
TOWARDS INTELLIGENT
DATA PROFILING AND

AGGREGATION
Nidhi Menon

Sneha Venkatachalam

AGENDA

● INTRODUCTION

● RELATED WORK

● GOALS

● MOTIVATION

● IMPLEMENTATION

● PERFORMANCE MEASURE

● EVALUATION

● QUESTIONS & DISCUSSIONS

INTRODUCTION

● Data Aggregation
○ Useful in Data Science and Statistics

○ Eliminate repetitive Calculation of Statistics

● Data Profiling
○ Useful in Data pre-processing and analytics

○ Summarize data

● Key Idea: Intelligent data profiling and aggregation for faster query retrieval

RELATED WORK

● Data Canopy: Accelerating Exploratory Statistical Analysis

A. Wasay, X. Wei, N. Dayan, and S. Idreos, “Data Canopy: Accelerating Exploratory Statistical
Analysis,” in ACM SIGMOD International Conference on Management of Data, 2017

● Profiling relational data: a survey
Abedjan, Ziawasch, Lukasz Golab, and Felix Naumann. “Profiling Relational Data: A Survey.” The
VLDB Journal 24.4 (2015): 557–581

GOALS- ORIGINAL

● 75 - 80% : Implementing a data profiling system by replicating existing
papers

● 100% : Computing and adding new metrics to the data profiling tool and
building a visualization dashboard

● 125% : Leveraging the tool for ML models

GOALS- NEW

● 75 - 80% : Implementing a data profiling system by incorporating data
aggregation for key metrics by pre-computing statistics by replicating the
Data Canopy paper

● 100% : Computing and adding support for more complex data profiling tasks

● 125% : Incorporating persistence for project by implementing LRU cache to
aid efficient memory management and faster data retrieval

WHY DID THE GOALS CHANGE?

● With time, goals evolved based on feedback

● Tackling complex technical tasks using data aggregation is more challenging than working on a

dashboard for visualization and leveraging the tool for machine learning tasks

STATISTICAL CALCULATIONS

● Data column divided into chunks
● Basic aggregates calculated for each chunk
● Statistics for the column calculated using pre-computed basic aggregates

REPETITIVE STATISTICS

Fig.: Sub-range Fig.: Overlap

Fig.: Different Statistics Fig.: Mixed

MOTIVATION

Exploratory Workloads Exhibit Repetition
● Repetition is everywhere - between 50% to 99%

SQLShare: Results from a Multi-Year SQL-as-a-Service Experiment
Shrainik Jain, Dominik Moritz, Bill Howe, Ed Lazowska. SIGMOD 2016

Column repetitions

Statistics repetitions

Exact query repetitions

IMPLEMENTATION

● Language: C++

● Dataset (Numerical): Randomly generated; uniform distribution; ~10k rows

● Query structure: queryMethod (low, high, column_name)

SEGMENT TREE

A tree data structure that stores data

about intervals, or segments
● Binary tree

● Leaves: data instances

● Internal nodes: union of elementary intervals

Image from the paper titled ‘Data Canopy’ by Wasay et. al.

APPROACH

● Data Aggregation
○ Segment tree implementation for caching

■ Build segment tree for entire dataset

■ Handles querying over continuous ranges

■ Handles updates to the data

○ Hash table implementation for mapping

■ Maps incoming query to corresponding segment tree

○ Statistics computation

■ Statistics mentioned in the ‘Data Canopy’ paper and ‘Data Profiling’ paper

Table of statistics from the paper titled ‘Data Canopy’ by Wasay et. al.

APPROACH

● Segment tree implementation for caching
■ Build segment tree for entire dataset

■ Handles querying over continuous ranges

■ Handles updates to the data

○ Hash table implementation for mapping

■ Maps incoming query to corresponding segment tree

○ Statistics computation

■ Statistics mentioned in the ‘Data Canopy’ paper and ‘Data Profiling’ paper

APPROACH

● Data Profiling
○ Task of reviewing data to understand its

structure, content and relationships

○ Aids us in computing statistics or in
collective informative summaries about
the data

○ Data Profiling tasks include:
■ Single-column tasks
■ Multi-column tasks
■ Dependency detection

○ A set of results of these tasks gives a
data profile or database profile [Profiling relational data: a survey]: Overview of

selected single column profiling tasks

● Equal-width histogram

APPROACH

Example of an equal-width histogram

APPROACH

● Single column profiling

○ Category: Value Distribution

■ Equal-width histogram I: Aggregates for base width ‘w’ and multiples of ‘w’

● Supported for data types int and float

● Based on the concept of binning over base width ‘w’

■ Equal-width histogram II: Aggregates over any bin-size i.e. width ‘w’

● Supported for data type int only

● Based on the concept of inverted index

APPROACH

● Equal-height histogram

Example of an equal-height histogram

APPROACH

● Single column profiling

○ Category: Value Distribution

■ Equal-height histogram:

● Involves sorting the entire column and creating bins representing dynamic

ranges

● Data aggregation is difficult due to dynamic-sized ranges

APPROACH

● Persistence

○ Method to efficiently store data structures such that they can continue to be accessed using
memory instructions or memory APIs even after the end of the process that created or last
modified them

○ Implemented using LRU (Least Recently Used) cache

○ Dataset divided into chunks, and only most recently used chunks are retained in memory to
create segment trees for efficient memory management

APPROACH

● B+ Tree
○ An N-ary tree with a variable but often large number of children per node

○ Aids in storing data for efficient retrieval in a block-oriented storage context

Sample B+ tree

PERFORMANCE MEASURE

● Time Complexity
○ Tree Construction: O(n)

■ 2(n) nodes, value of each node calculated once in tree construction
○ Tree Query: O(logn)

■ Number of levels: O(logn)
■ To query a range minimum, at most 2 nodes at every level processed

● Space Complexity
○ Tree: O(n)

■ For n data instances, segment tree uses a 2(n) sized array

PERFORMANCE MEASURE

● MEMORY: Comparison of traditional implementation vs. our implementation

○ Traditional

■ No memory overhead assuming dynamic calculations for all statistics

○ Our Implementation

■ For int/float values (10k data instances)

10,000 * 2 * 4 = 80,000 bytes = 80 KB

● Time taken for Segment Tree Construction (Array size = 10k)

PERFORMANCE MEASURE

● Time taken for Querying the Segment Tree (Array size = 10k)

EVALUATION

● SPEEDUP: Comparison of our implementation vs. traditional implementation

EVALUATION

EVALUATION

● Decrease in query time with increase in histogram query width size
○ Using the Segment Tree Histogram implementation with base width = 5

EVALUATION

● Comparing Query Time for the ‘Correlation’ operation for varying input size

EVALUATION

● Observing differences in speed for varying input size for the ‘Mean’ operation

CORRECTNESS

● Comparison of our implementation vs. traditional implementation

FUTURE SCOPE

● Inverted or adaptive indexing

● Dealing with approximate queries

● Implement for other statistics that use aggregation

● Persistent segment tree

● Multithreading

QUESTIONS & DISCUSSIONS

