Georgia A
Tech|)

DATA ANALYTICS

USING DEEP LEARNING
GT 8803 // FALL 2018 // VARSHA ACHAR

LECTURE #07: UNDERSTANDING DATABASE
PERFORMANCE INEFFICIENCIES IN REAL-WORLD

APPLICATIONS CREATING THE NEXT*
Vi

TODAY’S PAPER

* Understanding Database Inefficiencies in Real-world
Applications

* Authors:
— Cong Yan and Alvin Cheung from University of Washington
— Junwen Yang and Shan Lu from University of Chicago

e CIKM 2017: International Conference on Information and
Knowledge Management

Georgia

Tozhl GT 8803 // Fall 2018

http://15721.courses.cs.cmu.edu/
https://jarulraj.github.io/data-analytics-course/papers/db_study.pdf
https://jarulraj.github.io/data-analytics-course/papers/db_study.pdf

TODAY'’S AGENDA

* Problem Overview
* Related Concepts

» Key ldea

* Technical Details

* Proposed Optimizations
* Discussion

Georgia

Tozhl GT 8803 // Fall 2018

http://15721.courses.cs.cmu.edu/

PROBLEM OVERVIEW

* Database-backed web applications today are built on
ORM (Object Relational Mapping) frameworks.

* This eases development, but comes at a performance
cost.

* This paper aims at identifying inefficiencies in such
applications and suggest ways to increase
performance.

Georgia

Tozhl GT 8803 // Fall 2018

http://15721.courses.cs.cmu.edu/

RELATED CONCEPTS: ORM

 ORM: Object relational mapping is a —
programming technique for converting data {
between relational and object-oriented
data models.

API calls — Translation by ORM in DBMS
queries — Result as objects — Application

Georgia Image from here

Tozhl GT 8803 // Fall 2018

http://15721.courses.cs.cmu.edu/
https://www.google.com/imgres?imgurl=https://baladotnettips.files.wordpress.com/2014/02/orm_flow.png?w%3D705&imgrefurl=https://baladotnettips.wordpress.com/2014/02/28/list-of-orms-available-for-net/&h=437&w=365&tbnid=2roq8m6i9jZp3M:&q=ORM&tbnh=186&tbnw=155&usg=AFrqEze8U9tx1nV3G_mXmt-fjy_kk_sZRg&vet=12ahUKEwj9wuK62sDdAhWSt1kKHenvAAwQ_B0wHHoECAgQCQ..i&docid=s4SAE73WYHDvMM&itg=1&sa=X&ved=2ahUKEwj9wuK62sDdAhWSt1kKHenvAAwQ_B0wHHoECAgQCQ

RELATED CONCEPTS: MVC

« MVC: Model-view-controller architecture

MODEL
divides the application into three (W
Interconnected parts. 1 N
— Model: manages data VIEW CONTROLLER
— View: Output representation \, y.
— Controller: Intermediate that takes user input &?\ /&‘5’
and passes it to the model. USER

* An advantage is code reusability.

Image from here

Georgia

Tozhl GT 8803 // Fall 2018

http://15721.courses.cs.cmu.edu/
https://en.wikipedia.org/wiki/Model%E2%80%93view%E2%80%93controller#/media/File:MVC-Process.svg

RELATED CONCEPTS: STATIC ANALYSIS AND AFGs

 Static program analysis refers to analyzing computer
programs without actually executing the program.

* In this paper, their static program analyzer generates
Action Flow Graphs, or AFGs. These are flowcharts that
contain control-flow and data-flow for each action. It also
contains ORM specific information inside and across
different actions.

Georgia

Tozhl GT 8803 // Fall 2018

http://15721.courses.cs.cmu.edu/

KEY IDEA

 Common performance inefficiencies:
— Poor database design
— Coding patterns that lead to the ORM generating inefficient queries
— Redundant computation as a result of lack of caching results

 Examined real world applications
— Detected inefficiencies by generating AGFs using static program
analysis
— Proposed and manually applied optimizations to applications
— This increased overall performance

Georgia

Tozhl GT 8803 // Fall 2018

http://15721.courses.cs.cmu.edu/

TECHNICAL DETAILS

* Chose 27 real world open-source .00
. . . | 1 ®
applications from a wide range of A o N R
domains. apision ranier_—, Controller oo
— Criteria: popularity on GitHub, no. | | T 2| |8
- - VieW"/ “‘;tﬂ‘ objects :
of commits, no. of contributors, 5 R Application
and application Category. PRI r'.»'.é'.'&"'f';'{{{'.{I.'_I{-"Z’J{'{if"”éé'j'é(éé - Server
quefy'tronslotor
:,’3}; 4.‘

* Ruby on Rails

Georgia
Tech

SQL queries |

l \q'uery results

Image from here

GT 8803 // Fall 2018

e+ Data How
2 : Control flow

http://15721.courses.cs.cmu.edu/
https://jarulraj.github.io/data-analytics-course/papers/db_study.pdf

TECHNICAL DETAILS

« Classes in the ‘Model’ map to tables in the DBMS.
* Relationships in model classes are similar to the relationship between
tables. (has_many, belongs_to)

S TR g cvessassusansansng
View Controller Model k %
—_ (backed by)
: blog_index.erb controllerorb usertb ~ eeceeaas remee=D Uses
: <div style="width: 100%;"s class BlogController class User < ActiveRecord s -
: <%= blogs.each do |b] %> def index has_many: blogs, class => Blog = 8 id | name
<p> <%= b.excerpt %> </p> u = User.where(name=params [name]) def some_blogs 8 i
<%= link_to '/blogs/#{b.id}'> blogs = u.some_blogs REfE e il blons
(| <%= end % render ‘blog_index', blogs bogih: cocciasabudeue >
| </div> def show - B]og
- b = Blog.where(id=arg[id]) class Blog < ActiveRecord P 2 ; - x
blog_show.erb render: ’‘blog_show', b belongs_to: user, class => User : ¢ |id: user id : excerpt ; excerpt
<p> <% b.content %> </p> Routing rules: | —> BlogController.index
/blogs/:id —> BlogController.show
Application Server DBMS

Image from here
Georgia

Tech | GT 8803 // Fall 2018

http://15721.courses.cs.cmu.edu/
https://jarulraj.github.io/data-analytics-course/papers/db_study.pdf

TECHNICAL DETAILS

* Performed Static Analysis to generate AFGs.
* Next action edge is determined based on possible user interactions -
submitting a form or clicking a

U R |_ f BlogController.index
. BlogController.show

e In addition, 7 out of 27 @mmﬁm@ e T
applications were profiled =y Cooias™
with “synthetic data” to e
evaluate the optimizations. Sioga sach oo ::“n:**

/ N
: & S (b1aT @ :query function
\b excerpt ink_to “blogs/# (b MD/ —» :Data flow edge

~ : Control flow edge

Image from here: Action Flow Graph (AFG)

Georgia

Tozhl GT 8803 // Fall 2018

http://15721.courses.cs.cmu.edu/
https://jarulraj.github.io/data-analytics-course/papers/db_study.pdf

SINGLE ACTION ISSUES

% Performance issues within a single action:

* Query translations
— (Caching common subexpressions
— Fusing queries
— Eliminating redundant data retrieval

 Rendering query results

Georgia

Tozhl GT 8803 // Fall 2018

http://15721.courses.cs.cmu.edu/

PROPOSED OPTIMIZATIONS

CACHING COMMON SUBEXPRESSIONS:

* |t was found that queries shared common subexpressions.
* (Caching these results reduced execution time by 67/%
* An example of two queries sharing a common subexpression:

Query 1: SELECT name FROM employees WHERE state = "“GEORGIA”
AND salary <> 60000 ORDER BY emp id ASC
Query 2: SELECT name FROM employees WHERE state = “GEORGIA”
AND age = 50 ORDER BY emp _id ASC

Georgia

Tozhl GT 8803 // Fall 2018 13

http://15721.courses.cs.cmu.edu/

PROPOSED OPTIMIZATIONS

FUSING OUERIES:

* A lot of queries were evaluated to be used in subsequent
queries.

* To understand how query results are used, dataflow is traced
from each query node in the AFG until a query function node is
reached, or the node has no outgoing dataflow edge.

« Examining “redmine”: 33% queries are only used for subsequent
queries.

* Less transfer of data between DBMS and application.

* |ssues? Repeated execution and optimizer.

Georgia

Tozhl GT 8803 // Fall 2018

http://15721.courses.cs.cmu.edu/

PROPOSED OPTIMIZATIONS

REDUNDANT DATA RETRIEVAL:
* Default: SELECT 7, unless explicitly mentioned.
* Many fields are not used in subsequent computation.

 Around 63% is not used.

- unused used

8
g

=)
s

.__ln.l-_l.L.l-ln.Ih.I

Size of retrieved data for each query
o

X W~ = g0 ¥ & 2 - 2 w 0 Q< (0] s
$3EZ388E520c8833882 380332 3¢¢
Image from here: Used and unused retrieved data across the 27 applications.

Gegrgia GT 8803 // Fall 2018

15

http://15721.courses.cs.cmu.edu/
https://jarulraj.github.io/data-analytics-course/papers/db_study.pdf

PROPOSED OPTIMIZATIONS

. original . subexpr opt . subexpr+qcombine . subexpr+gcombine+projection

Action 1+
Rl Image from here: Transfer size reduction.
More than 60% reduction of transfer data in Actions 1, 2, and 3.
Action 3
Action 4+
0% 25% 50% 75% 100%

Image from here: Performance gain after combining
optimizations.
Reduction of query time up to 91%

0%

GT 8803 // Fall 2018 16

Georgia &
Tech

=6

http://15721.courses.cs.cmu.edu/
https://jarulraj.github.io/data-analytics-course/papers/db_study.pdf
https://jarulraj.github.io/data-analytics-course/papers/db_study.pdf

PROPOSED OPTIMIZATIONS
RENDERING OUERY RESULTS:

Problem - Loops, loops, loops!
« Larger the DB, longer it takes to render results.
* Bounded results: LIMIT, single value (COUNT), single record.

e Evaluation shows that 56% queries return unbounded results.

» Solution: Pagination and incremental loading.
* Rendering time reduction by around 85%.

. original rendering time ~ paginated page rendering time

I
e —————————ii—— 1
POy —]
redmine

0% 25% 50% 75% 100%

Image from here: Evaluation after pagination.
Georgia

Tozhl GT 8803 // Fall 2018

17

http://15721.courses.cs.cmu.edu/
https://jarulraj.github.io/data-analytics-course/papers/db_study.pdf

MULTIPLE ACTION ISSUES

% Performance issues within a multiple actions:

* Caching

e Storing data on the disk
— Partial evaluation of selections
— Partial evaluation of projections
— Table denormalization

Georgia

Tozhl GT 8803 // Fall 2018

http://15721.courses.cs.cmu.edu/

PROPOSED OPTIMIZATIONS

- orig, p1 . cache results for (1), p1 . cache for both (D and @), p1

CACHING: (previous-current o211 coch esutsor .52 [cach for boh a2, 52
action pair) -
* Same queries across actions -
checking user permission, .
partial page layout. E—
* Focus on syntactically

Action 1

equivalent queries (20%) and =
queries that share the same o
template (531%). | | | | |

Image from here: Caching evaluation with pages p1, p2. Baseline is orig p1.

Gegrola | GT 8803 // Fall 2018 19

Tech

=e

http://15721.courses.cs.cmu.edu/
https://jarulraj.github.io/data-analytics-course/papers/db_study.pdf

PROPOSED OPTIMIZATIONS
PARTIAL EVALUATION OF SELECTIONS:

* Programmatically generated queries usually have constant values as
parameters. (33%)
« Key idea: Partially evaluate query with known values and store. Remaining
user input dependent portion of the query is evaluated during runtime.
* Consider: Query Q on Table T and a constant predicate p
Partially evaluate Q by partitioning T row-wise into two tables - one
satisfying p, and the other not. Rewrite Q to execute on partitioned table.
» For N queries with different p on one T, partition recursively (2N partitions)
 Static analysis shows an average split of 3.2 for each table.

Georgia

Tozhl GT 8803 // Fall 2018 20

http://15721.courses.cs.cmu.edu/

PROPOSED OPTIMIZATIONS

PARTIAL EVALUATION OF PROJECTIONS:

* Many queries only use a subset of all fields in a table. (61%)

 ORM frameworks map each class to a table by default - full row is
retrieved.

* Larger fields are used by fewer queries compared to smaller fields.

* Co-locate fields used together in order to partially evaluate
projections.

* Vertically partition and rewrite queries.

 What if a query used all fields? Join the tables - added overhead.

* But, this could be trivial if the key for join is indexed.

Georgia

Tozhl GT 8803 // Fall 2018

http://15721.courses.cs.cmu.edu/

PROPOSED OPTIMIZATIONS

TABLE DENORMALIZATION:

* Essentially means that joins can also be partially evaluated.

» Stored pre-joined tables leads to performance gain, as joins are
computationally expensive!

* After performing static analysis, it was found that 55% queries are
joins and each join involves an average of 2.8 tables.

* Problems: duplicate data, slows down write queries and read queries.

 But, combining with vertical partitioning somewhat helps reduce data
duplication.

* Only the fields used in the join query are denormalized to be stored in
a table, others are kept in the original table.

Georgia

Tozhl GT 8803 // Fall 2018 22

http://15721.courses.cs.cmu.edu/

PROPOSED OPTIMIZATIONS

.original - row - row + column . row + column + denormalize

Action 1
Action 2 Image from here: Performance for POST actions, original and
optimized.
Action 34
Action 1
Action 4
0% 25% 50% 75% 100% Action 2 4
Image from here: Performance for GET actions, originaland =

optimized.

T

0% 125%

Gegroia | GT 8803 // Fall 2018 23

=6

http://15721.courses.cs.cmu.edu/
https://jarulraj.github.io/data-analytics-course/papers/db_study.pdf
https://jarulraj.github.io/data-analytics-course/papers/db_study.pdf

PROPOSED OPTIMIZATIONS

95% GET

50% GET <

5% GET

0% 25% 50% 75% 100%

Image from here: Performance for a mix of GET and POST
actions, original and optimized.

Georgia &
Tech

=6

GT 8803 // Fall 2018

http://15721.courses.cs.cmu.edu/
https://jarulraj.github.io/data-analytics-course/papers/db_study.pdf

DISCUSSION

» Strengths and weaknesses?

 Was it useful to know about these inefficiencies? Does it
matter how the queries are executed?

 “Synthetic data”
* General enough? Will it work across all web frameworks?

* Will these techniques improve performance with changes
In the type of DB? (MySQL vs DB2 vs Postgres)

* Any inspiration for future research?

Georgia

Tozhl GT 8803 // Fall 2018

http://15721.courses.cs.cmu.edu/

