DATA ANALYTICS Georgia Tech USING DEEP LEARNING GT 8803 // FALL 2018 // Sneha Venkatachalam

LECTURE #05

SQLNET: GENERATING STRUCTURED QUERIES FROM NATURAL LANGUAGE WITHOUT REINFORCEMENT LEARNING

CREATING THE NEXT®

TODAY'S PAPER

"SQLNet: Generating Structured Queries From Natural Language without using Reinforcement Learning"

• Authors

Xiaojun Xu, Chang Liu, Dawn Song

- Areas of focus
 - SQL query synthesis
 - Natural language
 - Deep learning

TODAY'S AGENDA

- Concepts
- Problem Overview
- Key Idea
- Technical Details
- Evaluation
- Related Work
- Conclusion
- Discussion

CONCEPTS

• Natural Language Processing

Analysis of raw texts and transcripts to develop algorithms to process and extract useful information

• Word Embeddings

Word embeddings are a class of techniques where individual words are represented as real-valued vectors in a predefined vector space

Each word is mapped to one vector and the vector values are learned in a way that resembles a neural network, and hence the technique is often lumped into the field of deep learning.

CONCEPTS

• MLP Classifier

A **multilayer perceptron** (MLP) is a class of feedforward artificial neural network. An MLP consists of at least three layers of nodes

CONCEPTS

Recurrent Neural Networks

They connect previous information to the present task in a neural network

A recurrent neural network can be thought of as multiple copies of the same network, each passing a message to a successor

An unrolled recurrent neural network.


```
GT 8803 // Fall 2018
```

PROBLEM OVERVIEW

"Synthesizing SQL queries from natural language"

• De facto approach

Sequence-to-sequence-style model

- Problems
 - Query serialization
 - Order matters
- State-of-the-art

Uses Reinforcement learning

GT 8803 // Fall 2018

PROBLEM OVERVIEW

An example of types of different query syntax for the same task

SOLUTION

KEY IDEA: SQLNET

- Novel sketch-based approach
- Avoids the "order-matters" problem
- Avoids the necessity to employ RL algorithms
- Novel column attention structure
- Achieves better results than Seq2seq approaches
- Bypasses previous state-of-the-art by 9 to 13 points on the WikiSQL dataset

KEY IDEA: WIKISQL

- Large-scale dataset for neural networks
- Employs crowd-sourcing
- Overcomes overfitting
- Mitigates the scalability and privacy issues
- Synthesizes query without requiring table's content
- Training, dev, and test set do not share tables
- Helps evaluate generalization to unseen schema.

KEY IDEA: WIKISQL

- Input
 - A natural language question
 - Table schema
 - Name of each column
 - Column type (i.e., real numbers or strings)
- Output
 - SQL query '

KEY IDEA: WIKISQL

Table					Question:		
Player	No.	Nationality	Position	Years in Toronto	School/Club Team	Who is the player that wears number	
Antonio Lang	21	United States	Guard-Forward	1999-2000	Duke	42?	
Voshon Lenard	2	United States	Guard	2002-03	Minnesota	SOL	Bosult .
Martin Lewis	32, 44	United States	Guard-Forward	1996-97	Butler CC (KS)		Art Long
Brad Lohaus	33	United States	Forward-Center	1996	Iowa	SELECT player	
Art Long	42	United States	Forward-Center	2002-03	Cincinnati	WHEKE no. = 42	

An example of the WikiSQL task

•

KEY IDEA: SKETCH

- SQL keywords (Tokens in bold)
 - SELECT, WHERE, and AND
- Slots (Tokens starting with "\$")
 - \$AGG: empty, SUM or MAX
 - \$COLUMN: column name
 - \$VALUE: substring of the question
 - \$OP: {=, <, >}
- Regex Notion (...)*
 - Indicates 0 or more AND clauses.'

KEY IDEA: SKETCH

SELECT \$AGG \$COLUMN WHERE \$COLUMN \$OP \$VALUE (AND \$COLUMN \$OP \$VALUE) *

SQL Sketch

GT 8803 // Fall 2018

KEY IDEA: DEPENDENCY GRAPH

- Slots depicted by boxes
- Dependency is depicted as a directed edge.
- Independent prediction of constraints
- Helps avoid the "order-matters" problem in a sequence-to-sequence model

KEY IDEA: DEPENDENCY GRAPH

Graphical illustration of the dependency in a sketch

TECHNICAL DETAILS: SEQ2SET

- To determine the most probable columns in a query
- Column names appearing in the WHERE clause constitute a subset of all column names
- Can simply predict which column names appear in this subset of interest
- Can be viewed as a MLP with one layer over the embeddings computed by 2 LSTMs (one for the question, one for the column names)

$$P_{\mathbf{wherecol}}(col|Q) = \sigma(u_c^T E_{col} + u_q^T E_Q)$$

- uc and uq are two column vectors of trainable variables

GT 8803 // Fall 2018

TECHNICAL DETAILS: COLUMN ATTENTION

- E_Q may not be able to remember information used to useful in predicting a particular column name
- Ex.:
 - Token "number" is more relevant to predicting the column "No." in the WHERE clause.
 - However, the token "player" is more relevant to predicting the "player" column in the SELECT clause
- Computes an attention mechanism between tokens

$$E_{Q|col} = H_Q w$$

- $H_{\underline{Q}}$ is a matrix of d×L, where L is the length of the natural language question.

TECHNICAL DETAILS: COLUMN ATTENTION

• w is a L-dimension column vector, computed by

$$w = \mathbf{softmax}(v) \qquad \qquad v_i = (E_{col})^T W H_Q^i \quad \forall i \in \{1, ..., L\}$$

- W is a trainable matrix of size d × d
- Hⁱ_Q indicates the i-th column of H_Q
 The final model for predicting column names in the WHERE clause

$$P_{\mathbf{wherecol}}(col|Q) = \sigma((u_a^{col})^T \mathbf{tanh}(U_c^{col}E_{col} + U_q^{col}E_{Q|col}))$$

- U^{col} and U^{col} are trainable matrices of size d × d, and u^{col} is a d-dimensional trainable vector GT 8803 // Fall 2018

TECHNICAL DETAILS: WHERE CLAUSE

- **Column slots:** Use a MLP over P(col|Q) to decide no. of columns and choose column in descending order of P(col|Q) $P_{\#col}(K|Q) = softmax(U_1^{\#col}tanh(U_2^{\#col}E_{Q|Q}))_i$
- OP slot: Use a MLP to pick the most probable operator (=, <, >)
 P_{op}(i|Q, col) = softmax(U₁^{op}tanh(U_c^{op}E_{col} + U_q^{op}E_{Q|col}))_i
- VALUE slot: Uses a copy/pointer SEQ2SEQ to predict a substring from the input question token, order matters here

 $P_{\text{val}}(i|Q, col, h) = \mathbf{softmax}(a(h))$

 $a(h)_i = (u^{\mathrm{val}})^T \mathrm{tanh}(U_1^{\mathrm{val}} H_Q^i + U_2^{\mathrm{val}} E_{col} + U_3^{\mathrm{val}} h) \quad \forall i \in \{1, ..., L\}$

GT 8803 // Fall 2018

TECHNICAL DETAILS: SELECT CLAUSE

• Only one column is picked, similar to prediction of columns in WHERE clause

 $P_{\mathbf{selcol}}(i|Q) = \mathbf{softmax}(sel)_i$

 $sel_{i} = (u_{a}^{sel})^{T} \operatorname{tanh}(U_{c}^{sel} E_{col_{i}} + U_{q}^{sel} E_{Q|col_{i}}) \quad \forall i \in \{1, ..., C\}$ - $u^{sel}_{a}, U^{sel}_{c}, U^{sel}_{q}$ are similar to $u^{col}_{a}, U^{col}_{c}, U^{col}_{q}$ • Aggregation operator selected using a MLP

 $P_{agg}(i|Q, col) = \mathbf{softmax}(U^{agg} \mathbf{tanh}(U_a E_{Q|col}))_i$

TECHNICAL DETAILS: TRAINING

- Input encoding model details
 - Natural language descriptions and column names treated as a sequence of tokens
 - Stanford CoreNLP tokenizer used to to parse sentences
- Training details

$$loss(col, Q, y) = -\left(\sum_{j=1}^{C} (\alpha y_j \log P_{\mathbf{wherecol}}(col_j | Q) + (1 - y_j) \log(1 - P_{\mathbf{wherecol}}(col_j | Q))\right)$$

(Assume y is a C-dimensional vector where yj = 1 indicates j-th column appears in the ground truth of WHERE; and yj = 0 otherwise)

- Weighted cross-centscopy=loss1for other sub-models

TECHNICAL DETAILS: TRAINING

- Weight sharing details
 - Multiple LSTMs for predicting different slots
 - Shared word embeddings among different models, however different LSTM weights
- Training the word embedding
 - GloVe embeddings used
 - Updated during training

CONCEPT: GloVe, coined from Global Vectors, is a model for distributed word representation. The model is an unsupervised learning algorithm for obtaining vector representations for words.

EVALUATION: SETUP

"SQLNet versus Seq2SQL"

• Dataset

WikiSQL

Technology

PyTorch

- Evaluation metrics
 - Logical-form accuracy
 - Query-match accuracy
 - Execution accuracy

EVALUATION: RESULTS

		dev		test		
	Accagg	Acc_{sel}	Acc_{where}	Accagg	Acc _{sel}	Acc_{where}
Seq2SQL (ours)	90.0%	89.6%	62.1%	90.1%	88.9%	60.2%
Seq2SQL (ours, C-order)	-	-	63.3%	-	-	61.2%
SQLNet (Seq2set)	-		69.1%	-	-	67.1%
SQLNet (Seq2set+CA)	90.1%	91.1%	72.1%	90.3%	90.4%	70.0%
SQLNet (Seq2set+CA+WE)	90.1%	91.5%	74.1%	90.3%	90.9%	71.9%

EVALUATION: RESULTS

- **Seq2SQL (C-order)** indicates that after Seq2SQL generates the WHERE clause, we convert both the prediction and the ground truth into a canonical order when being compared
- **Seq2set** indicates sequence-to-set technique
- +CA indicates column attention is used
- **+WE** indicates word embedding is allowed to be trained
- Acc_{agg} and Acc_{sel} indicate the accuracy on the aggregator and column prediction accuracy on the SELECT clause
- Acc_{where} indicates the accuracy to generate the WHERE clause.

EVALUATION: BREAK-DOWN

- SELECT clause prediction accuracy is around 90%, less challenging than WHERE
- 11-12 points improvement of WHERE clause accuracy over Seq2SQL
- Improvement from using Sequence-to-set architecture is around 6 points
- The column attention further improves a sequence-to-set only model by 3 points
- Allowing training word embedding gives another 2 points' improvement
- Improvements from two clauses add to 14 points total GT 8803 // Fall 2018

EVALUATION - WIKISQL VARIANT

- In practice, often when a model is trained, the table in the test set is already seen in the training set
- To mimic this,
 - Data reshuffling
 - All the tables appear at least once in the training set

• Improved results

		dev		test		
	Acc_{lf}	Acc_{qm}	Acc_{ex}	Acc_{lf}	Acc_{qm}	Acc_{ex}
Seq2SQL (ours)	54.5%	55.6%	63.8%	54.8%	55.6%	63.9%
SQLNet	-	65.5%	71.5%	-	64.4%	70.3%

RELATED WORK

- Warren & Pereira, 1982; Androutsopoulos et al., 1993; 1995; Popescu et al., 2003; 2004; Li et al., 2006; Giordani & Moschitti, 2012; Zhang & Sun, 2013; Li & Jagadish, 2014; Wang et al., 2017
 - Earlier work focuses on specific databases
 - Requires additional customization to generalize to each new database
- Li & Jagadish, 2014; Iyer et al., 2017

Incorporates users' guidance

RELATED WORK

- Pasupat & Liang, 2015; Mou et al., 2016
 - Incorporates the data in the table as an additional input
 - Scalability and privacy issues
- Yaghmazadeh et al., 2017
 - Sketch-based approach
 - Relies on an off-the-shelf semantic parser for natural language translation
 - Employs programming language techniques to iteratively refine the sketch into the final query

RELATED WORK

- Zhong et al., 2017
 - Overcoming the inefficiency of a Seq2seq model (RL)
- Zelle & Mooney, 1996; Wong & Mooney, 2007; Zettlemoyer & Collins, 2007; 2012; Artzi & Zettlemoyer, 2011; 2013; Cai & Yates, 2013; Reddy et al., 2014; Liang et al., 2011; Quirk et al., 2015; Chen et al., 2016
 - Parse a natural language to SQL queries in logical form
 - Most need to be fine-tuned to the specific domain of interest, may not generalize GT 8803 // Fall 2018

CONCLUSION

- Overcomes the 'order matters' problem
- Sketch-based approach using dependency graph
- Column attention introduced
- Improves over Seq2SQL on WikiSQL task by 9-13 points

QUESTIONS OR COMMENTS?

DISCUSSION

- Dataset used makes very strong simplification assumptions (that every token is an SQL keyword or appears in the NL)
- Not a very challenging SQL dataset
- Is the 'order' issue principally a problem for the Seq2seq model? (Order can be corrected)
- Set prediction approach is not novel
- Sketch-based approach is limited and non-scalable
 - Need for re-constructing SQL query based on grammar pre-defined by the sketch for new type of query

35

THANK YOU!

GT 8803 // Fall 2018