# TOWARDS INTELLIGENT DATA PROFILING AND AGGREGATION

Nidhi Menon Sneha Venkatachalam

### AGENDA

- INTRODUCTION
- RELATED WORK
- GOALS
- MOTIVATION
- IMPLEMENTATION
- PERFORMANCE MEASURE
- EVALUATION
- QUESTIONS & DISCUSSIONS

### INTRODUCTION

#### • Data Aggregation

- Useful in Data Science and Statistics
- Eliminate repetitive Calculation of Statistics
- Data Profiling
  - Useful in Data pre-processing and analytics
  - Summarize data
- Key Idea: Intelligent data profiling and aggregation for faster query retrieval

#### **RELATED WORK**

#### Data Canopy: Accelerating Exploratory Statistical Analysis

A. Wasay, X. Wei, N. Dayan, and S. Idreos, "Data Canopy: Accelerating Exploratory Statistical Analysis," in ACM SIGMOD International Conference on Management of Data, 2017

#### Profiling relational data: a survey

Abedjan, Ziawasch, Lukasz Golab, and Felix Naumann. "Profiling Relational Data: A Survey." The VLDB Journal 24.4 (2015): 557–581

### **GOALS- ORIGINAL**

- 75 80% : Implementing a data profiling system by replicating existing papers
- 100% : Computing and adding new metrics to the data profiling tool and building a visualization dashboard
- 125% : Leveraging the tool for ML models

## **GOALS-NEW**

- 75 80% : Implementing a data profiling system by incorporating data aggregation for key metrics by pre-computing statistics by replicating the Data Canopy paper
- 100% : Computing and adding support for more complex data profiling tasks
- 125% : Incorporating persistence for project by implementing LRU cache to aid efficient memory management and faster data retrieval

### WHY DID THE GOALS CHANGE?

- With time, goals evolved based on feedback
- Tackling complex technical tasks using data aggregation is more challenging than working on a dashboard for visualization and leveraging the tool for machine learning tasks

### STATISTICAL CALCULATIONS

- Data column divided into chunks
- Basic aggregates calculated for each chunk
- Statistics for the column calculated using pre-computed basic aggregates



#### **REPETITIVE STATISTICS**







### MOTIVATION

#### **Exploratory Workloads Exhibit Repetition**

• Repetition is everywhere - between 50% to 99%



SQLShare: Results from a Multi-Year SQL-as-a-Service Experiment Shrainik Jain, Dominik Moritz, Bill Howe, Ed Lazowska. SIGMOD 2016

### IMPLEMENTATION

- Language: C++
- **Dataset (Numerical)**: Randomly generated; uniform distribution; ~10k rows
- **Query structure**: queryMethod (low, high, column\_name)

### SEGMENT TREE

A tree data structure that stores data about intervals, or segments

- Binary tree
- Leaves: data instances
- Internal nodes: union of elementary intervals



Image from the paper titled 'Data Canopy' by Wasay et. al.

#### • Data Aggregation

- Segment tree implementation for caching
  - Build segment tree for entire dataset
  - Handles querying over continuous ranges
  - Handles updates to the data
- Hash table implementation for mapping
  - Maps incoming query to corresponding segment tree
- Statistics computation
  - Statistics mentioned in the 'Data Canopy' paper and 'Data Profiling' paper

| Statistics                     |                                                                                                                                                  |          | Basic Aggregates |           |              |    |  |
|--------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|----------|------------------|-----------|--------------|----|--|
| Туре                           | Formula                                                                                                                                          | $\sum x$ | $\sum x^2$       | $\sum xy$ | $\Sigma y^2$ | Σy |  |
| <b>Mean</b> (avg)              | $\frac{\sum x_i}{n}$                                                                                                                             |          |                  |           |              |    |  |
| Root Mean Square (rms)         | $\sqrt{\frac{1}{n}\cdot\sum x^2}$                                                                                                                |          |                  |           |              |    |  |
| Variance (var)                 | $\frac{\sum x_i^2 - n \cdot \operatorname{avg}(x)^2}{n}$                                                                                         |          |                  |           |              |    |  |
| Standard Deviation (std)       | $\sqrt{rac{\sum x_i^2 - n \cdot \operatorname{avg}(x)^2}{n}}$                                                                                   |          |                  |           |              |    |  |
| Sample Covariance (cov)        | $rac{\sum x_i \cdot y_i}{n} - rac{\sum x_i \cdot \sum y_i}{n^2}$                                                                               |          |                  |           |              |    |  |
| Simple Linear Regression (slr) | $\frac{\operatorname{cov}(x,y)}{\operatorname{var}(x)},\operatorname{avg}(x),\operatorname{avg}(y)$                                              |          |                  |           |              |    |  |
| Sample Correlation (corr)      | $\frac{n \cdot \sum x_i \cdot y_i - \sum x_i \cdot \sum y_i}{\sqrt{n \cdot \sum x_i^2 - (\sum x_i)^2} \sqrt{n \cdot \sum y_i^2 - (\sum y_i)^2}}$ |          |                  |           |              |    |  |

Table of statistics from the paper titled 'Data Canopy' by Wasay et. al.

#### • Segment tree implementation for caching

- Build segment tree for entire dataset
- Handles querying over continuous ranges
- Handles updates to the data
- Hash table implementation for mapping
  - Maps incoming query to corresponding segment tree
- Statistics computation
  - Statistics mentioned in the 'Data Canopy' paper and 'Data Profiling' paper

#### • Data Profiling

- Task of reviewing data to understand its structure, content and relationships
- Aids us in computing statistics or in collective informative summaries about the data
- Data Profiling tasks include:
  - **Single-column tasks**
  - Multi-column tasks
  - Dependency detection
- A set of results of these tasks gives a *data profile* or *database profile*

| Category                             | Task         | Description                                                                                 |
|--------------------------------------|--------------|---------------------------------------------------------------------------------------------|
| Cardinalities                        | num-rows     | Number of rows                                                                              |
|                                      | value length | Measurements of value lengths (minimum, maximum, median, and average)                       |
|                                      | null values  | Number or percentage of null values                                                         |
|                                      | distinct     | Number of distinct values; sometimes called "cardinality"                                   |
|                                      | uniqueness   | Number of distinct values divided by the number of rows                                     |
| Value distributions                  | histogram    | Frequency histograms (equi-width, equi-depth, etc.)                                         |
|                                      | constancy    | Frequency of most frequent value divided by number of rows                                  |
|                                      | quartiles    | Three points that divide the (numeric) values into four equal groups                        |
|                                      | first digit  | Distribution of first digit in numeric values; to check Benford's law                       |
| Patterns, data types,<br>and domains | basic type   | Generic data type, such as numeric, alphabetic,<br>alphanumeric, date, time                 |
|                                      | data type    | Concrete DBMS-specific data type, such as varchar, timestamp.                               |
|                                      | size         | Maximum number of digits in numeric values                                                  |
|                                      | decimals     | Maximum number of decimals in numeric values                                                |
|                                      | patterns     | Histogram of value patterns (Aa9)                                                           |
|                                      | data class   | Semantic, generic data type, such as code, indicator, text, date/time, quantity, identifier |
|                                      | domain       | Classification of semantic domain, such as credit card, first<br>name, city, phenotype      |

[Profiling relational data: a survey]: Overview of selected single column profiling tasks

• Equal-width histogram



Example of an equal-width histogram

- Single column profiling
  - Category: Value Distribution
    - **Equal-width histogram I:** Aggregates for base width 'w' and multiples of 'w'
      - Supported for data types *int* and *float*
      - Based on the concept of binning over base width 'w'
    - **Equal-width histogram II:** Aggregates over any bin-size i.e. width 'w'
      - Supported for data type *int* only
      - Based on the concept of inverted index

• Equal-height histogram



Example of an equal-height histogram

- Single column profiling
  - Category: Value Distribution
    - **Equal-height histogram:** 
      - Involves sorting the entire column and creating bins representing dynamic ranges
      - Data aggregation is difficult due to dynamic-sized ranges

#### • Persistence

- Method to efficiently store data structures such that they can continue to be accessed using memory instructions or memory APIs even after the end of the process that created or last modified them
- Implemented using LRU (Least Recently Used) cache
- Dataset divided into chunks, and only most recently used chunks are retained in memory to create segment trees for efficient memory management

#### • B+ Tree

- An N-ary tree with a variable but often large number of children per node
- Aids in storing data for efficient retrieval in a block-oriented storage context



Sample B+ tree

### PERFORMANCE MEASURE

#### • Time Complexity

- Tree Construction: *O(n)* 
  - 2(n) nodes, value of each node calculated once in tree construction
- Tree Query: O(logn)
  - Number of levels: O(logn)
  - To query a range minimum, at most 2 nodes at every level processed

#### Space Complexity

- Tree: O(n)
  - For *n* data instances, segment tree uses a 2(n) sized array

### PERFORMANCE MEASURE

- MEMORY: Comparison of traditional implementation vs. our implementation
  - Traditional
    - No memory overhead assuming dynamic calculations for all statistics
  - Our Implementation
    - For int/float values (10k data instances)
      10,000 \* 2 \* 4 = 80,000 bytes = 80 KB

#### PERFORMANCE MEASURE

• Time taken for Segment Tree Construction (Array size = 10k)

| Base aggregates | Construction time (micro-seconds) |
|-----------------|-----------------------------------|
| Σχ              | 170                               |
| Σsquare(x)      | 192                               |
| Σχγ             | 82                                |

• Time taken for Querying the Segment Tree (Array size = 10k)

| Traditional Approach | Query Time (in micro-seconds) | Data Aggregation (Segment Tree) | Query Time (in micro-seconds) |
|----------------------|-------------------------------|---------------------------------|-------------------------------|
| Equal width          | 200281                        | Equal width                     | 111                           |
| Equal height         | 681                           | Equal height                    | 69                            |

#### • SPEEDUP: Comparison of our implementation vs. traditional implementation



- Decrease in query time with increase in histogram query width size
  - Using the Segment Tree Histogram implementation with base width = 5



• Comparing Query Time for the 'Correlation' operation for varying input size



• Observing differences in speed for varying input size for the 'Mean' operation



#### CORRECTNESS

#### Comparison of our implementation vs. traditional implementation

Mean: 5002.88 Time taken by function: 39 microseconds

RMSE: 5774.25 Time taken by function: 11 microseconds

Variance: 3.3342e+07 Time taken by function: 8 microseconds

STD: 5774.25 Time taken by function: 6 microseconds

Covariance: 86945.9 Time taken by function: 16 microseconds

Simple Linear Regression: 0.0026675 Time taken by function: 16 microseconds

Correlation: 0.0104589 Time taken by function: 6 microseconds Mean: 5002.88 Time taken by function: 75 microseconds

RMSE: 5774.25 Time taken by function: 399 microseconds

Variance: 3.33419e+07 Time taken by function: 344 microseconds

STD: 5774.25 Time taken by function: 308 microseconds

Covariance: 86916.4 Time taken by function: 93 microseconds

Simple Linear Regression: 0.00266659 Time taken by function: 438 microseconds

Correlation: 0.0104553 Time taken by function: 725 microseconds

### FUTURE SCOPE

- Inverted or adaptive indexing
- Dealing with approximate queries
- Implement for other statistics that use aggregation
- Persistent segment tree
- Multithreading

### **QUESTIONS & DISCUSSIONS**