
DATA ANALYTICS
USING DEEP LEARNING
GT 8803 // FALL 2018 // CHRISTINE

HERLIHY

L E C T U R E # 0 8 :

T E N S O R F L O W : A S Y S T E M F O R L A R G E - S C A L E
M A C H I N E L E A R N I N G

GT 8803 // Fall 2018

T O D A Y ’ S P A P E R

• TensorFlow: A system for large-scale machine learning
� Authors:
• Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen,

Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay
Ghemawat, Geoffrey Irving, Michael Isard, Manjunath
Kudlur, Josh Levenberg, Rajat Monga, Sherry Moore, Derek
G. Murray, Benoit Steiner, Paul Tucker, Vijay Vasudevan, Pete
Warden, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng

� Affiliation: Google Brain (deep-learning AI research team)
• Published in 2016

� Areas of focus:
• Machine learning at scale; deep learning

2

GT 8803 // Fall 2018

T O D A Y ’ S A G E N D A

• Problem Overview
• Context: Background Info on Relevant Concepts
• Key Idea
• Technical Details
• Experiments
• Discussion Questions

3

GT 8803 // Fall 2018

P R O B L E M O V E R V I E W

4

• Status Quo Prior to Tensor Flow:
• A less flexible system called DistBelief was used internally at Google
• Primary use case: training DNN with billions of parameters using thousands of CPU cores

• Objective:
• Make it easier for developers to efficiently develop/test new optimizations and

model training algorithms across a range of distributed computing environments

• Empower development of DNN architectures in higher-level languages (e.g.,
Python)

• Key contributions:
• TF is a flexible, portable, open-source framework for efficient, large-scale model

development
Sources: https://ai.google/research/pubs/pub40565

https://github.com/tensorflow/tensorflow
https://ai.google/research/pubs/pub40565

GT 8803 // Fall 2018

C O N T E X T : T E N S O R S

• Tensor: “Generalization of
scalars, vectors, and matrices to
an arbitrary number of indices”
� (e.g., potentially higher

dimensions)

• Rank: number of dimensions

• TF tensor attributes: data type;
shape

5

Sources: http://www.wolframalpha.com/input/?i=tensor; https://www.tensorflow.org/guide/tensors;
https://www.slideshare.net/BertonEarnshaw/a-brief-survey-of-tensors

http://www.wolframalpha.com/input/?i=tensor
https://www.tensorflow.org/guide/tensors
https://www.slideshare.net/BertonEarnshaw/a-brief-survey-of-tensors

GT 8803 // Fall 2018

C O N T E X T : S T O C H A S T I C G R A D I E N T D E S C E N T (S G D)

• SGD: an iterative method for optimizing a
differentiable objective function

• Stochastic because samples are randomly
selected

6

GT 8803 // Fall 2018

C O N T E X T : D A T A F L O W G R A P H S

• Nodes: represent units
of computation

• Edges: represent data
consumed/produced by
a computation

7

Source: https://www.safaribooksonline.com/library/view/learning-tensorflow/9781491978504/ch01.html

https://www.safaribooksonline.com/library/view/learning-tensorflow/9781491978504/ch01.html

GT 8803 // Fall 2018 8

Example of a more
complex TF dataflow
graph:

GT 8803 // Fall 2018

C O N T E X T : P A R A M E T E R S E R V E R A R C H I T E C U T R E

• Parameter server:
a centralized
server that
distributed models
can use to share
parameters (e.g.,
get/put operations
and updates)

9

Source: http://www.pittnuts.com/2016/08/glossary-in-distributed-tensorflow/

http://www.pittnuts.com/2016/08/glossary-in-distributed-tensorflow/

GT 8803 // Fall 2018

C O N T E X T : M O D E L P A R A L L E L I S M

• Model
parallelism:
single model is
partitioned
across machines

• Communication
required
between nodes
whose edges
cross partition
boundaries

10

Source: https://ai.google/research/pubs/pub40565

https://ai.google/research/pubs/pub40565

GT 8803 // Fall 2018

C O N T E X T : D A T A P A R A L L E L I S M

• Multiple replicas
(instances) of a
model are used to
optimize a single
objective function

11

Source: https://ai.google/research/pubs/pub40565

https://ai.google/research/pubs/pub40565

GT 8803 // Fall 2018

C O N T E X T : D i s t B e l i e f

• DistBelief was the pre-cursor to TF:
� Distributed system for training DNNs
� Uses parameter-server architecture
� NN defined as an acyclic graph of layers that terminates with a loss

function

• Limitations:
� Layers were C++ classes; researchers wanted to work in Python when

prototyping new architectures
� New optimization methods required changes to the PS architecture
� Fixed execution pattern that worked well for FFNs was not suitable for

RNNs, GANs, or RL models
� Was designed for large cluster environment; hard to scale down

12

GT 8803 // Fall 2018

K E Y I D E A

• Objective:
� Empower users to efficiently implement and test experimental network architectures and

optimization algorithms at scale, in a way that takes advantage of distributed resources
and/or parallelization opportunities when available

• How?

13

Source: https://ai.google/research/pubs/pub40565

https://ai.google/research/pubs/pub40565

GT 8803 // Fall 2018

T E C H N I C A L D E T A I L S : E X E C U T I O N M O D E L

• A single dataflow graph is used to represent all
computation and state in a given ML algorithm
� Vertices represent (mathematical) operations
� Edges represent values (stored as tensors)

• Multiple concurrent executions on overlapping
subgraphs of overall graph are supported

• Individual vertices can have mutable state that can
be shared between different executions of the graph
(allows for in-place updates to large parameters)

14

GT 8803 // Fall 2018

T E C H N I C A L D E T A I L S : E X T E N S I B L I L I T Y (1 / 4)

• Use case 1: Differentiation and optimization
• TF includes a user-level library that differentiates symbolic

expression for loss function and produces new symbolic
expression representing gradients

• Differentiation algorithm performs BFS to identify all backward
paths, and sums partial gradient contributions

• Graph structure allows for conditional and/or iterative control
flow decisions to be (re)played during forward/backward passes

• Many optimization algorithms implemented on top of TF,
including: Momentum, AdaGrad, AdaDelta, RMSProp, Adam, and
L-BFGS

15

Source: https://ai.google/research/pubs/pub45381

https://ai.google/research/pubs/pub45381

GT 8803 // Fall 2018

T E C H N I C A L D E T A I L S : E X T E N S I B L I L I T Y (2 / 4)

• Use case 2: Training very large models
• Example: Given high-dimensional text

data, generate lower-dimensional
embeddings
� Multiply a batch of b sparse vectors against an

n*d embedding matrix to produce a dense
b*d representation; b << n

� The n*d matrix may be too large to copy to a
worker or store in RAM on a single host

• TF lets you split such operations across
multiple parameter server tasks

16

Source: https://ai.google/research/pubs/pub45381

https://ai.google/research/pubs/pub45381

GT 8803 // Fall 2018

T E C H N I C A L D E T A I L S : E X T E N S I B L I L I T Y (3 / 4)

• Case study 3: Fault tolerance
• Training long-running models on non-dedicated

machines requires fault tolerance
• Operation-level fault tolerance is not necessarily

required
� Many learning algorithms have only weak consistency

requirements
• TF uses user-level checkpointing (save/restore)
• Checkpointing can be customized (e.g., when a high

score is received on a specified evaluation metric)

17

Source: https://ai.google/research/pubs/pub45381

https://ai.google/research/pubs/pub45381

GT 8803 // Fall 2018

T E C H N I C A L D E T A I L S : E X T E N S I B L I L I T Y (4 / 4)

• Case study 4: Synchronous replica coordination
• Synchronous parameter updates have the potential to

be a computational bottleneck
� Only as fast as slowest worker

• GPUs reduce the number of machines required, making
synchronous updates more feasible

• TF implements proactive backup workers to mitigate
stragglers during synchronous updates
� Aggregation takes first m of n updates produced; works for SGD

since batches are randomly selected rather than sequentially

18

Source: https://ai.google/research/pubs/pub45381

https://ai.google/research/pubs/pub45381

GT 8803 // Fall 2018

T E C H N I C A L D E T A I L S : S Y S T E M A R C H I T E C T U R E

• Core library is implemented in C++
• C API connects this core runtime to

higher-level user code in different
languages (focus on C++; Python)

• Portable; runs on many different OS
and architectures, including:
� Linux; Mac OSX; Windows; Android, iOS
� x86; various ARM-based CPU architectures
� NVIDIA’s Kepler, Maxwell, and Pascal GPU

microarchitectures

• Runtime has > 200 operations
� Math ops; array; control flow; state

management

19

Source: https://ai.google/research/pubs/pub45381

https://ai.google/research/pubs/pub45381

GT 8803 // Fall 2018

E X P E R I M E N T S : G E N E R A L A P P R O A C H

20

• TensorFlow is compared to similar frameworks, including Caffe, Neon, and
Torch; self-referential benchmarks also established

• Evaluation tasks:
� Single-machine benchmarks
� Synchronous replica microbenchmark
� Image classification
� Language modeling

• Evaluation metrics:
� System performance
� Could have evaluated on the basis of model learning objectives instead
� Why choose system performance?

GT 8803 // Fall 2018

E X P . 1 : S I N G L E - M A C H I N E B E N C H M A R K S

• Question investigated:
� Do the design decisions that allow

TensorFlow to be highly scalable
impede performance for small-scale
tasks that are essentially kernel-
bound

• Results:
� TensorFlow generally close to Torch
� Neon often beats all 3; they attribute

this to the performance gains
associated with Neon’s convolutional
kernels, which are implemented in

assembly

• Dataset:
� Each of the comparison systems are

used to train a 4 different CNN
models using a single GPU

21

Library AlexNet Overfeat OxfordNet GoogleNet
Training step time (ms)

Caffe 324 823 1068 1935

Neon 87 211 320 270

Torch 81 268 529 470

TensorFlow 81 279 540 445

Source: https://ai.google/research/pubs/pub45381

https://ai.google/research/pubs/pub45381

GT 8803 // Fall 2018

E X P . 2 : S Y N C H . R E P L I C A M I C R O B E N C H M A R K

• Question investigated:
� Investigate how the performance of their

coordination implementation for
synchronous training scales as workers are
added to the device pool

• Dataset:
� They compare the number of null training

steps per second that TF can perform for
models of different sizes as the number of
synchronous works is increased

� Null step: a worker fetches shared model
parameters from 16 PS tasks, performs
trivial computation, and sends updates to
the parameter

• Results:

22

Source: https://ai.google/research/pubs/pub45381

https://ai.google/research/pubs/pub45381

GT 8803 // Fall 2018

E X P . 3 : I M A G E C L A S S I F I C A T I O N (1 / 2)

• Questions investigated:
� Can TF facilitate scalable training of

Inception-v3 using multiple replicas?

• Dataset:
� They compare the performance

achieved while training the Inception
model using asynchronous SGD on TF
and Apache MXNet (modern DL
framework that uses parameter server
architecture)

• Results:
� Results are bound by single-GPU

performance; both TF and MXNet use
cuDNN version 5.1 :. results are similar

23

Source: https://ai.google/research/pubs/pub45381

https://ai.google/research/pubs/pub45381

GT 8803 // Fall 2018

E X P . 3 : I M A G E C L A S S I F I C A T I O N (2 / 2)

• Questions investigated:
� How does coordination effect training performance?
� For synchronous training, can adding backup

workers reduce overall step time?

• Dataset:
� Inception model trained on larger internal cluster

• Results:
� Training throughput improves for async and sync as

workers are added, but within diminishing returns
due to resulting competition for PS network
resources

� Adding up to 4 backup workers reduces median step
time; > 4 degrades performance

24

Source: https://ai.google/research/pubs/pub45381

https://ai.google/research/pubs/pub45381

GT 8803 // Fall 2018

E X P . 4 : L A N G U A G E M O D E L I N G

• Questions investigated:
� Can TF facilitate the training of a recurrent

neural network that can be used to develop a
language model for the text in the One Billion
Word Benchmark?

• Dataset:
� Benchmark set contains ~800K unique words
� Cardinality of the vocabulary |V| bounds

training performance, so they use 40K most
common words

� They vary the number of PS and worker tasks,
and softmax implementations

• Results:
� Adding more PS tasks increases throughput
� Sampled softmax reduces data transfer and

computation required for PS tasks

25

Sources: https://ai.google/research/pubs/pub45381; http://www.statmt.org/lm-benchmark/

https://ai.google/research/pubs/pub45381
http://www.statmt.org/lm-benchmark/

GT 8803 // Fall 2018

D I S C U S S I O N Q U E S T I O N S

• What are key strengths of this approach?
• What are key weaknesses/limitations?
• If you have experience working with TensorFlow, how does it

compare to other high-scale ML frameworks you’ve worked with?
• In your opinion, is using a dataflow graph to represent ML/DL tasks

an intuitive/well-suited design choice? Are there alternatives?
• How could TensorFlow be further improved?
• Could we design a system to “learn” how to represent certain types

of problems using TensorFlow graphs as input?

26

GT 8803 // Fall 2018

B IBL I OGRAPHY

• https://arxiv.org/abs/1312.3005

• Jeffrey Dean, Greg S. Corrado, Rajat Monga, Kai Chen, Matthieu Devin, Quoc V. Le, Mark Z. Mao, Marc'Aurelio Ranzato,
Andrew Senior, Paul Tucker, Ke Yang, and Andrew Y. Ng. 2012. Large scale distributed deep networks. In Proceedings of the
25th International Conference on Neural Information Processing Systems - Volume 1 (NIPS'12), F. Pereira, C. J. C. Burges, L.
Bottou, and K. Q. Weinberger (Eds.), Vol. 1. Curran Associates Inc., USA, 1223-1231.

• Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat,
Geoffrey Irving, Michael Isard, Manjunath Kudlur, Josh Levenberg, Rajat Monga, Sherry Moore, Derek G. Murray, Benoit
Steiner, Paul Tucker, Vijay Vasudevan, Pete Warden, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. 2016. TensorFlow: a
system for large-scale machine learning. In Proceedings of the 12th USENIX conference on Operating Systems Design and
Implementation (OSDI'16). USENIX Association, Berkeley, CA, USA, 265-283.

• http://www.memdump.io/2015/11/09/tensorflow-googles-latest-machine-learning-software-is-open-sourced/

• http://www.pittnuts.com/2016/08/glossary-in-distributed-tensorflow/

• https://www.safaribooksonline.com/library/view/learning-tensorflow/9781491978504/ch01.html

• http://www.statmt.org/lm-benchmark/

• http://www.wolframalpha.com/input/?i=tensor

27

https://arxiv.org/abs/1312.3005
http://www.memdump.io/2015/11/09/tensorflow-googles-latest-machine-learning-software-is-open-sourced/
http://www.pittnuts.com/2016/08/glossary-in-distributed-tensorflow/
https://www.safaribooksonline.com/library/view/learning-tensorflow/9781491978504/ch01.html
http://www.statmt.org/lm-benchmark/
http://www.wolframalpha.com/input/?i=tensor

