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T O D A Y ’ S  P A P E R

• Locality-Sensitive Hashing for Earthquake 
Detection: A Case Study of Scaling Data-
Driven Science
� End-to-end earthquake detection pipeline
� Fingerprinting for compact representation
� Domain knowledge for optimization
� Concise detection results
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https://arxiv.org/pdf/1803.09835.pdf
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T O D A Y ’ S  P A P E R
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T O D A Y ’ S  A G E N D A

• Motivation
• Background
• Problem Overview
• Key Idea
• Technical Details
• Experiments
• Discussion
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MOT IVAT ION

• Large amount of earthquake data
� High frequency sensor data
� Multiple sensor sites

• Small fraction of earthquakes cataloged
� Traditionally done manually

• Difficult to detect at low magnitudes
� True earthquakes get lost in noise
� Uncover unknown seismic sources
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P R E V I O U S  W O R K

• Audio Fingerprinting
� Links short, unlabeled, snippets of audio to data
� Process audio as image

• Fingerprint And Similarity Thresholding (FAST)
� Based on waveform similarity
� Applies Locality Sensitive Hashing (LSH)
� Difficult to scale beyond 3 months of data
� Runtime is near quadratic with input size
� Seismologists still cannot make use of all data
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N A I V E  S E A R C H

• Waveform Similarity
� Use template waveforms from catalogs
� Measure similarity using cross-correlation

• Brute-Force Blind
� Doesn’t require templates
� Searches for similar waveform sets
� Quadratic
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WAVEPR INT

• Audio fingerprinting for compact representation
• LSH and Hamming distance for retrieval
• Unsupervised
• Method:

1. Convert audio to spectrogram
2. Create spectral images
3. Extract top Haar-wavelets according to magnitude
4. Wavelet signature computed
5. Select top t wavelets (by magnitude)
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FAST

• Detect event by identifying similar waveforms
• Modeled after aforementioned system
� Create fingerprint from waveform
� Perform approximate similarity search with LSH
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Median Jaccard similarity of clean and low-SNR earthquake waveforms

Figure from [3]



GT 8803 // Fall 2018

FAST

11Figure from [3]
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L O C A L I T Y - S E N S I T I V E  H A S H I N G

• Near neighbor search
• High dimensional space
• Partition space according to some heuristic
• Try to hash near neighbors in same buckets

• !(#
$
%) for c approximation

• Naïve uses !(# ∗ ()where d is dimension
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Slides on this LSH algorithm from a talk given by Piotr Indyk

http://theory.csail.mit.edu/~indyk/mmds.pdf
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L S H  S I M I L A R I T Y  S E A R C H
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P R O B L E M  O V E R V I E W

• Decades of earthquake data
• FAST doesn’t scale beyond 3 months
• Actual LSH runtime grows near quadratic
� Due to correlations in seismic signals

• 5x dataset causes 30x greater query time
• Similar, non-earthquake, noise is falsely matched
� Adds to overall search complexity

15



GT 8803 // Fall 2018

K E Y  I D E A S

• Improve FAST efficiency using
� Systems
� Algorithms
� Domain expertise

• End-to-end detection pipeline
1. Fingerprint extraction
2. Apply LSH on binary fingerprints
3. Alignment to reduce result size improving readability
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F I N G E R P R I N T  E X T R A C T I O N

• Basically the same as previously discussed
• Follows 5 steps:

1. Spectrogram
2. Wavelet Transform
3. Normalization
4. Top coefficient
5. Binarize

• An important optimization made
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F I N G E R P R I N T  E X T R A C T I O N
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O P T :  M A D  V I A  S A M P L I N G

• Fingerprinting is linear in complexity
� Years of data takes several days on single core

• Normalization takes two passes over data
1. Get median and MAD
2. Normalize fingerprint wavelets (parallelizable)

• First pass is the bottleneck here
� To alleviate, approximate true median and MAD

� MAD confidence interval shrinks with !
"
#

� Sampling 1% or less of input for long durations suffices
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L S H  S I M I L A R I T Y  S E A R C H

• MinHash LSH on binary fingerprints
� Random projection from high to lower dim
� Hash similar items to same bucket with high Pr
� Compares only to fingerprints sharing bucket

• Limits
� Signature generation: poor memory locality
� MinHash: only keeps min value for each map
� High Collisions: elements aren’t independent
� Large Hash Table: exceed main memory
� Noise as earthquakes: false positives due to noise similar to 

earthquakes
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O P T :  M O D I F Y I N G  G E N  L O O P

• MinHash
� First non-zero of fingerprint under random permutation
� Permutation: mapping elements to random indices
� Sparse input induces cache misses

• Block access to hash mappings
� Use fingerprint dimensions in place of hash function
� Lookups for non-zero elements blocked in rows
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O P T :  U S E  M I N - M A X  H A S H

• Keeps both min and max for each mapping
• Reduces required hash functions by ½
• Unbiased estimator of similarity
• Can achieve similar/smaller MSE in practice
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O P T :  A L L E V I A T E  C O L L I S I O N S

• Poor distribution of hash signatures
� Large buckets or high selectivity
� All fingerprints in same bucket, search is ! "#
• Fingerprints not necessarily independent
� LSH working as advertised (maybe a little too well)

• LSH hyperparameters tuned
� Increasing hash function number reduces collision
� Reduce false matches by scaling up hash table number
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F I N G E R P R I N T  P r
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O P T :  P A R T I T I O N I N G

• Total size of hash signatures ~250GB
• To scale, perform similarity search in partitions
� Evenly partition fingerprints

• Populate hash tables one partition at a time
� Keep lookup table in memory

• During query, output matches over all other 
fingerprints for only current partition
� Same output with only subset of fingerprints in mem

• Allows for parallelization of hash signature gen and 
querying
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O P T :  D O M A I N - S P E C I F I C  F I L T E R S

• Stations can have repeating narrow-band noise
� Can be falsely identified as earthquake candidates

• Filtering irrelevant frequencies
� Bandpass filter for bands with high amplitudes containing 

low seismic activities
� Selected manually through examination
� Cutoff spectrograms at corner of bandpass filter

• Remove correlated noise
� Repetitive noise occurs in bands with earthquake signals
� Give NN matches dominating similarity search
� If many NN matches in short time, filter out
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S P A T I O T E M P O R A L  A L I G N M E N T
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S P A T I O T E M P O R A L  A L I G N M E N T

• Search outputs pairs from input
� Doesn’t determine if pairs actual earthquakes
� One year can generate more than 5 million pairs

• Domain knowledge used to reduce output size
• Output is optimized at different levels
� Channel
� Station
� Network
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C H A N N E L  L E V E L

• Channels at same station experience movement at 
same time

• Merge channel detection events at each station
� Fingerprint matches tend to occur across channels
� Noise may only exist in some channels
� This adds a higher similarity threshold
� Prunes false positives while maintaining weak matches
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S T A T I O N  L E V E L

• Similarity matrix diagonals represent earthquakes
� Corresponds to group of similar fingerprint pairs
� Separated by a constant offset (inter-event time)

• Exclude self-matches generated from overlapping
• After grouping diagonals
� Reduce cluster to summary statistics

• Significantly reduce output size
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N E T W O R K  L E V E L

• Earthquakes visible across network of sensors
� Travel time only function of distance, not magnitude
� Thus fixed travel time between network nodes

• Diagonals with station Δ" are same event
• Earthquake must be seen n times for detection
• Postprocessing reduce from ~2Tb of pairs to 30K 

timestamps
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END-TO -END

32Figure from [1]
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L S H  R U N T I M E

33Figure from [1]
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L S H  R U N T I M E
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L S H  P A R T I T I O N I N G
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O V E R A L L  S Y S T E M  S P E E D U P
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I M P A C T  O F  S Y S T E M
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STRENGTHS

• Using domain knowledge for optimization
• Pipeline able to detect difficult earthquakes
• Good speedup allowing for use of entire dataset
• Filter out many noisy signals
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WEAKNESSES

• Not directly generalizable to other domains
• LSH strained, needed many optimizations
• Not developed for distributed systems
• Not all optimizations implemented
• Little validation information
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D ISCUSS ION

• LSH Alternatives
• Insights
• Applications
• Generalizability
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