
DATA ANALYTICS
USING DEEP LEARNING
GT 8803 // FALL 2018 // VARSHA ACHAR

LECTURE #07: UNDERSTANDING DATABASE
PERFORMANCE INEFFICIENCIES IN REAL-WORLD
APPLICATIONS

GT 8803 // Fall 2018

TODAY’S PAPER

• Understanding Database Inefficiencies in Real-world
Applications

• Authors:
– Cong Yan and Alvin Cheung from University of Washington
– Junwen Yang and Shan Lu from University of Chicago

• CIKM 2017: International Conference on Information and
Knowledge Management

2

http://15721.courses.cs.cmu.edu/
https://jarulraj.github.io/data-analytics-course/papers/db_study.pdf
https://jarulraj.github.io/data-analytics-course/papers/db_study.pdf

GT 8803 // Fall 2018

TODAY’S AGENDA

• Problem Overview
• Related Concepts
• Key Idea
• Technical Details
• Proposed Optimizations
• Discussion

3

http://15721.courses.cs.cmu.edu/

GT 8803 // Fall 2018

PROBLEM OVERVIEW

• Database-backed web applications today are built on
ORM (Object Relational Mapping) frameworks.

• This eases development, but comes at a performance
cost.

• This paper aims at identifying inefficiencies in such
applications and suggest ways to increase
performance.

4

http://15721.courses.cs.cmu.edu/

GT 8803 // Fall 2018

RELATED CONCEPTS: ORM

• ORM: Object relational mapping is a
programming technique for converting data
between relational and object-oriented
data models.

API calls Translation by ORM in DBMS
queries Result as objects Application

5
Image from here

http://15721.courses.cs.cmu.edu/
https://www.google.com/imgres?imgurl=https://baladotnettips.files.wordpress.com/2014/02/orm_flow.png?w%3D705&imgrefurl=https://baladotnettips.wordpress.com/2014/02/28/list-of-orms-available-for-net/&h=437&w=365&tbnid=2roq8m6i9jZp3M:&q=ORM&tbnh=186&tbnw=155&usg=AFrqEze8U9tx1nV3G_mXmt-fjy_kk_sZRg&vet=12ahUKEwj9wuK62sDdAhWSt1kKHenvAAwQ_B0wHHoECAgQCQ..i&docid=s4SAE73WYHDvMM&itg=1&sa=X&ved=2ahUKEwj9wuK62sDdAhWSt1kKHenvAAwQ_B0wHHoECAgQCQ

GT 8803 // Fall 2018

RELATED CONCEPTS: MVC

• MVC: Model-view-controller architecture
divides the application into three
interconnected parts.

– Model: manages data
– View: Output representation
– Controller: Intermediate that takes user input

and passes it to the model.
• An advantage is code reusability.

6

Image from here

http://15721.courses.cs.cmu.edu/
https://en.wikipedia.org/wiki/Model%E2%80%93view%E2%80%93controller#/media/File:MVC-Process.svg

GT 8803 // Fall 2018

RELATED CONCEPTS: STATIC ANALYSIS AND AFGs

• Static program analysis refers to analyzing computer
programs without actually executing the program.

• In this paper, their static program analyzer generates
Action Flow Graphs, or AFGs. These are flowcharts that
contain control-flow and data-flow for each action. It also
contains ORM specific information inside and across
different actions.

7

http://15721.courses.cs.cmu.edu/

GT 8803 // Fall 2018

KEY IDEA

• Common performance inefficiencies:
– Poor database design
– Coding patterns that lead to the ORM generating inefficient queries
– Redundant computation as a result of lack of caching results

• Examined real world applications
– Detected inefficiencies by generating AGFs using static program

analysis
– Proposed and manually applied optimizations to applications
– This increased overall performance

8

http://15721.courses.cs.cmu.edu/

GT 8803 // Fall 2018

TECHNICAL DETAILS

• Chose 27 real world open-source
applications from a wide range of
domains.
– Criteria: popularity on GitHub, no.

of commits, no. of contributors,
and application category.

• Ruby on Rails

9

Image from here

http://15721.courses.cs.cmu.edu/
https://jarulraj.github.io/data-analytics-course/papers/db_study.pdf

GT 8803 // Fall 2018

TECHNICAL DETAILS

10

• Classes in the ‘Model’ map to tables in the DBMS.
• Relationships in model classes are similar to the relationship between

tables. (has_many, belongs_to)

Image from here

http://15721.courses.cs.cmu.edu/
https://jarulraj.github.io/data-analytics-course/papers/db_study.pdf

GT 8803 // Fall 2018

TECHNICAL DETAILS

11

• Performed Static Analysis to generate AFGs.
• Next action edge is determined based on possible user interactions -

submitting a form or clicking a
URL.

Image from here: Action Flow Graph (AFG)

• In addition, 7 out of 27
applications were profiled
with “synthetic data” to
evaluate the optimizations.

http://15721.courses.cs.cmu.edu/
https://jarulraj.github.io/data-analytics-course/papers/db_study.pdf

GT 8803 // Fall 2018

SINGLE ACTION ISSUES

★ Performance issues within a single action:

• Query translations
– Caching common subexpressions
– Fusing queries
– Eliminating redundant data retrieval

• Rendering query results

12

http://15721.courses.cs.cmu.edu/

GT 8803 // Fall 2018

PROPOSED OPTIMIZATIONS

CACHING COMMON SUBEXPRESSIONS:
• It was found that queries shared common subexpressions.
• Caching these results reduced execution time by 67%
• An example of two queries sharing a common subexpression:

Query 1: SELECT name FROM employees WHERE state = “GEORGIA”
AND salary <> 60000 ORDER BY emp_id ASC

Query 2: SELECT name FROM employees WHERE state = “GEORGIA”
AND age = 50 ORDER BY emp_id ASC

13

http://15721.courses.cs.cmu.edu/

GT 8803 // Fall 2018

PROPOSED OPTIMIZATIONS

14

FUSING QUERIES:
• A lot of queries were evaluated to be used in subsequent

queries.
• To understand how query results are used, dataflow is traced

from each query node in the AFG until a query function node is
reached, or the node has no outgoing dataflow edge.

• Examining “redmine”: 33% queries are only used for subsequent
queries.

• Less transfer of data between DBMS and application.
• Issues? Repeated execution and optimizer.

http://15721.courses.cs.cmu.edu/

GT 8803 // Fall 2018

PROPOSED OPTIMIZATIONS

15

REDUNDANT DATA RETRIEVAL:
• Default: SELECT *, unless explicitly mentioned.
• Many fields are not used in subsequent computation.
• Around 63% is not used.

Image from here: Used and unused retrieved data across the 27 applications.

http://15721.courses.cs.cmu.edu/
https://jarulraj.github.io/data-analytics-course/papers/db_study.pdf

GT 8803 // Fall 2018

PROPOSED OPTIMIZATIONS

16

Image from here: Performance gain after combining
optimizations.

Reduction of query time up to 91%

Image from here: Transfer size reduction.
More than 60% reduction of transfer data in Actions 1, 2, and 3.

http://15721.courses.cs.cmu.edu/
https://jarulraj.github.io/data-analytics-course/papers/db_study.pdf
https://jarulraj.github.io/data-analytics-course/papers/db_study.pdf

GT 8803 // Fall 2018

PROPOSED OPTIMIZATIONS

17

RENDERING QUERY RESULTS:
• Problem - Loops, loops, loops!
• Larger the DB, longer it takes to render results.
• Bounded results: LIMIT, single value (COUNT), single record.
• Evaluation shows that 36% queries return unbounded results.
• Solution: Pagination and incremental loading.
• Rendering time reduction by around 85%.

Image from here: Evaluation after pagination.

http://15721.courses.cs.cmu.edu/
https://jarulraj.github.io/data-analytics-course/papers/db_study.pdf

GT 8803 // Fall 2018

MULTIPLE ACTION ISSUES

★ Performance issues within a multiple actions:

• Caching
• Storing data on the disk

– Partial evaluation of selections
– Partial evaluation of projections
– Table denormalization

18

http://15721.courses.cs.cmu.edu/

GT 8803 // Fall 2018

PROPOSED OPTIMIZATIONS

CACHING: (previous-current
action pair)
• Same queries across actions -

checking user permission,
partial page layout.

• Focus on syntactically
equivalent queries (20%) and
queries that share the same
template (31%).

19

Image from here: Caching evaluation with pages p1, p2. Baseline is orig p1.

http://15721.courses.cs.cmu.edu/
https://jarulraj.github.io/data-analytics-course/papers/db_study.pdf

GT 8803 // Fall 2018

PROPOSED OPTIMIZATIONS

20

PARTIAL EVALUATION OF SELECTIONS:
• Programmatically generated queries usually have constant values as

parameters. (33%)
• Key idea: Partially evaluate query with known values and store. Remaining

user input dependent portion of the query is evaluated during runtime.
• Consider: Query Q on Table T and a constant predicate p

Partially evaluate Q by partitioning T row-wise into two tables - one
satisfying p, and the other not. Rewrite Q to execute on partitioned table.

• For N queries with different p on one T, partition recursively (2N partitions)
• Static analysis shows an average split of 3.2 for each table.

http://15721.courses.cs.cmu.edu/

GT 8803 // Fall 2018

PROPOSED OPTIMIZATIONS

21

PARTIAL EVALUATION OF PROJECTIONS:
• Many queries only use a subset of all fields in a table. (61%)
• ORM frameworks map each class to a table by default - full row is

retrieved.
• Larger fields are used by fewer queries compared to smaller fields.
• Co-locate fields used together in order to partially evaluate

projections.
• Vertically partition and rewrite queries.
• What if a query used all fields? Join the tables - added overhead.
• But, this could be trivial if the key for join is indexed.

http://15721.courses.cs.cmu.edu/

GT 8803 // Fall 2018

PROPOSED OPTIMIZATIONS

22

TABLE DENORMALIZATION:
• Essentially means that joins can also be partially evaluated.
• Stored pre-joined tables leads to performance gain, as joins are

computationally expensive!
• After performing static analysis, it was found that 55% queries are

joins and each join involves an average of 2.8 tables.
• Problems: duplicate data, slows down write queries and read queries.
• But, combining with vertical partitioning somewhat helps reduce data

duplication.
• Only the fields used in the join query are denormalized to be stored in

a table, others are kept in the original table.

http://15721.courses.cs.cmu.edu/

GT 8803 // Fall 2018

PROPOSED OPTIMIZATIONS

23

Image from here: Performance for GET actions, original and
optimized.

Image from here: Performance for POST actions, original and
optimized.

http://15721.courses.cs.cmu.edu/
https://jarulraj.github.io/data-analytics-course/papers/db_study.pdf
https://jarulraj.github.io/data-analytics-course/papers/db_study.pdf

GT 8803 // Fall 2018

PROPOSED OPTIMIZATIONS

24

Image from here: Performance for a mix of GET and POST
actions, original and optimized.

http://15721.courses.cs.cmu.edu/
https://jarulraj.github.io/data-analytics-course/papers/db_study.pdf

GT 8803 // Fall 2018

DISCUSSION

• Strengths and weaknesses?
• Was it useful to know about these inefficiencies? Does it

matter how the queries are executed?
• “Synthetic data”
• General enough? Will it work across all web frameworks?
• Will these techniques improve performance with changes

in the type of DB? (MySQL vs DB2 vs Postgres)
• Any inspiration for future research?

25

http://15721.courses.cs.cmu.edu/

