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T O D A Y ’ S  P A P E R

• TensorFlow: A system for large-scale machine learning
� Authors: 
• Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, 

Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay 
Ghemawat, Geoffrey Irving, Michael Isard, Manjunath 
Kudlur, Josh Levenberg, Rajat Monga, Sherry Moore, Derek 
G. Murray, Benoit Steiner, Paul Tucker, Vijay Vasudevan, Pete 
Warden, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng 

� Affiliation: Google Brain (deep-learning AI research team)
• Published in 2016

� Areas of focus: 
• Machine learning at scale; deep learning 
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T O D A Y ’ S  A G E N D A

• Problem Overview
• Context: Background Info on Relevant Concepts 
• Key Idea
• Technical Details
• Experiments
• Discussion Questions
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P R O B L E M  O V E R V I E W
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• Status Quo Prior to Tensor Flow:
• A less flexible system called DistBelief was used internally at Google
• Primary use case: training DNN with billions of parameters using thousands of CPU cores

• Objective: 
• Make it easier for developers to efficiently develop/test new optimizations and 

model training algorithms across a range of distributed computing environments

• Empower development of DNN architectures in higher-level languages (e.g., 
Python)

• Key contributions:
• TF is a flexible, portable, open-source framework for efficient, large-scale model 

development 
Sources: https://ai.google/research/pubs/pub40565

https://github.com/tensorflow/tensorflow
https://ai.google/research/pubs/pub40565
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C O N T E X T :  T E N S O R S

• Tensor: “Generalization of 
scalars, vectors, and matrices to 
an arbitrary number of indices”
� (e.g., potentially higher 

dimensions)

• Rank: number of dimensions

• TF tensor attributes: data type; 
shape
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Sources: http://www.wolframalpha.com/input/?i=tensor; https://www.tensorflow.org/guide/tensors; 
https://www.slideshare.net/BertonEarnshaw/a-brief-survey-of-tensors

http://www.wolframalpha.com/input/?i=tensor
https://www.tensorflow.org/guide/tensors
https://www.slideshare.net/BertonEarnshaw/a-brief-survey-of-tensors
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C O N T E X T :  S T O C H A S T I C  G R A D I E N T  D E S C E N T  ( S G D )

• SGD: an iterative method for optimizing a 
differentiable objective function

• Stochastic because samples are randomly 
selected
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C O N T E X T :  D A T A F L O W  G R A P H S

• Nodes: represent units 
of computation

• Edges: represent data 
consumed/produced by 
a computation
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Source: https://www.safaribooksonline.com/library/view/learning-tensorflow/9781491978504/ch01.html

https://www.safaribooksonline.com/library/view/learning-tensorflow/9781491978504/ch01.html
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Example of a more 
complex TF dataflow 
graph:
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C O N T E X T :  P A R A M E T E R  S E R V E R  A R C H I T E C U T R E  

• Parameter server: 
a centralized 
server that 
distributed models 
can use to share 
parameters (e.g., 
get/put operations 
and updates)
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Source: http://www.pittnuts.com/2016/08/glossary-in-distributed-tensorflow/

http://www.pittnuts.com/2016/08/glossary-in-distributed-tensorflow/
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C O N T E X T :  M O D E L  P A R A L L E L I S M

• Model 
parallelism: 
single model is 
partitioned 
across machines 

• Communication 
required 
between nodes 
whose edges 
cross partition 
boundaries
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Source: https://ai.google/research/pubs/pub40565

https://ai.google/research/pubs/pub40565


GT 8803 // Fall 2018

C O N T E X T :  D A T A  P A R A L L E L I S M

• Multiple replicas 
(instances) of a 
model are used to 
optimize a single 
objective function 
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Source: https://ai.google/research/pubs/pub40565

https://ai.google/research/pubs/pub40565
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C O N T E X T :  D i s t B e l i e f

• DistBelief was the pre-cursor to TF:
� Distributed system for training DNNs
� Uses parameter-server architecture
� NN defined as an acyclic graph of layers that terminates with a loss 

function

• Limitations:
� Layers were C++ classes; researchers wanted to work in Python when 

prototyping new architectures
� New optimization methods required changes to the PS architecture
� Fixed execution pattern that worked  well for FFNs was not suitable for 

RNNs, GANs, or RL models 
� Was designed for large cluster environment; hard to scale down
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K E Y  I D E A

• Objective:
� Empower users to efficiently implement and test experimental network architectures and 

optimization algorithms at scale, in a way that takes advantage of distributed resources 
and/or parallelization opportunities when available 

• How?
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Source: https://ai.google/research/pubs/pub40565

https://ai.google/research/pubs/pub40565


GT 8803 // Fall 2018

T E C H N I C A L  D E T A I L S :  E X E C U T I O N  M O D E L  

• A single dataflow graph is used to represent all 
computation and state in a given ML algorithm
� Vertices represent (mathematical) operations 
� Edges represent values (stored as tensors)

• Multiple concurrent executions on overlapping 
subgraphs of overall graph are supported

• Individual vertices can have mutable state that can 
be shared between different executions of the graph 
(allows for in-place updates to large parameters) 
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T E C H N I C A L  D E T A I L S :  E X T E N S I B L I L I T Y  ( 1 / 4 )

• Use case 1: Differentiation and optimization
• TF includes a user-level library that differentiates symbolic 

expression for loss function and produces new symbolic 
expression representing gradients

• Differentiation algorithm performs BFS to identify all backward 
paths, and sums partial gradient contributions

• Graph structure allows for conditional and/or iterative control 
flow decisions to be (re)played during forward/backward passes

• Many optimization algorithms implemented on top of TF, 
including: Momentum, AdaGrad, AdaDelta, RMSProp, Adam, and 
L-BFGS
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Source: https://ai.google/research/pubs/pub45381

https://ai.google/research/pubs/pub45381
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T E C H N I C A L  D E T A I L S :  E X T E N S I B L I L I T Y  ( 2 / 4 )

• Use case 2: Training very large models
• Example: Given high-dimensional text 

data, generate lower-dimensional 
embeddings
� Multiply a batch of b sparse vectors against an 

n*d embedding matrix to produce a dense 
b*d representation; b << n

� The n*d matrix may be too large to copy to a 
worker or store in RAM on a single host

• TF lets you split such operations across 
multiple parameter server tasks
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Source: https://ai.google/research/pubs/pub45381

https://ai.google/research/pubs/pub45381
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T E C H N I C A L  D E T A I L S :  E X T E N S I B L I L I T Y  ( 3 / 4 )

• Case study 3: Fault tolerance
• Training long-running models on non-dedicated 

machines requires fault tolerance
• Operation-level fault tolerance is not necessarily 

required
� Many learning algorithms have only weak consistency 

requirements 
• TF uses user-level checkpointing (save/restore)
• Checkpointing can be customized (e.g., when a high 

score is received on a specified evaluation metric)
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Source: https://ai.google/research/pubs/pub45381

https://ai.google/research/pubs/pub45381
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T E C H N I C A L  D E T A I L S :  E X T E N S I B L I L I T Y  ( 4 / 4 )

• Case study 4: Synchronous replica coordination
• Synchronous parameter updates have the potential to 

be a computational bottleneck 
� Only as fast as slowest worker

• GPUs reduce the number of machines required, making 
synchronous updates more feasible 

• TF implements proactive backup workers  to mitigate 
stragglers during synchronous updates
� Aggregation takes first m of n updates produced; works for SGD 

since batches are randomly selected rather than sequentially
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Source: https://ai.google/research/pubs/pub45381

https://ai.google/research/pubs/pub45381
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T E C H N I C A L  D E T A I L S :  S Y S T E M  A R C H I T E C T U R E

• Core library is implemented in C++
• C API connects this core runtime to 

higher-level user code in different 
languages (focus on C++; Python)

• Portable; runs on many different OS 
and architectures, including:
� Linux; Mac OSX; Windows; Android, iOS
� x86; various ARM-based CPU architectures
� NVIDIA’s Kepler, Maxwell, and Pascal GPU 

microarchitectures 

• Runtime has > 200 operations
� Math ops; array; control flow; state 

management 
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Source: https://ai.google/research/pubs/pub45381

https://ai.google/research/pubs/pub45381
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E X P E R I M E N T S :  G E N E R A L  A P P R O A C H
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• TensorFlow is compared to similar frameworks, including Caffe, Neon, and 
Torch; self-referential benchmarks also established

• Evaluation tasks:
� Single-machine benchmarks 
� Synchronous replica microbenchmark
� Image classification
� Language modeling

• Evaluation metrics:
� System performance
� Could have evaluated on the basis of model learning objectives instead
� Why choose system performance?
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E X P .  1 :  S I N G L E - M A C H I N E  B E N C H M A R K S

• Question investigated: 
� Do the design decisions that allow 

TensorFlow to be highly scalable 
impede performance for small-scale 
tasks that are essentially kernel-
bound

• Results: 
� TensorFlow generally close to Torch
� Neon often beats all 3; they attribute 

this to the performance gains 
associated with Neon’s convolutional 
kernels, which are implemented in 

assembly 

• Dataset:
� Each of the comparison systems are 

used to train a 4 different CNN 
models  using a single GPU
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Library AlexNet Overfeat OxfordNet GoogleNet
Training step time (ms)

Caffe 324 823 1068 1935

Neon 87 211 320 270

Torch 81 268 529 470

TensorFlow 81 279 540 445

Source: https://ai.google/research/pubs/pub45381

https://ai.google/research/pubs/pub45381
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E X P .  2 :  S Y N C H .  R E P L I C A  M I C R O B E N C H M A R K

• Question investigated:
� Investigate how the performance of their 

coordination implementation for 
synchronous training scales as workers are 
added to the device pool 

• Dataset:
� They compare the number of null training 

steps per second that TF can perform for 
models of different sizes as the number of 
synchronous works is increased

� Null step: a worker fetches shared model 
parameters from 16 PS tasks, performs 
trivial computation, and sends updates to 
the parameter

• Results:
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Source: https://ai.google/research/pubs/pub45381

https://ai.google/research/pubs/pub45381
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E X P .  3 :  I M A G E  C L A S S I F I C A T I O N  ( 1 / 2 )

• Questions investigated: 
� Can TF facilitate scalable training of 

Inception-v3 using multiple replicas?

• Dataset:
� They compare the performance 

achieved while training the Inception 
model using asynchronous SGD on TF 
and Apache MXNet (modern DL 
framework that uses parameter server 
architecture) 

• Results:
� Results are bound by single-GPU 

performance; both TF and MXNet use 
cuDNN version 5.1 :. results are similar
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Source: https://ai.google/research/pubs/pub45381

https://ai.google/research/pubs/pub45381
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E X P .  3 :  I M A G E  C L A S S I F I C A T I O N  ( 2 / 2 )

• Questions investigated: 
� How does coordination effect training performance?
� For synchronous training, can adding backup 

workers reduce overall step time? 

• Dataset:
� Inception model trained on larger internal cluster

• Results:
� Training throughput improves for async and sync as 

workers are added, but within diminishing returns 
due to resulting competition for PS network 
resources

� Adding up to 4 backup workers reduces median step 
time; > 4 degrades performance 

24

Source: https://ai.google/research/pubs/pub45381

https://ai.google/research/pubs/pub45381
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E X P .  4 :  L A N G U A G E  M O D E L I N G

• Questions investigated: 
� Can TF facilitate the training of a recurrent 

neural network that can be used to develop a 
language model for the text in the One Billion 
Word Benchmark?

• Dataset:
� Benchmark set contains ~800K unique words  
� Cardinality of the vocabulary |V| bounds 

training performance, so they use 40K most 
common words

� They vary the number of PS and worker tasks, 
and softmax implementations

• Results:
� Adding more PS tasks increases throughput
� Sampled softmax reduces data transfer and 

computation required for PS tasks
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Sources: https://ai.google/research/pubs/pub45381; http://www.statmt.org/lm-benchmark/

https://ai.google/research/pubs/pub45381
http://www.statmt.org/lm-benchmark/
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D I S C U S S I O N  Q U E S T I O N S

• What are key strengths of this approach?
• What are key weaknesses/limitations?
• If you have experience working with TensorFlow, how does it 

compare to other high-scale ML frameworks you’ve worked with?
• In your opinion, is using a dataflow graph to represent ML/DL tasks 

an intuitive/well-suited design choice? Are there alternatives?
• How could TensorFlow be further improved? 
• Could we design a system to “learn” how to represent certain types 

of problems using TensorFlow graphs as input? 
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