TOWARDS INTELLIGENT
DATA PROFILING AND
AGGREGATION

AGENDA

INTRODUCTION

RELATED WORK

GOALS

MOTIVATION
IMPLEMENTATION
PERFORMANCE MEASURE
EVALUATION

QUESTIONS & DISCUSSIONS

INTRODUCTION

e Data Aggregation

o Useful in Data Science and Statistics

o Eliminate repetitive Calculation of Statistics

e Data Profiling

o Useful in Data pre-processing and analytics

o Summarize data

e Key Idea: Intelligent data profiling and aggregation for faster query retrieval

RELATED WORK

A. Wasay, X. Wei, N. Dayan, and S. Idreos, “Data Canopy: Accelerating Exploratory Statistical
Analysis,” in ACM SIGMOD International Conference on Management of Data, 2017

Abedjan, Ziawasch, Lukasz Golab, and Felix Naumann. “Profiling Relational Data: A Survey.” The
VLDB Journal 24.4 (2015): 557-581

GOALS- ORIGINAL

e 75-80% :Implementing a data profiling system by replicating existing
papers

e 100% : Computing and adding new metrics to the data profiling tool and
building a visualization dashboard

e 125% : Leveraging the tool for ML models

GOALS- NEW

75-80% : Implementing a data profiling system by incorporating data

aggregation for key metrics by pre-computing statistics by replicating the
Data Canopy paper

100% : Computing and adding support for more complex data profiling tasks

125% : Incorporating persistence for project by implementing LRU cache to
aid efficient memory management and faster data retrieval

WHY DID THE GOALS CHANGE?

e With time, goals evolved based on feedback

e Tackling complex technical tasks using data aggregation is more challenging than working on a

dashboard for visualization and leveraging the tool for machine learning tasks

STATISTICAL CALCULATIONS

e Data column divided into chunks
e Basic aggregates calculated for each chunk
e Statistics for the column calculated using pre-computed basic aggregates

CFQ @ oo

statistics —— Dbasic aggregates
O - @
o ® 0% 0% 0%
I a chunk I I

Data Column

REPETITIVE STATISTICS

Query Range Query Range
o I
@] |
Column Column
Fig.: Sub-range Fig.: Overlap
Query Range Query Range
o I
@ IR
Column Column

Fig.: Different Statistics Fig.: Mixed

MOTIVATION

Exploratory Workloads Exhibit Repetition

e Repetition is everywhere - between 50% to 99%

100 99 80 99.70 97.00
—_ . Column repetitions
N
g 54.65 o o
O 50 Statistics repetitions
5 36.93
=
o . Exact query repetitions

4.00
0
* at least
SQLShare SDSS aemtonee

SQLShare: Results from a Multi-Year SQL-as-a-Service Experiment
Shrainik Jain, Dominik Moritz, Bill Howe, Ed Lazowska. SIGMOD 2016

IMPLEMENTATION

e Language: C++
e Dataset (Numerical): Randomly generated; uniform distribution; ~10k rows

e Query structure: queryMethod (low, high, column_name)

SEGMENT TREE

A tree data structure that stores data

about intervals, or segments

e Binary tree
e |Leaves: data instances

e Internal nodes: union of elementary intervals

| 75 3 | 2-2 2 333 444

of square ST

Image from the paper titled ‘Data Canopy’ by Wasay et. al.

APPROACH

e Data Aggregation

o Segment tree implementation for caching

m Build segment tree for entire dataset

m Handles querying over continuous ranges

m Handles updates to the data
o Hash table implementation for mapping

m Maps incoming query to corresponding segment tree
o Statistics computation

m Statistics mentioned in the ‘Data Canopy’ paper and ‘Data Profiling’ paper

Statistics Basic Aggregates

Type Formula Yx | 2% Lxy| Ly?*| Ly
Mean (avg) z‘f

Root Mean Square (rms) \/ ,l, Y x?

Y x2—n-avg(x)’

Variance (var) =
2
Standard Deviation (std) \/ Lafnavos)
Sample Covariance (cov) ZJ:-X.- _ Z:x,--zz Vi
n

Simple Linear Regression (s1r) covl®y) avg(x),avg(y)

var(x) ’

Sample Correlation (corr) n,):xzn_éx.)z ,):.):y?—():y)2

Table of statistics from the paper titled ‘Data Canopy’ by Wasay et. al.

APPROACH

e Segment tree implementation for caching

m Build segment tree for entire dataset

m Handles querying over continuous ranges

m Handles updates to the data
o Hash table implementation for mapping

m Maps incoming query to corresponding segment tree
o Statistics computation

m Statistics mentioned in the ‘Data Canopy’ paper and ‘Data Profiling’ paper

APPROACH

e Data Profiling

(@)

Task of reviewing data to understand its
structure, content and relationships

Aids us in computing statistics or in
collective informative summaries about
the data

Data Profiling tasks include:

m Dependency detection

A set of results of these tasks gives a
data profile or database profile

Category Task Description
Cardinalities num-rows Number of rows
value length Measurements of value lengths (minimum, maximum,
median, and average)
null values Number or percentage of null values
distinct Number of distinct values; sometimes called “cardinality”
unigueness Number of distinct values divided by the number of rows
Value distributions histogram Frequency histograms (equi-width, equi-depth, etc.)
constancy Frequency of most frequent value divided by number of
TOWS
quartiles Three points that divide the (numeric) values into four equal
groups
first digit Distribution of first digit in numeric values; to check
Benford’s law
Patterns, data types, basic type Generic data type, such as numeric, alphabetic,
and domains alphanumeric, date, time
data type Concrete DBMS-specific data type, such as varchar,
timestamp.
size Maximum number of digits in numeric values
decimals Maximum number of decimals in numeric values
patterns Histogram of value patterns (Aa9...)
data class Semantic, generic data type, such as code, indicator, text,
date/time, quantity, identifier
domain Classification of semantic domain, such as credit card, first

name, city, phenotype

[Profiling relational data: a survey]: Overview of
selected single column profiling tasks

APPROACH

o [N w 4 w
|

[-/10) [10.20) [20,+)

Example of an equal-width histogram

APPROACH

e Single column profiling

O Category: Value Distribution

u Aggregates for base width ‘w’ and multiples of ‘W’

Supported for data types int and float

Based on the concept of binning over base width ‘w’

u Aggregates over any bin-size i.e. width ‘w’

Supported for data type int only

e Based on the concept of inverted index

APPROACH

[-, 14) | [14.21) [21,+)

Example of an equal-height histogram

APPROACH

e Single column profiling

O Category: Value Distribution

|
e Involves sorting the entire column and creating bins representing dynamic
ranges

e Data aggregation is difficult due to dynamic-sized ranges

APPROACH

e Persistence

o Method to efficiently store data structures such that they can continue to be accessed using
memory instructions or memory APIls even after the end of the process that created or last
modified them

o Implemented using LRU (Least Recently Used) cache

o Dataset divided into chunks, and only most recently used chunks are retained in memory to
create segment trees for efficient memory management

APPROACH

o B+ Tree
o An N-ary tree with a variable but often large number of children per node

o Aids in storing data for efficient retrieval in a block-oriented storage context

3|5
ﬁ—wlﬂq\
lagl 2 3 |4 B B 7
o | o o | o o [o | o |
Vv
d1d2 d3d4 d5d6d7

Sample B+ tree

PERFORMANCE MEASURE

e Time Complexity
o Tree Construction: O(n)
m 2(n) nodes, value of each node calculated once in tree construction
o Tree Query: O(logn)
m Number of levels: O(logn)
m To query arange minimum, at most 2 nodes at every level processed

e Space Complexity
o Tree:0(n)
m Forn datainstances, segment tree uses a 2(n) sized array

PERFORMANCE MEASURE

e MEMORY: Comparison of traditional implementation vs. our implementation

o Traditional

m No memory overhead assuming dynamic calculations for all statistics

o Our Implementation

m Forint/float values (10k data instances)
10,000 * 2 * 4 = 80,000 bytes = 80 KB

PERFORMANCE MEASURE

Time taken for Segment Tree Construction (Array size = 10k)

Base aggregates

Construction time (micro-seconds)

ZX 170
2square(x) 192
ZXy 82

EVALUATION

e Time taken for Querying the Segment Tree (Array size = 10k)

Traditional Approach

Query Time (in micro-seconds)

Data Aggregation (Segment Tree)

Query Time (in micro-seconds)

Equal width

200281

Equal width

111

Equal height

681

Equal height

69

EVALUATION

e SPEEDUP: Comparison of our implementation vs. traditional implementation

Computation of Statistics: Traditional Approach v/s Data
Aggregation (using Segment Tree)
B Traditional Approach [l Data Aggregation
900
800 725
700
600
500 399 438

400 344 308

300

200 5 93

100 39 1 8 6 16 16 6
0

Mean RMSE Variance Standard Covariance Linear Correlation
Deviation Regression

Time (in micro-seconds)

Statistics

EVALUATION

e Decrease in query time with increase in histogram query width size

o Using the Segment Tree Histogram implementation with base width = 5

Query Time vs. Histogram Width

40

30

20

10

Query Time (in micro-seconds)

Width

EVALUATION

e Comparing Query Time for the ‘Correlation’ operation for varying input size

Correlation: Comparison of Query Time between Traditional
approach v/s Data aggregation (Segment Tree) by Input Size

@ Traditional approach @ Data aggregation (Segment Tree)

900
800
700
600
500
400
300
200
100

0

Query time (in microseconds)

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Size of the input array

EVALUATION

e Observing differences in speed for varying input size for the ‘Mean’ operation

Mean: Difference in Speed between Traditional and Segment
Tree implementation by Input Size

Difference (in microseconds)
N
(4]

10 //

5@"\\@/”

0
1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Size of the input array

CORRECTNESS

Comparison of our implementation vs. traditional implementation

Mean: 5002.88
Time taken by function: 39 microseconds

RMSE: 5774.25
Time taken by function: 11 microseconds

Variance: 3.3342e+07
Time taken by function: 8 microseconds

STD: 5774.25
Time taken by function: 6 microseconds

Covariance: 86945.9
Time taken by function: 16 microseconds

Simple Linear Regression: 0.0026675
Time taken by function: 16 microseconds

Correlation: ©.0104589
Time taken by function: 6 microseconds

Mean: 5002.88
Time taken by function: 75 microseconds

RMSE: 5774.25
Time taken by function: 399 microseconds

Variance: 3.33419e+07
Time taken by function: 344 microseconds

STD: 5774.25
Time taken by function: 3608 microseconds

Covariance: 86916.4
Time taken by function: 93 microseconds

Simple Linear Regression: 0.00266659
Time taken by function: 438 microseconds

Correlation: ©.0104553
Time taken by function: 725 microseconds

FUTURE SCOPE

e Inverted or adaptive indexing

e Dealing with approximate queries

e Implement for other statistics that use aggregation
e Persistent segment tree

e Multithreading

QUESTIONS & DISCUSSIONS

