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TODAY'S PAPER

* Focus: Querying Large Video Datasets with
Low Latency and Low Cost
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TODAY'S AGENDA

* Problem Overview
* Key ldea

e Technical Details
* Experiments

* Discussion
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PROBLEM OVERVIEW

* Querying camera recordings
o Traffic intersections, retail stores, offices, etc.
* Slow and costly
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PROBLEM OVERVIEW

* Querying a month-long video would requires 280 GPU
hours and $250

* Torun the query in 1 minute requires 10000s of GPUs

» Traffic jurisdictions and retails may only have 10s or
100s

Georgia

Tech| GT 8803 // FALL 2018



KEY IDEAS

* Classify before query time

* Smaller and specialized CNN's
— Fewer layers
— Take in smaller images
— Specialized: For each video domain, train the CNN's only on the
classes that appear in those videos

— Video domains: traffic cameras, surveillance cameras, and news
channels
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TECHNICAL DETAILS

 Convolutional neural networks (CNN’s)
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CONVOLUTIONAL NEURAL NETWORKS

* Types of Layers:
— Convolutional and Rectification Layers
— Pooling Layers
— Fully-Connected Layers
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CONVOLUTIONAL NEURAL NETWORKS

* Slow and costly

* ResNet152
— 152 layers
— Won ImageNet competition of 2015
— Processed only 77 images/sec with a GPU
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TECHNICAL DETAILS

 Compressed CNN'’s
— Remove layers
— Matrix pruning
— Other

— Results: smaller cnn’s, so faster to train, but lower accuracy
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TECHNICAL DETAILS

* Specialized CNN'’s
— Smaller set of classes
— Higher accuracy
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TECHNICAL DETAILS

* Recall - percentage of correct frames returned
* Precision — percentage of frames classified correctly
* Predict top-k classes to increase recall

» Use full CNN on objects to increase precision
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CHARACTERISTICS OF REAL-WORLD VIDEOS

* Many frames contain no objects
— 0.01% on average
— 16% - 43% for the most frequent object classes

* Optimization:
— Filter these out, to speed up training time
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CHARACTERISTICS OF REAL-WORLD VIDEOS

* Each video domain has only a subset of object classes

— In less busy videos, only 22-33% of the 1000 object classes
appeared.

— In busy videos, only 50-69% of them appear.

* Optimization:
— Train specialized CNN'’s, for higher accuracy
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CHARACTERISTICS OF REAL-WORLD VIDEOS

* Each video domain has only a subset of object classes
— Little overlap between objects in different video domains
» Different specialized cnn’s for each domain

— Interesting: 3-10% of the most frequent objects cover 95% of
appearances
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CHARACTERISTICS OF REAL-WORLD VIDEOS

* The 10% most frequent classes account for 95% of object
appearances
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CHARACTERISTICS OF REAL-WORLD VIDEOS

* Many objects appear in several frames
— Several seconds, several frames

* Optimization:
— Extract feature vectors for the objects, cluster them, get the
centroid, and classify only this one with the cnn
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OVERVIEW OF FOCUS

* Query-time — user queries, Focus returns frames

* Ingest-time — Focus runs during recording, creating index
from object classes to frame clusters

Ingest-time | Query-time
CNN | .
specialization ! rames
. I Querymg for wuth objects
I - : Sliaany of class X /
JeCt 1~ Object Matchi
feature ! atching
vectors M — o clusters for X
ﬁ = I [Centroudw Om
. — (@)
Objects Ob]ect top-K — objects ) o
Specnahzed classes Top-K @ . GT CNN
Compressed CNN 3 @ index

Georgia

Tech| GT 8803 // FALL 2018 18



OVERVIEW OF FOCUS

* Query-time -
— 1. Get class from query
— 2. Pass class to index to get the clusters
— 3. Use ground-truth CNN on each cluster to get predicted class
— 4, Return frames matching class asked for
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OVERVIEW OF FOCUS

* |[ngest-time -
— 1. For each frame, for each object, extract its feature vector
— 2. Cluster these
— 3. Assign the top k most likely classes to each cluster
— 4, Put the cluster in index for each object class
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TECHNIQUES: CHEAP INGESTION

Classify objects at ingest-time to reduce query latency
Use cheap cnn’s to reduce ingest cost

Take ground truth cnn and apply compression
Produce set of cheap cnn’s to pick from
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TECHNIQUES: TOP-K INGEST INDEX

* Cheap cnn’s have lower accuracies
* To keep recall high, pick top K classes
* Higher K-> lower precision, so use ground truth cnn
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TECHNIQUES: REDUNDANCY ELIMINATION

To reduce query latency, use GT-CNN to classify object
class once

Assign the prediction to all similar object appearances
ldentify same objects by clustering their feature vectors

Assign clusters top-k classes, index clusters, and at query
time, run GT-CNN on all clusters, return ones matching
object class in question
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TECHNIQUES: CLUSTERING HEURISTIC

* O(Mn), M constant, n = number of objects

* Single pass, does not need number of clusters as
parameter

* Algorithm:
— For each new object, assign to closest cluster

— If no closest cluster within T distance, assign it to new cluster
— If # of clusters > M, put smallest in index
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TECHNIQUES: CLUSTERING AT INGEST VS QUERY
TIME

* Clustering at ingest time:
— Store all feature vectors

* Query time:

— Store only cluster centroids
— Faster
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TECHNIQUES: PIXEL DIFFERENCING OF OBJECTS

* Reduce ingest cost

* For objects with similar pixel values, assign to same cluster
instead of rerunning CNN
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SPECIALIZED CNNS

* Higher accuracy due to
— Videos have only a few object classes

— The objects look similar -> less image features needed -> simpler
model -> more accuracy

* 10x Faster because
— 1/3 less layers
— Input image 4x smaller

* Higher accuracy -> smaller K-> lower query latency
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MODEL RETRAINING

« Keep models up to date

* Resample frames reqgularly

* Use ground truth CNN to get new class distribution
* Select new classes to train specialized models on

* Power law
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THE OTHER CLASSES

* Classes not selected for specialized are grouped into one
class: “Other”

* Smaller Ls leads to bigger “Other”
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PARAMETERS

e K
— Number of top classes to assign to each cluster

e L_s
— Number of classes to train specialized model on

* CheapCNN
— The specialized ingest-time cheap CNN

e T
— The distance threshold for clustering objects
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PARAMETER SELECTION

* Stage 1:
— Choose CheapCNN, Ls, and K
— Recall target

* Stage 2:
— Choose T
— Precision target
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PARAMETER SELECTION

* Minimal sum of ingest and query costs

 Or:

— Minimal ingest cost

e Or:

— Minimal query cost
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EXPERIMENTS: DATA

13 video streams
* Traffic cameras, surveillance cameras, and news channels

* 12 hours per video
— Covers day and night time
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EXPERIMENTS: BASELINE

* Ground truth:
— classifications by state-of-the-art CNN, ResNet152

* Default accuracy targets:
— 95% recall and 95% precision

Baselines:

* Ingest-all
— classifies all objects at ingest time, and stores in index

* Query-all
— classifies objects at query time
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EXPERIMENTS: METRICS

1. Ingest cost
— GPU time to process each video

2. Query latency
— Time to query a specific object class
— Per video, they average the latencies for dominant object classes.
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EXPERIMENTS: INGEST COST

e Speedup improvement compared to Ingest-all
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EXPERIMENTS: QUERY LATENCY

* Speedup improvement compared to Query-all
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EXPERIMENTS: QUERY LATENCY

* Average speedup: 37x

* With 10 GPU’s, querying 24-hr video goes from 1 hr to < 2
min

* Cost goes from $250 to $S4/month
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EXPERIMENTS: QUERY LATENCY

* Query latencies improved for variety of different videos
— busy intersections,
— normal intersections or roads,
— rotating cameras,

— busy plazas,
— a university street, and
— different news channels.
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EXPERIMENTS: EFFECT OF COMPONENTS

 Compressed model
 Compressed + Specialized model

* Compressed + Specialized model + Clustering
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EXPERIMENTS: COMPRESSED MODEL

* Decreased both ingest and query costs
* Relatively minimally

* Fewer layers -> Lower accuracy

* Need to select more expensive model and larger K ->
increases ingest and query times
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EXPERIMENTS: COMPRESSED+SPECIALIZED

* Largely decreases costs

» Specializing increases accuracy

* Speeds up query latency by 5-25x
* Decreases ingest cost by 7-71x
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EXPERIMENTS: +CLUSTERING

* Cluster feature vectors of objects at ingest time
* Reduces work at query time
* Lowered query latency by up to 56x

* Ran clustering on CPUs, and specialized model on GPUs
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EXPERIMENTS: INGEST COST

B Compressed model
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EXPERIMENTS: QUERY LATENCY

B Compressed model
O + Specialized model
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EXPERIMENTS: REVIEW OF OPTIONS

* Opt-Ingest
* Opt-Query
e Balanced
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EXPERIMENTS: OPTIONS
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EXPERIMENTS: OPTIONS

* Opt-ingest
— 141x faster ingest
— 46x faster query

* Opt-query
— 63x faster query
— 26Xx faster ingest

Georgia

Tech| GT 8803 // FALL 2018

48



EXPERIMENTS: OPTIONS

Use cases:
* Opt-ingest

— Traffic camera
* Opt-query

— Surveillance camera
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EXPERIMENTS: DIFFERENT ACCURACY TARGETS

* 97,98, 99%
e Similar ingest costs
* Query latencies still fast: by 15, 12, and 8x
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EXPERIMENTS: DIFFERENT FRAME RATES

Different applications use different frame rates
On average, at 30 fps, Focus has 62x cheaper ingest cost
At lower frame rates, it is 64 to 58x cheaper

Factors for lowering cost saving, using compressed and
specialized models, are not affected by the frame
sampling rate
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EXPERIMENTS: DIFFERENT FRAME RATES

* Improvement for query latency lowers for lower frame
rates

* Less redundancy

* Still faster at very lower frame rate - 1 fps, by 1 order of
magnitude
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EXPERIMENTS: EXTREME QUERIES

* Every class and every video is queried
— Still 4x cheaper ingest cost

* Only a tiny percentage of video is queried
— Still 22-34x faster query latency
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STRENGTHS

* Achieves large speedups — 58x ingest cost, 37x query
latency; $250/month to $4/month, and 1 hr to 2 min

* |s customizable - allows user to specify accuracy target,
and whether to optimize ingest cost or query latency

* Allows user to input ground-truth CNN - possibly an
improved one in the future
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WEAKNESSES

Did not talk much about storage space it needs, like for storing the
cluster centroids — could be a lot

* Did not measure accuracies per class — some may be more
important than others

* Did not talk about how it would handle more complex queries
* How does Focus update index as model is retrained on the fly?

* How does it perform when query asks for object in “Other” class?
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DISCUSSION

* Experiment on longer videos
— Affect class distribution?

* Specialize for a particular video domain

* Blazelt and Probabilistic Predicates also used cheap neural
networks to speed up

* Blazelt is more of a blackbox; Focus provides options
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