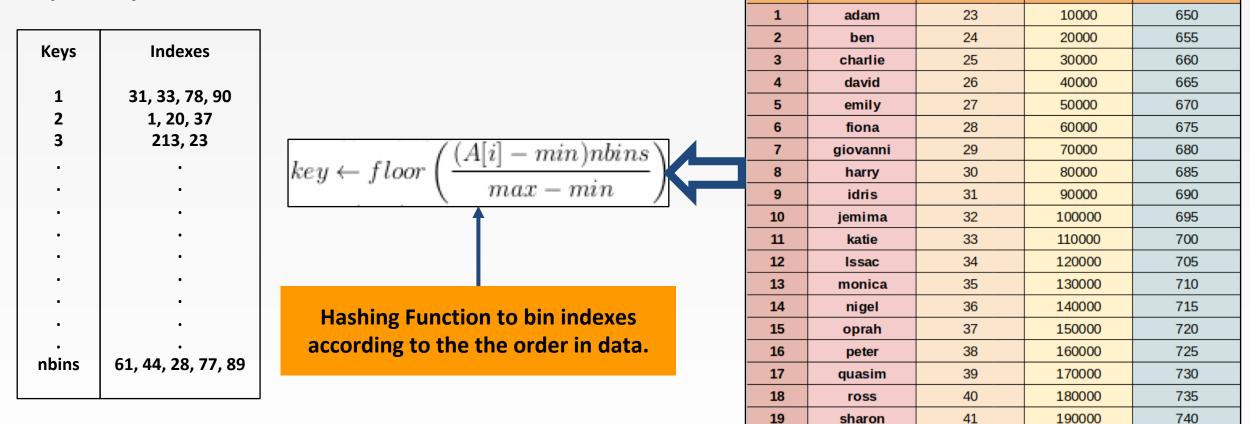
For Range Queries: Hash-table based Inverted Index

Index

Name

Age

Map: A key-Value Store



Assumes: data falls within a min/max range

Credit Rating

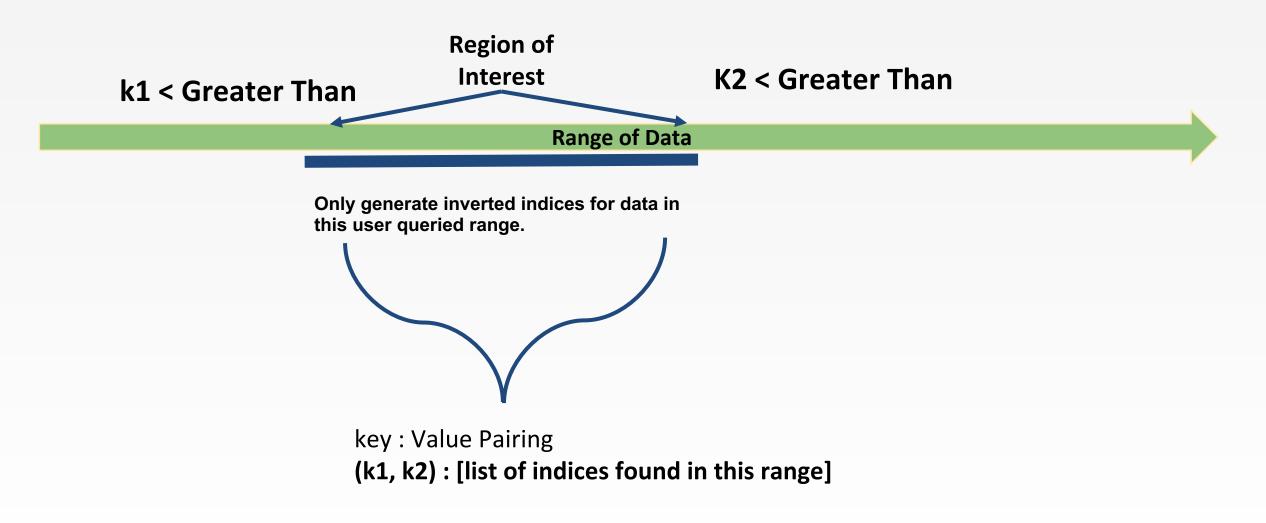
Income

Adaptive Inverted Indexes: Database Cracking

- Previous approach leads to an extraordinarily high initial cost.
- Also, the data structure is not adaptive and can get unbalanced depending on the distribution of the underlying data.
- A better strategy would be to employ the notion of database cracking.

Only generate inverted indices for data in this user queried range.

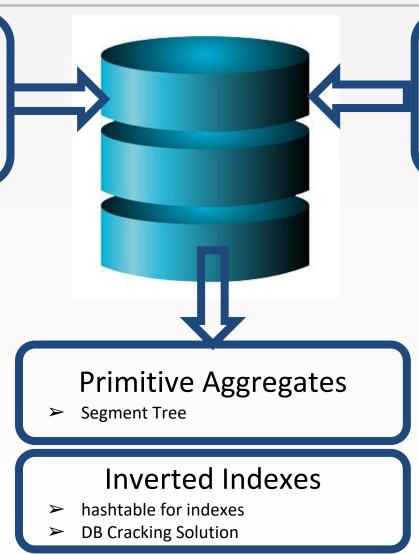
Adaptive Inverted Indexes: Database Cracking



High Level Description of Implementation

Database Generator

- ➤ A 2-D array of floating point values
- Populate the columns using uniform, normal or zipfian distribution

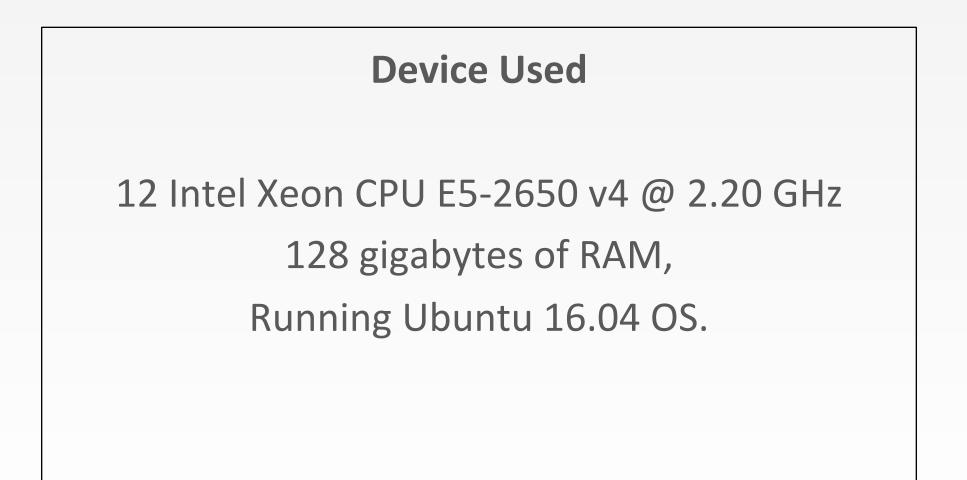


GT 8803 // Fall 2018

Workload Generator

- ➤ Interval Queries: sum(a[i1:i2])
- Range Query: greater than, less than, k1 < x < k2.</p>

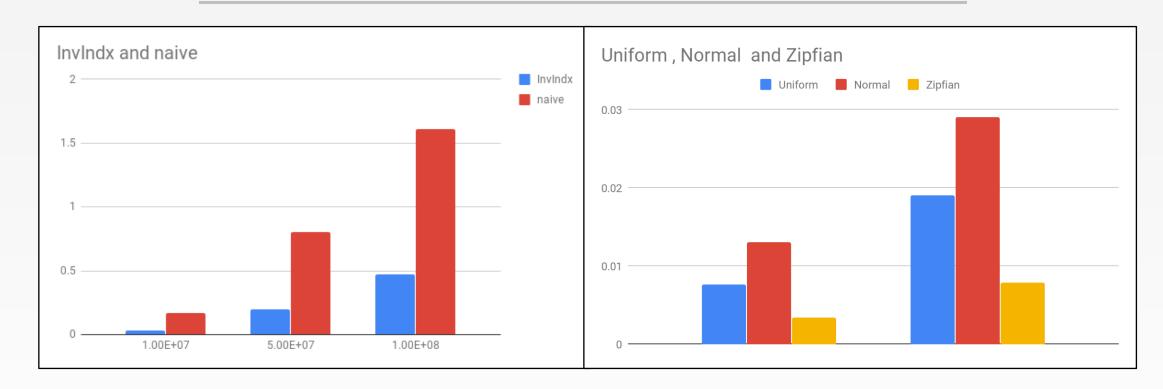
Hardware Description



Evaluation and Validation

Naive Query Implementation
for Validating Correctness
for i in range(N)
 if r1 < data[i] < r2:
 store.add(i)
print all i's in store</pre>
> Populate the columns using
 uniform, normal or zipfian
 distribution
> Raise Range Queries and
 record processing time.

Results



DB Cracking: Work in Progress!

Objectives Achieved

- > 80% : All database components and aggregate generation tool implemented
- ➤ 100% : if adaptivity/ database cracking is achieved
- ➤ 100-110%: Speeding up a practical workflow using Aggregate + Cracking

Future Work

> Implement persistence and study effect of storage latency

> Study impact of cracking on an online query environment

> Study different practical workloads

References

[1] Abdul Wasay et al. Data Canopy: Accelerating Exploratory Statistical Analysis. SIGMOD 2017.

- [2] Abdul Wasay et al. Queriosity: Automated Data Exploration. 2016
- [3] First use of segment tree and original reference

[4] First use of B+ tree

[5] Usage of hashing/B+ trees for orthogonal range queries.

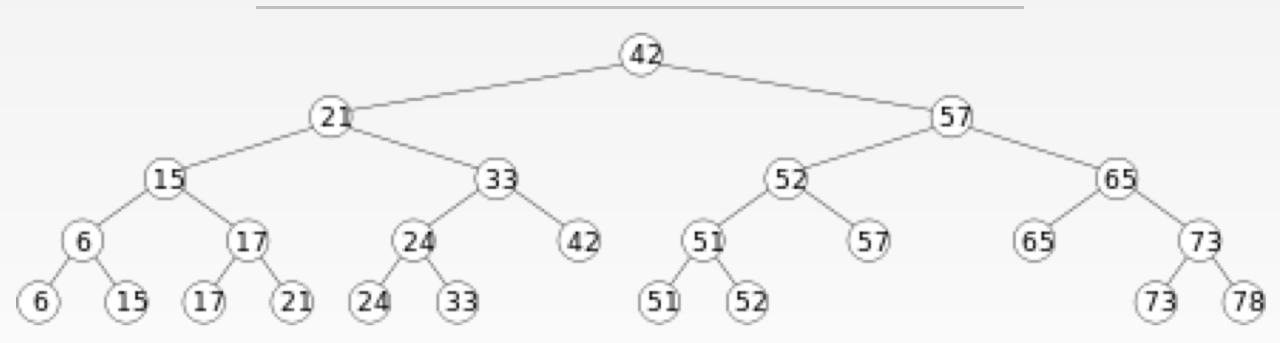
Examples of Reusable Computation

Query 1: The data scientist requests mean temperatures for each day

Query 2: The data scientist requests mean temperatures for each week.

Query 3: The data scientist requests variances in temperature for every two weeks.

B+ Tree/ Range Tree (Adaptivity Introduced)



An example of a 1-dimensional range tree. Each node which is not a leaf stores the maximum value in its left subtree.

Time:
$$O(\log^{d-1} n + k)$$
 Space: $O\left(n\left(\frac{\log n}{\log\log n}\right)^{d-1}\right)$

