Georgia IAI
Techl|

DATA ANALYTICS

USING DEEP LEARNING

GT 8803 // FALL 2018 // JENNIFER MA

LECTURE #14: LIVE VIDEO ANALYTICS AT
SCALE WITH APPROXIMATION AND
DELAY-TOLERANCE

I

CREATING THE NEXT"

Y/ iz



TODAY'S PAPER

 Live Video Analytics at Scale with
Approximation and Delay-Tolerance

Georgia

Tech| GT 8803 // FALL 2018



TODAY'S AGENDA

* Problem Overview
* Key Ideas

e Technical Details
* Experiments

* Discussion
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PROBLEM OVERVIEW

* Querying camera recordings
o Traffic intersections, retail stores, offices, etc.
* Slow and costly

Georgia

Tech| GT 8803 // FALL 2018
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e Use cases?
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PROBLEM OVERVIEW

e Use cases?

— Catching criminals
 Shoplifting
 Trafficking

— Sending ambulances
e Caraccidents
* Freeroutes

— Traffic control

— Amber alerts
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PROBLEM OVERVIEW

* 2 main problems with querying videos
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PROBLEM OVERVIEW

* 2 main problems with querying videos
— Slow
— Costly
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PROBLEM OVERVIEW

* Querying a month-long video would requires 280 GPU
hours and $250

* Torunthe query in 1T minute requires 10000s of GPUs

» Traffic jurisdictions and retails may only have 10s or
100s

* VOT Challenge 2015 -1 fps
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PROBLEM OVERVIEW

* Goal: Optimize thousands of queries operating in
clusters
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KEY IDEAS

* 2 key characteristics of video analytics
— Resource-quality tradeoff with multidimensional configurations
— Variety in quality and lag goals
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KEY IDEAS

* Resource-quality trade-off with multi-dimensional
configurations
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KEY IDEAS

* Resource-quality trade-off with multi-dimensional

configurations
— Estimated amount of resources needed
— Quality: accuracy of output
— Configuration: a combination of parameters for an algorithm
— Multi-dimensional — how configurations have multiple
parameters
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KEY IDEAS

* Example parameters:
* Video resolution
* Frame rate
 Size of the sliding window
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KEY IDEAS

» Variety in quality and lag goals
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KEY IDEAS

» Variety in quality and lag goals
— Some outputs don’t need to be 100% accurate, such as counts of
cars
— Some outputs can wait

Georgia

Tech| GT 8803 // FALL 2018



KEY IDEAS

» Variety in quality and lag goals
— Some outputs don’t need to be 100% accurate, such as counts of
cars
— Some outputs can wait
 Traffic tickets where the billing can be delayed

Georgia

Tech| GT 8803 // FALL 2018



KEY IDEAS

» Variety in quality and lag goals
— Some outputs don’t need to be 100% accurate, such as counts of
cars
— Some outputs can wait
 Traffic tickets where the billing can be delayed
— Queries that need a fast result?

Georgia

Tech| GT 8803 // FALL 2018



KEY IDEAS

» Variety in quality and lag goals
— Some outputs don’t need to be 100% accurate, such as counts of
cars
— Some outputs can wait
 Traffic tickets where the billing can be delayed
— Queries that need a fast result?
 Amber alerts

Georgia

Tech| GT 8803 // FALL 2018



KEY IDEAS

» Variety in quality and lag goals
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KEY IDEAS

» Variety in quality and lag goals
— Some outputs don’t need to be 100% accurate, such as counts of
cars
— Some outputs can wait
 Traffic tickets where the billing can be delayed
— Queries that need a fast result?
 Amber alerts
— Outputs that need to have high accuracy?
 Amber alerts
— Low accuracy?
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KEY IDEAS

» Variety in quality and lag goals
— Some outputs don’t need to be 100% accurate, such as counts of
cars
— Some outputs can wait
 Traffic tickets where the billing can be delayed
— Queries that need a fast result?
 Amber alerts
— Outputs that need to have high accuracy?
 Amber alerts
— Low accuracy?
* Counting cars
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KEY IDEAS

* How do systems for stream processing allocate resources?
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KEY IDEAS

* How do systems for stream processing allocate resources?
— Resource fairness
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KEY IDEAS

* How do systems for stream processing allocate resources?
— Resource fairness

* VideoStorm, their system, takes into account the resource
demand, the quality needed, and the lag tolerance. Lag is

the amount of time that a frame has been waiting to be
processed.
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KEY IDEAS

* Challenges?
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KEY IDEAS

* Challenges?
— Hard to analyze what resources and the quality of the output
needed for a query
— Hard to pick configurations because there are many knobs
— Trading off between lag and quality goals is tricky
— Resource allocation across all queries each having many
configurations is computationally intractable
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KEY IDEAS

* Solution
— Offline phase:

* Analyze resource demand and quality needed of each query for different
configurations

* Pick the ones on the pareto boundary
— Online phase:

* Scheduler reallocates resources, reselects configurations, and considers
migrating queries to different machines

» Based on resource-quality profiles and changes in resource capacity
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TECHNICAL DETAILS

Video queries specification:

* Queries are submitted to VideoStorm as sequences of
transforms.

* A transform (task) could have multiple inputs and outputs
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RESOURCE ALLOCATION

— Have a selection of configurations

— Pick configs for queries for overall better quality

— Put queries on lag if some queries with low lag-tolerance need
resources
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REAL-WORLD VIDEO QUERIES

- Examples
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REAL-WORLD VIDEO QUERIES

- Examples
— License plate reader
— Car counter
— Deep neural network classifier for object detection and
classification
— Object tracker
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TECHNICAL DETAILS

— Parameters that affect CPU demand and quality for most video
queries
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TECHNICAL DETAILS

— Parameters that affect CPU demand and quality for most video
queries
* Image resolution
* Frame sampling rate
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TECHNICAL DETAILS

— How do these affect License plate reader queries?
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TECHNICAL DETAILS

— How do these affect License plate reader queries?

* Lower resolution and lower sampling rate lead to dramatically less
resource demand

* Missed orincorrectly read plates
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TECHNICAL DETAILS

— How do they affect a car counter?
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TECHNICAL DETAILS

— How do they affect a car counter?
* Good quality still
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TECHNICAL DETAILS

— Profile estimation
* Profile: estimated resources needed and desired accuracy of output
* For a configuration of parameters, for one query
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PROFILE ESTIMATION

— Overview
* Pareto boundary
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* Compute a value for each profile

X(c) = Q(c) = BD(c)
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PROFILE ESTIMATION

— Choosing configurations by greedy exploration
* High quality and low demand
* Hill climbing
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TECHNICAL DETAILS

— Resource management:
 Allocation - of resources for each query
* Placement - of new and old queries
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TECHNICAL DETAILS

— Utility function for a configuration

* Quality and lag predicted
 Utility is used to help select a configuration for a query
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TECHNICAL DETAILS

Utility function:

U(Q,L)=U"+U%(Q)+U*(L)
=U+a?-(Q-0"); —a"- (L—LY),

Baseline + bonus - penalty

Term Description

Pr profile of query k

ck € Cx specific configuration of query k

O (c) quality under configuration ¢

Dy(c) resource demand under configuration ¢
Ly, measured lag at time ¢

Uy utility

Qi” (min) quality goal

L’,y (max) lag goal

ay, resources allocated

Georgia
Tech

Table 2: Notations used, for query k.
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TECHNICAL DETAILS

— Optimization objectives
* Public cloud - maximize revenue -> maximize sum of utilities
* Shared private cluster — want fairness -> maximize min utility
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TECHNICAL DETAILS

— Resource allocation
* Optimize for near future
* Greedy approach
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TECHNICAL DETAILS

Query placement

— Place new queries based on 3 goals
* Maximizing utility in the cluster
* Load balancing
* Lag spreading
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EVALUATION

— Profiles are ‘nearly’ correct
— Setup
* 4types of queries
— Baseline
* Fair scheduler
— Metrics
* Quality
* % frames exceeding lag goal
« Utility
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EVALUATION

— Performance

300 queries of 4 types

Lag of 20s or 300s

Quality goal of 0.25

300 ‘distinct’ video datasets
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EVALUATION

— Quality of fair scheduler(FS) is 0.2 lower to begin with

— Lowers to only 0.5 during a burst (200 license plate queries arrive)
— Quality for VideoStorm(VS) stays high at 90%

— Lag for FS keeps growing, VS stays low
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EVALUATION

— Burst in the middle

— More CPU’s were allocated
to queries with higher
quality and short lag goal

— On the bottom, VS let lag
accumulate only for
gueries with high
tolerance
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EVALUATION

— (Can prioritize queries
— Using alpha
* Higher alpha means higher priority
— In the graph, quality and lag is better for higher priority queries
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STRENGTHS

— Used real VA queries, real traffic cameras, several cities

— Significant improvements: 80% increase in quality. 7x less lag

— Picks the knobs for the user

— Prioritizes queries

— Techniques are applicable to other stream analytics systems

— Gives bonus if a config has higher quality than the min, and
punishes lag that is more than the max
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WEAKNESSES

— Did not say if they add up the lag for each time step until T, or
justatT.

— Did not talk about the approximation guarantees for the greedy
algorithms

— Did not talk much about when profiles are wrong.

— Would have to tweak it to work with queries other than the 4

types
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DISCUSSION

— Could it be combined into the ingestion part in Focus?

— Using machine learning to choose parameters

— Using machine learning to predict spikes, instead of the primitive
formula for lag, so as to allocate more intelligently
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