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TODAY'S PAPER

 Locality-Sensitive Hashing for Earthquake
Detection: A Case Study of Scaling Data-

Driven Science

— End-to-end earthquake detection pipeline
— Fingerprinting for compact representation
— Domain knowledge for optimization

— Concise detection results
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Figure 2: The three steps of the end-to-end earthquake detection pipeline: fingerprinting transforms time series into binary

vectors (Section 5); similarity search identifies pairs of similar binary vectors (Section 6); alignment aggregates and reduces
false positives in results (Section 7).
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TODAY'S AGENDA

* Motivation

* Background

* Problem Overview
* Keyldea

* Technical Details
* Experiments

* Discussion
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MOTIVATION

* Large amount of earthquake data
— High frequency sensor data
— Multiple sensor sites

* Small fraction of earthquakes cataloged
— Traditionally done manually

* Difficult to detect at low magnitudes
— True earthquakes get lost in noise
— Uncover unknown seismic sources
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PREVIOUS WORK

* Audio Fingerprinting
— Links short, unlabeled, snippets of audio to data
— Process audio as image

* Fingerprint And Similarity Thresholding (FAST)
— Based on waveform similarity
— Applies Locality Sensitive Hashing (LSH)
— Difficult to scale beyond 3 months of data
— Runtime is near quadratic with input size
— Seismologists still cannot make use of all data
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NAIVE SEARCH

* Waveform Similarity
— Use template waveforms from catalogs
— Measure similarity using cross-correlation

 Brute-Force Blind

— Doesn’t require templates
— Searches for similar waveform sets
— Quadratic
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WAVEPRINT

Audio fingerprinting for compact representation

LSH and Hamming distance for retrieval

* Unsupervised
Method:

Convert audio to spectrogram

Create spectral images

Extract top Haar-wavelets according to magnitude
Wavelet signature computed

Select top t wavelets (by magnitude)

Al Y
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Figure 1. The representation for two songs — 4 consecutive
spectrogram images shown for each, skipping 200 ms. For each
song, top row: original spectrogram image, second row: wavelet
magnitudes; third row: the top-200 wavelets. Note that the top
wavelets have a distinctive pattern for each of the songs.
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FAST

» Detect event by identifying similar waveforms

* Modeled after aforementioned system
— Create fingerprint from waveform
— Perform approximate similarity search with LSH

SNR | Fingerprint accuracy
Original | Z-score | MAD
1.0 10.3093 |0.3629 |0.4760
2.0 |0.5123 |0.6736 | 0.7279
4.0 10.7354 |0.8561 |0.8735
Median Jaccard similarity of clean and low-SNR earthquake waveforms
Georgia .
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FAST

Original

background sample 1
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background sample 2

Fig. 3. Comparison of fingerprinting schemes applied to background noise. The Jaccard
similarities between the fingerprints are: 0.266 (original), 0.117 (Z-score), and 0.040

(MAD). -
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Fig. 2. Feature Extraction process in FAST: (A) continuous data, (B) spectrogram, (C)
spectral image, (D) discrete Haar wavelet transform, (E) adjusted wavelet coefficients,
(F) coefficient selection, (G) conversion to binary fingerprint
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LOCALITY-SENSITIVE HASHING

Near neighbor search
High dimensional space
Partition space according to some heuristic

Try to hash near neighbors in same buckets

1
O (nc) for c approximation

Naive uses O(n * d) where d is dimension

Slides on this LSH algorithm from a talk given by Piotr Indyk
6T 8803 // FALL 2018


http://theory.csail.mit.edu/~indyk/mmds.pdf
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O[] ] ) 00 O] o
O B @ o @) O | @
General Purpose Hashing Locality-Sensitive Hashing

Figure 4: Locality-sensitive hashing hashes similar items to
the same hash “bucket" with high probability.
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PROBLEM OVERVIEW

Decades of earthquake data

FAST doesn’t scale beyond 3 months

Actual LSH runtime grows near quadratic
— Due to correlations in seismic signals

5x dataset causes 30x greater query time

Similar, non-earthquake, noise is falsely matched
— Adds to overall search complexity
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KEY IDEAS

* Improve FAST efficiency using
— Systems
— Algorithms
— Domain expertise

* End-to-end detection pipeline
1. Fingerprint extraction
2. Apply LSH on binary fingerprints
3. Alignment to reduce result size improving readability
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FINGERPRINT EXTRACTION

 Basically the same as previously discussed

* Follows 5 steps:

1. Spectrogram

2. Wavelet Transform
3. Normalization

4. Top coefficient

5. Binarize

* Animportant optimization made
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FINGERPRINT EXTRACTION
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Figure 3: The fingerprinting algorithm encodes time-
frequency features of the original time series into compact
binary vectors.
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OPT: MAD VIA SAMPLING

* Fingerprinting is linear in complexity
— Years of data takes several days on single core

* Normalization takes two passes over data

1. Get median and MAD
2. Normalize fingerprint wavelets (parallelizable)

 First pass is the bottleneck here

— To alleviate, approximate true median and MAD
1

— MAD confidence interval shrinks with nz
— Sampling 1% or less of input for long durations suffices
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LSH SIMILARITY SEARGH

* MinHash LSH on binary fingerprints
— Random projection from high to lower dim
— Hash similar items to same bucket with high Pr
— Compares only to fingerprints sharing bucket
* Limits
— Signature generation: poor memory locality
— MinHash: only keeps min value for each map
— High Collisions: elements aren’t independent
— Large Hash Table: exceed main memory

— Noise as earthquakes: false positives due to noise similar to
earthquakes
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OPT: MODIFYING GEN LOOP

e MinHash

— First non-zero of fingerprint under random permutation
— Permutation: mapping elements to random indices
— Sparse input induces cache misses

* Block access to hash mappings
— Use fingerprint dimensions in place of hash function
— Lookups for non-zero elements blocked in rows
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OPT: USE MIN-MAX HASH

Keeps both min and max for each mapping
* Reduces required hash functions by 2
* Unbiased estimator of similarity

Can achieve similar/smaller MSE in practice
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OPT: ALLEVIATE GOLLISIONS

* Poor distribution of hash signatures
— Large buckets or high selectivity
— All fingerprints in same bucket, search is 0(n?)

* Fingerprints not necessarily independent
— LSH working as advertised (maybe a little too well)

* LSH hyperparameters tuned
— Increasing hash function number reduces collision
— Reduce false matches by scaling up hash table number
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Figure 5: Probability that each element in the fingerprint is
equal to 1, averaged over 15.7M fingerprints, each of dimen-
sion 8192, generated from a year of time series data. The
heatmap shows that some elements of the fingerprint are
much more likely to be non-zero compared to others.
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OPT: PARTITIONING

» Total size of hash signatures ~250GB

* To scale, perform similarity search in partitions
— Evenly partition fingerprints

* Populate hash tables one partition at a time
— Keep lookup table in memory

* During query, output matches over all other

fingerprints for only current partition
— Same output with only subset of fingerprints in mem

* Allows for parallelization of hash signature gen and
querying
Georai
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OPT: DOMAIN-SPECIFIC FILTERS

 Stations can have repeating narrow-band noise
— Can be falsely identified as earthquake candidates

* Filtering irrelevant frequencies
— Bandpass filter for bands with high amplitudes containing
low seismic activities
— Selected manually through examination
— Cutoff spectrograms at corner of bandpass filter

* Remove correlated noise
— Repetitive noise occurs in bands with earthquake signals
— Give NN matches dominating similarity search
— If many NN matches in short time, filter out
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SPATIOTEMPORAL ALIGNMENT
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Figure 8: The alignment procedure combines similarity
search outputs from all channels in the same station (Chan-
nel Level), groups similar fingerprint matches generated
from the same pair of reoccurring earthquakes (Station
Level), and checks across seismic stations to reduce false pos-
itives in the final detection list (Network Level).
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SPATIOTEMPORAL ALIGNMENT

» Search outputs pairs from input
— Doesn’t determine if pairs actual earthquakes
— One year can generate more than 5 million pairs

 Domain knowledge used to reduce output size

* Qutput is optimized at different levels
— Channel
— Station
— Network
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CHANNEL LEVEL

* Channels at same station experience movement at
same time

* Merge channel detection events at each station
— Fingerprint matches tend to occur across channels
— Noise may only exist in some channels
— This adds a higher similarity threshold
— Prunes false positives while maintaining weak matches
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STATION LEVEL

Similarity matrix diagonals represent earthquakes
— Corresponds to group of similar fingerprint pairs
— Separated by a constant offset (inter-event time)

Exclude self-matches generated from overlapping

After grouping diagonals
— Reduce cluster to summary statistics

Significantly reduce output size
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NETWORK LEVEL

* Earthquakes visible across network of sensors
— Travel time only function of distance, not magnitude
— Thus fixed travel time between network nodes

* Diagonals with station At are same event
* Earthquake must be seen n times for detection

* Postprocessing reduce from ~2Tb of pairs to 30K
timestamps
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END-TO-END
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Figure 10: Factor analysis of processing 1 month (left) and 1 year (right) of 100Hz data from LTZ station in the New Zealand
dataset. We show that each of our optimization contributes to the performance improvements, and enabled an over 100X speed
up end-to-end.
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LSH RUNTIME
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Figure 11: LSH runtime under different band pass filters.

Matches of noise in the non-seismic frequency bands can
lead to a 16X increase in runtime and over 200 X increase in
output size for unfiltered time series.
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LSH RUNTIME
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Figure 12: Effect of LSH parameters on similarity search run-
time and average query lookups. Increasing the number of
hash functions significantly decreases average number of
lookups per query, which results in an up to 10X improve-
ment in runtime.
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LSH PARTITIONING
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Figure 13: Runtime and memory usage for similarity search
under a varying number of partitions. By increasing the
number of search partitions, we are able to decrease the
memory usage by over 60% while incurring less than 20%
runtime overhead.
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OVERALL SYSTEM SPEEDUP

Stages Fingerprint  Hash Gen Search Alignment
Baseline 9.58 4.28 149 >1 mo (est.)
+ occur filter 9.58 4.28 30.9 (-79%) 16.02

+ #n func 9.58 5.63 (+32%)  3.35(-89%)  18.42 (+15%)
+ locality Min-Max ~ 9.58 1.58 (-72%) 3.35 18.42

+ MAD sample 4.98 (-48%) 1.58 3.35 18.42

+ parallel (n=12) 0.54 (-89%) 0.14 (-91%)  0.62 (-81%)  2.25 (-88%)

Table 5: Factor analysis (runtime in hours, and relative im-
provement) of each optimization on 1 year of data from
station LTZ. Each optimization contributes meaningfully to

the speedup of the pipeline, and together, the optimizations
enable an over 100X end-to-end speedup.
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IMPACGT OF SYSTEM
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Figure 15: The left axis shows origin times and magnitude of detected earthquakes, with the catalog events marked in blue
and new events marked in red. The colored bands in the right axis represent the duration of data used for detection collected

from 11 seismic stations and 27 total channels. Overall, we detected 3957 catalog earthquakes (diamond) as well as 597 new
local earthquakes (circle) from this dataset.
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STRENGTHS

Using domain knowledge for optimization

Pipeline able to detect difficult earthquakes

Good speedup allowing for use of entire dataset

Filter out many noisy signals
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WEAKNESSES

Not directly generalizable to other domains
LSH strained, needed many optimizations
Not developed for distributed systems

Not all optimizations implemented

Little validation information
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DISCUSSION

LSH Alternatives
Insights

* Applications

Generalizability
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