

DATA ANALYTICS USING DEEP LEARNING GT 8803 // Fall 2018 // Jennifer Ma

LECTURE #14: LIVE VIDEO ANALYTICS AT SCALE WITH APPROXIMATION AND DELAY-TOLERANCE

CREATING THE NEXT®

TODAY'S PAPER

• Live Video Analytics at Scale with Approximation and Delay-Tolerance

TODAY'S AGENDA

- Problem Overview
- Key Ideas
- Technical Details
- Experiments
- Discussion

- Querying camera recordings
- Traffic intersections, retail stores, offices, etc.
- Slow and costly

• Use cases?

- Use cases?
 - Catching criminals
 - Shoplifting
 - Trafficking
 - Sending ambulances
 - Car accidents
 - Free routes
 - Traffic control
 - Amber alerts

• 2 main problems with querying videos

- 2 main problems with querying videos
 - Slow
 - Costly

- Querying a month-long video would requires 280 GPU hours and \$250
- To run the query in 1 minute requires 10000s of GPUs
- Traffic jurisdictions and retails may only have 10s or 100s
- VOT Challenge 2015 1 fps

 Goal: Optimize thousands of queries operating in clusters

- 2 key characteristics of video analytics
 - Resource-quality tradeoff with multidimensional configurations
 - Variety in quality and lag goals

Resource-quality trade-off with multi-dimensional configurations

- Resource-quality trade-off with multi-dimensional configurations
 - Estimated amount of resources needed
 - Quality: accuracy of output
 - Configuration: a combination of parameters for an algorithm
 - Multi-dimensional how configurations have multiple parameters

- Example parameters:
 - Video resolution
 - Frame rate
 - Size of the sliding window

• Variety in quality and lag goals

- Variety in quality and lag goals
 - Some outputs don't need to be 100% accurate, such as counts of cars
 - Some outputs can wait

- Variety in quality and lag goals
 - Some outputs don't need to be 100% accurate, such as counts of cars
 - Some outputs can wait
 - Traffic tickets where the billing can be delayed

- Variety in quality and lag goals
 - Some outputs don't need to be 100% accurate, such as counts of cars
 - Some outputs can wait
 - Traffic tickets where the billing can be delayed
 - Queries that need a fast result?

- Variety in quality and lag goals
 - Some outputs don't need to be 100% accurate, such as counts of cars
 - Some outputs can wait
 - Traffic tickets where the billing can be delayed
 - Queries that need a fast result?
 - Amber alerts

- Variety in quality and lag goals
 - Some outputs don't need to be 100% accurate, such as counts of cars
 - Some outputs can wait
 - Traffic tickets where the billing can be delayed
 - Queries that need a fast result?
 - Amber alerts
 - Outputs that need to have high accuracy?

- Variety in quality and lag goals
 - Some outputs don't need to be 100% accurate, such as counts of cars
 - Some outputs can wait
 - Traffic tickets where the billing can be delayed
 - Queries that need a fast result?
 - Amber alerts
 - Outputs that need to have high accuracy?
 - Amber alerts

- Variety in quality and lag goals
 - Some outputs don't need to be 100% accurate, such as counts of cars
 - Some outputs can wait
 - Traffic tickets where the billing can be delayed
 - Queries that need a fast result?
 - Amber alerts
 - Outputs that need to have high accuracy?
 - Amber alerts
 - Low accuracy?

- Variety in quality and lag goals
 - Some outputs don't need to be 100% accurate, such as counts of cars
 - Some outputs can wait
 - Traffic tickets where the billing can be delayed
 - Queries that need a fast result?
 - Amber alerts
 - Outputs that need to have high accuracy?
 - Amber alerts
 - Low accuracy?
 - Counting cars

• How do systems for stream processing allocate resources?

How do systems for stream processing allocate resources?
– Resource fairness

- How do systems for stream processing allocate resources?
 Resource fairness
- VideoStorm, their system, takes into account the resource demand, the quality needed, and the lag tolerance. Lag is the amount of time that a frame has been waiting to be processed.

• Challenges?

- Challenges?
 - Hard to analyze what resources and the quality of the output needed for a query
 - Hard to pick configurations because there are many knobs
 - Trading off between lag and quality goals is tricky
 - Resource allocation across all queries each having many configurations is computationally intractable

- Solution
 - Offline phase:
 - Analyze resource demand and quality needed of each query for different configurations
 - Pick the ones on the pareto boundary
 - Online phase:
 - Scheduler reallocates resources, reselects configurations, and considers migrating queries to different machines
 - Based on resource-quality profiles and changes in resource capacity

Video queries specification:

- Queries are submitted to VideoStorm as sequences of transforms.
- A transform (task) could have multiple inputs and outputs

RESOURCE ALLOCATION

- Have a selection of configurations
- Pick configs for queries for overall better quality
- Put queries on lag if some queries with low lag-tolerance need resources

REAL-WORLD VIDEO QUERIES

- Examples

REAL-WORLD VIDEO QUERIES

- Examples
 - License plate reader
 - Car counter
 - Deep neural network classifier for object detection and classification
 - Object tracker

 Parameters that affect CPU demand and quality for most video queries

- Parameters that affect CPU demand and quality for most video queries
 - Image resolution
 - Frame sampling rate

– How do these affect License plate reader queries?

- How do these affect License plate reader queries?
 - Lower resolution and lower sampling rate lead to dramatically less resource demand
 - Missed or incorrectly read plates

– How do they affect a car counter?

- How do they affect a car counter?
 - Good quality still

- Profile estimation
 - Profile: estimated resources needed and desired accuracy of output
 - For a configuration of parameters, for one query

PROFILE ESTIMATION

- Overview
 - Pareto boundary

• Compute a value for each profile

$$X(c) = Q(c) - \beta D(c)$$

PROFILE ESTIMATION

- Choosing configurations by greedy exploration
 - High quality and low demand
 - Hill climbing

- Resource management:
 - Allocation of resources for each query
 - Placement of new and old queries

- Utility function for a configuration
 - Quality and lag predicted
 - Utility is used to help select a configuration for a query

Utility function:

Term	Description
\mathcal{P}_k	profile of query k
$c_k \in \mathfrak{C}_k$	specific configuration of query k
$Q_k(c)$	quality under configuration c
$D_k(c)$	resource demand under configuration c
$L_{k,t}$	measured lag at time t
U_k	utility
Q_k^M	(min) quality goal
L_k^M	(max) lag goal
a_k	resources allocated

$$U(Q,L) = U^{B} + U^{Q}(Q) + U^{L}(L)$$

= $U^{B} + \alpha^{Q} \cdot (Q - Q^{M})_{+} - \alpha^{L} \cdot (L - L^{M})_{+}$
Baseline + bonus - penalty

Table 2: Notations used, for query *k***.**

- Optimization objectives
 - Public cloud maximize revenue -> maximize sum of utilities
 - Shared private cluster want fairness -> maximize min utility

- Resource allocation
 - Optimize for near future
 - Greedy approach

Query placement

- Place new queries based on 3 goals
 - Maximizing utility in the cluster
 - Load balancing
 - Lag spreading

- Profiles are 'nearly' correct
- Setup
 - 4 types of queries
- Baseline
 - Fair scheduler
- Metrics
 - Quality
 - % frames exceeding lag goal
 - Utility

- Performance
 - 300 queries of 4 types
 - Lag of 20s or 300s
 - Quality goal of 0.25
 - 300 'distinct' video datasets

- Quality of fair scheduler(FS) is 0.2 lower to begin with
- Lowers to only 0.5 during a burst (200 license plate queries arrive)
- Quality for VideoStorm(VS) stays high at 90%
- Lag for FS keeps growing, VS stays low

- Burst in the middle
- More CPU's were allocated to queries with higher quality and short lag goal
- On the bottom, VS let lag accumulate only for queries with high tolerance

- Can prioritize queries
- Using alpha
 - Higher alpha means higher priority
- In the graph, quality and lag is better for higher priority queries

STRENGTHS

- Used real VA queries, real traffic cameras, several cities
- Significant improvements: 80% increase in quality. 7x less lag
- Picks the knobs for the user
- Prioritizes queries
- Techniques are applicable to other stream analytics systems
- Gives bonus if a config has higher quality than the min, and punishes lag that is more than the max

WEAKNESSES

- Did not say if they add up the lag for each time step until T , or just at T.
- Did not talk about the approximation guarantees for the greedy algorithms
- Did not talk much about when profiles are wrong.
- Would have to tweak it to work with queries other than the 4 types

DISCUSSION

- Could it be combined into the ingestion part in Focus?
- Using machine learning to choose parameters
- Using machine learning to predict spikes, instead of the primitive formula for lag, so as to allocate more intelligently

