

DATA ANALYTICS USING DEEP LEARNING GT 8803 // Fall 2018 // Christine Herlihy

LECTURE #04: SEQ2SQL: GENERATING STRUCTURED QUERIES FROM NATURAL LANGUAGE USING REINFORCEMENT LEARNING

CREATING THE NEXT®

TODAY'S PAPER

• Seq2SQL: Generating Structured Queries from Natural Language using Reinforcement Learning

- Authors:

- Victor Zhong, Caiming Xiong, Richard Socher
- They are all affiliated with Salesforce Research

– Areas of focus:

• Machine translation; deep learning and reinforcement learning for query generation and validation

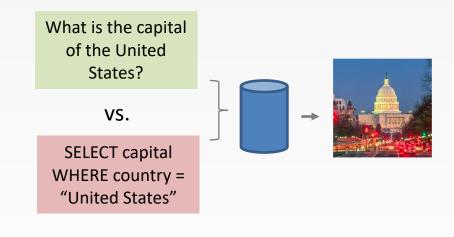
TODAY'S AGENDA

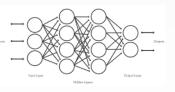
- Problem Overview
- Context: Background Info on Relevant Concepts
- Key Idea
- Technical Details
- Experiments
- Discussion Questions

PROBLEM OVERVIEW

- Status Quo:
 - A lot of interesting data is stored in relational databases

- To access this data, you have to know SQL
- **Objective:**
 - Make it easier for end-users to query relational databases by translating natural language questions to SQL queries
- Key contributions:
 - Seq2SQL model: a DNN to translate NL questions to SQL
 - WikiSQL: annotated corpus containing 80,654 questions mapped to SQL queries and tables from Wikipedia





CONTEXT: SQL CONCEPTS

- **SQL** is a declarative query language used to extract information from relational databases; results are returned as rows and columns
- A schema is a collection of database objects (here, tables)
- Even basic queries may include several clauses:
 - Aggregation operation(s)
 - (e.g., COUNT, MIN, MAX, etc.)
 - SELECT column(s) FROM schema.table
 - WHERE (condition1) AND (condition2)

Georgia

Tech

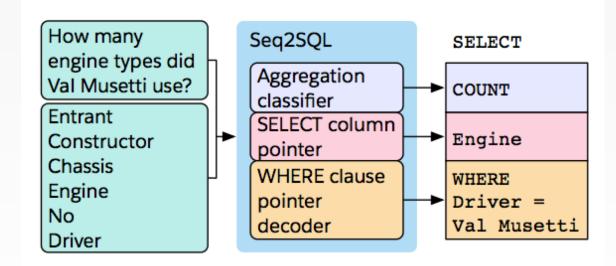


Image: https://arxiv.org/pdf/1709.00103.pdf

- Recurrent Neural Networks (RNNs):
 - Neural network architecture containing self-referential loops
 - Intended to allow knowledge/information learned in previous steps to influence the current prediction/output; wellsuited for sequential/temporal data

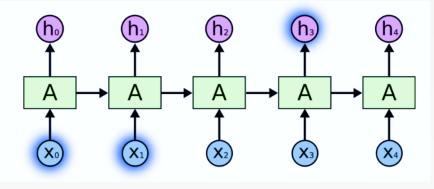
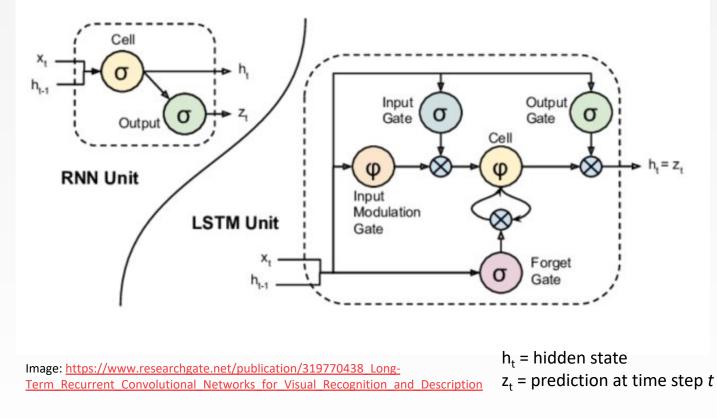


Image: https://colah.github.io/posts/2015-08-Understanding-LSTMs/

- Long Short-Term Memory (LSTM) architecture:
 - Intended to mitigate vanishing/exploding gradient problem associated with RNNs
 - Better suited for longerterm temporal dependencies
 - Incorporate a memory cell and forget gate



- How are LSTMs used in this paper?
 - Seq2SQL generates SQL queries token-by-token
 - They use LSTMs for encoding the embeddings associated with each word in the input sequence, and decoding each query token, y_s , as a function of the most recently generated token, y_{s-1}

Similar to Seq2Seq, but \forall output token \in input

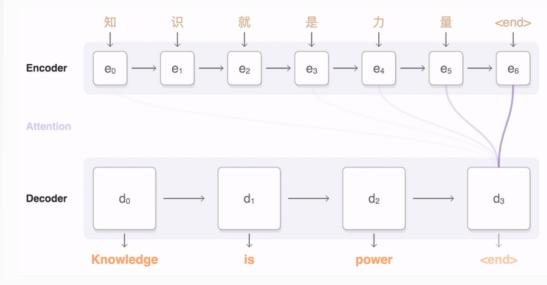


Image: https://google.github.io/seq2seq/

- Activation functions define the output of individual neurons in a DNN, given a set of input(s)
- Relevant activation functions from this paper:
 - Hyperbolic tangent (tanh):
 - Outputs values in (-1,1); less likely to get "stuck" than logistic sigmoid

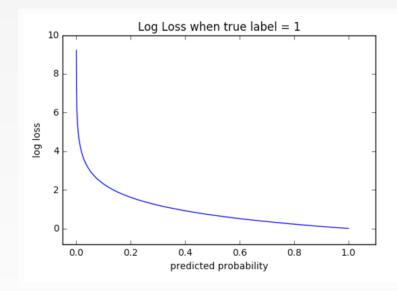
$$f(x) = anh(x) = rac{(e^x - e^{-x})}{(e^x + e^{-x})}$$

Images and information: https://en.wikipedia.org/wiki/Activation function

- The **loss function** of a DNN represents the error to be minimized
- Cross-entropy loss:
 - Measures the performance of a classifier whose output is a probability value in [0,1]
 - When number of classes = 2 (e.g., $\{0,1\}$)
 - $-(y \log(p) + (1 y) \log(1 p))$
 - For number of classes, M > 2, compute loss
 for each label per observation, o, and sum:

•
$$-\sum_{c=1}^{M} y_{o,c} \log(p_{o,c})$$

GT 8803 // FALL 2018



10

Image: https://google.github.io/seq2seq/

- Reinforcement learning: "learning what to do—how to map situations to actions–so as to maximize a numerical reward signal"
 - Agent must **explore** state space and **exploit** knowledge gained
 - Evaluative feedback based on actions, rather than action-independent instructional feedback

Source: Richard S. Sutton and Andrew G. Barto. 1998. Introduction to Reinforcement Learning (1st ed.). MIT Press, Cambridge, MA, USA.

- **Policy** (*π*):
 - "[D]efines the agent's way of behaving at a given time, and is a mapping from perceived states of the environment to actions to be taken when in those states"
 - Classical example is the gridworld problem

Grid-World Example Problem:

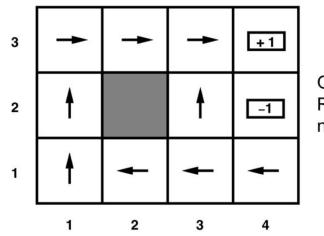


Image: https://slideplayer.com/slide/4757729/

Optimal policy when R(s) = -0.04 for every non-terminal state

Source: Richard S. Sutton and Andrew G. Barto. 1998. Introduction to Reinforcement Learning (1st ed.). MIT Press, Cambridge, MA, USA.

12

• As applied in the paper:

- States correspond to the portion of the query generated thus far
- Actions correspond to the selection of the next term in the output sequence, conditional on the input sequence and all terms selected so far
- Rewards are assigned when the generated queries are executed; depend on validity, correctness, and string match

Teacher forcing:

- Refers to scenario where, after the model is trained, the actual or expected output sequence token at time step *t* is used as input when predicting token_{t+1}, instead of using the output generated by the DNN
- In the paper, teacher forcing is used as an initial step when training the model for WHERE clause output
 - Policy is not learned from scratch
 - Rather, with TF as a foundation, they continue to policy learning
 - Why?

CONTEXT: FOUNDATIONAL WORKS

• Semantic parsing:

 Converting natural language utterance to logical/machine-interpretable representation

• Baseline model:

- Attentional sequence to sequence neural semantic parser: Dong & Lapata (2016)
- Goal of this paper was also to develop a generalized approach to query generation requiring minimal domain knowledge
- They develop a sequence-to-tree model to incorporate hierarchical nature of semantic information
 GT 8803 // FALL 2018

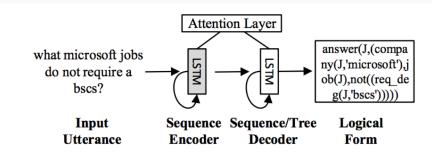
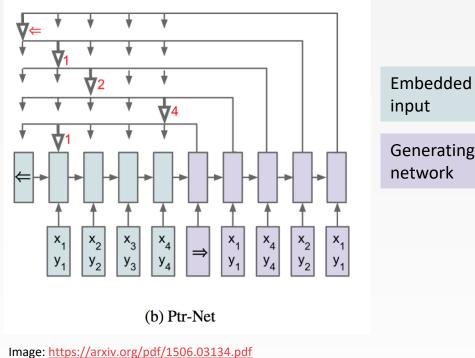


Figure 1: Input utterances and their logical forms are encoded and decoded with neural networks. An attention layer is used to learn soft alignments.

Image: https://arxiv.org/pdf/1601.01280.pdf

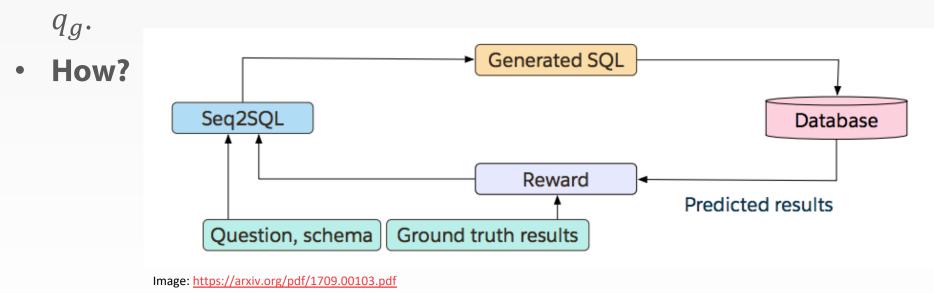
CONTEXT: FOUNDATIONAL WORKS

- Augmented pointer network:
 - Seq2SQL extends the work of Vinyals et al. (2015)
 - The referenced paper introduced Ptr-Net, a "neural architecture to learn the conditional probability of an output sequence with elements that are discrete tokens corresponding to positions in a [variable-length] input sequence"



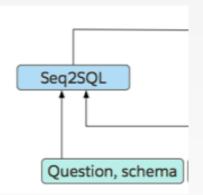
KEY IDEA

• **Objective:** Ingest a natural language question, a set of table column names, and the set of unique words in the SQL vocabulary; output a valid SQL query that returns correct results when compared to results from ground truth query,



Input sequence:

 Concatenation of {column names, the terms that form the natural language question, limited SQL vocabulary terms}



$$x = [\texttt{}; x_1^{\mathrm{c}}; x_2^{\mathrm{c}}; ...; x_N^{\mathrm{c}}; \texttt{}; x^{\mathrm{s}}; \texttt{}; x^{\mathrm{q}}]$$

Images: https://arxiv.org/pdf/1709.00103.pdf

• Query generation:

- SQL queries are generated token-by-token
- Seq2SQL has 3 component parts:
 - Aggregation operator (Does query need one or not? Which one?)
 - SELECT column required (note, input column tokens provide the alphabet; softmax function used to produce a distribution over possible columns)
 - Construction of the WHERE clause (RL is used for this)

Role of deep learning:

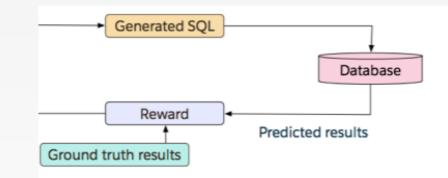
 LSTM networks are used to encode vector embeddings of items from the input sequence, and decoded to obtain tokens that, when strung together, constitute the SQL query Decoder output:

 $lpha_{s,t}^{ ext{ptr}} = W^{ ext{ptr}} ext{tanh} \left(U^{ ext{ptr}} g_s + V^{ ext{ptr}} h_t
ight)$

 $a_{s,t}^{ptr}$ = Scalar attention score for each position t of the input sequence - The next token selected, $y_s = \operatorname{argmax}(a_s^{ptr})$

• Role of RL:

 Intended to address the fact that component pieces of a WHERE clause form an unordered set



 As a result, it is possible for some generated queries to yield correct results when executed even when they are not perfect string matches with their corresponding ground truth queries

Reward Function Used:

 $R(q(y), q_g) = \begin{cases} -2, & \text{if } q(y) \text{ is not a valid SQL query} \\ -1, & \text{if } q(y) \text{ is a valid SQL query and executes to an incorrect result} \\ +1, & \text{if } q(y) \text{ is a valid SQL query and executes to the correct result} \end{cases}$

Images: https://arxiv.org/pdf/1709.00103.pdf

- Resulting objective function:
 - Model trained using gradient descent to minimize: $L = L^{agg} + L^{select} + L^{where}$
- The total gradient is the equally weighted sum of:
 - The gradient from the cross-entropy loss in predicting the SELECT column
 - The gradient from the cross-entropy loss in predicting AGG
 - The gradient from policy learning

From question to query:

in what place did phil mickelson finish with a total of 282 ?

player	country	year (s) won	total	to par	finish
Tiger Woods	United States	1999 , 2000	270	-18	1
Shaun Micheel	United States	2003	275	-13	2
Phil Mickelson	United States	2005	282	-6	T16
David Toms	United States	2001	282	-6	T16
Davis Love III	United States	1997	286	-2	Т34
Rich Beem	United States	2002	291	+3	T49
Bob Tway	United States	1986	296	+8	T65

SQL Vocabulary:

SELECT WHERE FROM AND MAX MIN COUNT SUM AVG = > <

Seq2SQL O	utput:											
SELECT	finish	FROM	mytable	WHERE	total	=	282	AND	player	=	phil	mickelson
Execution Result: Reinforcement Learning Reward:												
t16							С	orrect +	-1			

Image: https://www.salesforce.com/blog/2017/08/salesforce-research-ai-talk-to-data.html

EXPERIMENTS: SETUP

• Dataset:

- The authors use a random
 SQL generator and
 Mechanical Turk to develop
 WikiSQL
- This dataset contains

 natural language questions
 mapped to corresponding
 SQL queries and SQL tables
 extracted from HTML tables
 from Wikipedia

Dataset	Size	LF	Schema
WikiSQL	80654	yes	24241
Geoquery	880	yes	8
ATIS	5871	yes*	141
Freebase917	917	yes	81*
Overnight	26098	yes	8
WebQuestions	5810	no	2420
WikiTableQuestions	22033	no	2108

Image: <u>https://arxiv.org/pdf/1709.00103.pdf</u>; LF indicates whether has annotated logical forms

EXPERIMENTS: SETUP

Example
 JSON blob
 from WikiSQL

Question, query and table ID

These files are contained in the *.jsonl files. A line looks like the following:

Image: https://github.com/salesforce/WikiSQL

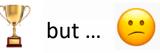
EXPERIMENT: METRICS

Evaluation metrics

- N_{ex} : # of queries that produce correct result when evaluated
- N_{lf} : # of queries that have exact string match with ground truth query
- $Acc_{ex} = \frac{N_{ex}}{N_{lf}}$: evaluation accuracy metric
- $Acc_{lf} = \frac{N_{lf}}{N}$ logical form accuracy metric (incorrectly penalizes queries that produce correct results but are not perfect string matches with their ground truth queries)

Model	$\text{Dev} \operatorname{Acc}_{\mathrm{lf}}$	$\text{Dev} \operatorname{Acc}_{\operatorname{ex}}$	Test $\mathrm{Acc}_{\mathrm{lf}}$	Test $\operatorname{Acc}_{\operatorname{ex}}$
Baseline (Dong & Lapata, 2016) Aug Ptr Network	23.3% 44.1%	37.0% 53.8%	23.4% 43.3%	35.9% 53.3%
Seq2SQL (no RL)	48.2%	58.1%	47.4%	57.1%
Seq2SQL	49.5%	60.8%	48.3%	59.4%

Image: https://arxiv.org/pdf/1709.00103.pdf



EXPERIMENT: RESULTS

• Seq2SQL generates higher quality WHERE clauses than baseline

"in how many districts was a successor seated on march 4, 1850?" Successor seated = seated march 4 VS. Successor seated = seated march 4 1850

- Seq2SQL without RL reduces invalid queries relative to the baseline model
 - Many invalid queries come from the inclusion of column names that are not present in the table
- % of generated queries that are invalid: 7.9% vs. 4.8%

Column names with multiple tokens are particularly problematic (e.g., "Miles (km)")

 Seq2SQL with RL generates higher quality WHERE clauses relative to Seq2SQL without RL; order may differ from ground truth

Georgia

Tech

"what is the race name of the 12th round
Trenton, new jersey race where a.j. foyt had the pole position?"

WHERE rnd = 12 and track = a.j. foyt AND pole position = a.j. foyt

WHERE rnd = 12 AND pole position = a.j. foyt

GT 8803 // FALL 2018

DISCUSSION QUESTIONS

- What are key strengths of this approach?
- What are key weaknesses/limitations?
- How could this approach be modified to handle more complex/multi-part questions?
- Are there are other domains where applying a model capable of mapping human-interpretable input to machine-interpretable output might be beneficial?
- Are there other methods that the authors could have used in lieu of RL to handle the unordered nature of SQL WHERE clauses?

BIBLIOGRAPHY

- Donahue, Jeff & Anne Hendricks, Lisa & Guadarrama, Sergio & Rohrbach, Marcus & Venugopalan, Subhashini & Saenko, Kate & Darrell, Trevor. (2014). Long-Term Recurrent Convolutional Networks for Visual Recognition and Description. Arxiv. PP. 10.1109/TPAMI.2016.2599174.
- <u>https://colah.github.io/posts/2015-08-Understanding-LSTMs/</u>
- <u>https://einstein.ai/research/how-to-talk-to-your-database</u>
- <u>https://machinelearningmastery.com/teacher-forcing-for-recurrent-neural-networks/</u>
- <u>https://ml-cheatsheet.readthedocs.io/en/latest/loss_functions.html</u>
- <u>https://slideplayer.com/slide/4757729/</u>
- Li Dong and Mirella Lapata. Language to logical form with neural attention. ACL, 2016.
- Oriol Vinyals, Meire Fortunato, and Navdeep Jaitly. 2015. Pointer networks. In Proceedings of the 28th International Conference on Neural Information Processing Systems - Volume 2 (NIPS'15), C. Cortes, D. D. Lee, M. Sugiyama, and R. Garnett (Eds.), Vol. 2. MIT Press, Cambridge, MA, USA, 2692-2700.
- Richard S. Sutton and Andrew G. Barto. 1998. Introduction to Reinforcement Learning (1st ed.). MIT Press, Cambridge, MA, USA.
- Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long short-term memory. Neural Comput. 9, 9 (November 1997), 1735-1780. DOI=http://dx.doi.org/10.1162/neco.1997.9.8.1735
- Victor Zhong, Caiming Xiong, and Richard Socher. 2017. <u>Seq2SQL: Generating Structured Queries from Natural Language using Reinforcement</u> Learning.

