
DATA ANALYTICS 
USING DEEP 
LEARNING
GT 8803 // FALL 2018 //
NIDHI MENON
LECTURE #15:

THE DATA CALCULATOR: DATA STRUCTURE 
DESIGN AND COST SYNTHESIS FROM FIRST 
PRINCIPLES



GT 8803 // Fall 2018

TODAY’s PAPER

• The Data Calculator: Data Structure Design and Cost Synthesis from First Principles
– Authors:

• Stratos Idreos, Kostas Zoumpatianos, Brian Hentschel, Michael S. Kester, Demi Guo
• DASlab (Data Systems Laboratory) @ Harvard School of Engineering and Applied 

Sciences
• Presentation based on content from SIGMOD 2018 slide deck used with permission of 

Prof. Idreos and the Data Calculator project webpage
http://daslab.seas.harvard.edu/datacalculator

2

http://15721.courses.cs.cmu.edu/
http://daslab.seas.harvard.edu/datacalculator/


GT 8803 // Fall 2018

TODAY’S AGENDA

• Problem Overview

• Key Idea

• Technical Details

• Experiments

• Discussion

3

http://15721.courses.cs.cmu.edu/


GT 8803 // Fall 2018

INTRODUCTION

MOTIVATION
• Data Systems in the critical path of everything we do today 

• Data Structures are everywhere, but there is no ‘perfect data structure’

• Need to accelerate design of data structures

RESULT
• A design engine that accelerates research and improves developer productivity

• Makes it easy to design, tune and use data systems for evolving hardware and workloads

4

http://15721.courses.cs.cmu.edu/


GT 8803 // Fall 2018

BACKGROUND

• Every operation goes through a data structure

• Growing need for alternative designs:
1. New applications
2. New hardware

• Vast and complex design space

5

Data Structure 
Design

Data Layout 
Design

Base Data 
Layout

Indexing 
Information

Algorithms

http://15721.courses.cs.cmu.edu/


GT 8803 // Fall 2018

PROBLEM

DESIGN QUESTIONS:
1. Designing data structures for a specific workload

2. How to handle shifts in workload?

3. What will be the impact on adding more system memory, or flash drives with more 
bandwidth?

4. How can we improve throughput?

PROBLEMS:
• Slow design process

• Severe cost side-effects

• Increased complexity in predicting impact on performance

6

http://15721.courses.cs.cmu.edu/


GT 8803 // Fall 2018

VISION

(1) Design Synthesis from First Principles
• What are the first principles?

• Why is it useful?

• How can we improve upon it?

(2) Cost Synthesis from Learned Models
• What is the goal?

• Why will it be helpful?

• How can we achieve the goal?

7

http://15721.courses.cs.cmu.edu/


GT 8803 // Fall 2018
8

http://15721.courses.cs.cmu.edu/


GT 8803 // Fall 2018

FOCUS OF THE PAPER

9

Image used with permission of Prof. Idreos from SIGMOD 2018 slide deck

http://15721.courses.cs.cmu.edu/


GT 8803 // Fall 2018

DATA CALCULATOR

10

Image used with permission of Prof. Idreos from SIGMOD 2018 slide deck

http://15721.courses.cs.cmu.edu/


GT 8803 // Fall 2018

DATA CALCULATOR

11

• Interactive and semi-automated design of data structures

• No need to code the data structure, to run the workload, or to access 
the hardware 

• Two innovations
1. Design primitives that capture first principles of data layout design
2. Performance computation using learned cost models

Image used with permission of Prof. Idreos from SIGMOD 2018 slide deck

http://15721.courses.cs.cmu.edu/


GT 8803 // Fall 2018

CONTRIBUTIONS

1. Introduced a set of data layout design primitives that capture the first principles

2. Illustrated that combinations of the design primitives can describe known data 
structure designs

3. Demonstrated synthesis of latency cost from a small set of access primitives

4. Introduce a design synthesis algorithm that completes partial layout specifications 
given a workload and hardware input

5. Accurate computation of the performance impact of design choices, and its 
acceleration

12

http://15721.courses.cs.cmu.edu/


GT 8803 // Fall 2018

DATA CALCULATOR ARCHITECTURE

13

Image used from Page 3 of the paper ‘Data Calculator’

http://15721.courses.cs.cmu.edu/


GT 8803 // Fall 2018

• Library of fine-grained data layout primitives

• New designs formed by combining fundamental concepts in arbitrary ways

• Helps find the first principles using which all data structures can be designed

14

Image used from Page 1 of the paper ‘Data Calculator’

Step 1: Design Synthesis from First Principles

http://15721.courses.cs.cmu.edu/


GT 8803 // Fall 2018 15

Image used from Page 5 of the paper ‘Data Calculator’

http://15721.courses.cs.cmu.edu/


GT 8803 // Fall 2018

STRUCTURE SPECIFICATIONS

• Elements ‘without data’
– E.g. linked-lists, skip-lists
– Flat data structures without an indexing layer
– Not an issue since the algorithm is a model that doesn’t deal with data
– It only synthesizes a collective model on how keys should be distributed

• Recursive design through blocks
– Block: logical portion of data divided into smaller blocks based on data structure 

specification
– Elements applied recursively to blocks to construct data structure
– Used when we test, cost, and search through multiple possible designs concurrently over 

the same data for a given workload and hardware

16

http://15721.courses.cs.cmu.edu/


GT 8803 // Fall 2018

STRUCTURE SPECIFICATIONS

• Cache-conscious designs
– Relative positioning of data structure nodes critical to overall cost for traversal
– Data Calculator design space allows to dictate how nodes should be positioned explicitly
– This makes it possible to fit more data in internal nodes

• Size of the Design Space 
– Design space is very large if we consider possible node elements and their combinations
– For polymorphic structures, possible design space grow more quickly 
– Data structure design is still a wide-open space with numerous opportunities for 

innovative designs as data keeps growing, application workloads keep changing, and 
hardware keeps evolving

17

http://15721.courses.cs.cmu.edu/


GT 8803 // Fall 2018

• Library of data access primitives that can be combined to generate operation designs

• Operation synthesis at Level 1, Hardware conscious synthesis at Level 2

• Micro-benchmarks train machine learning models on different hardware profiles

• Synthesizer computes design of operations and latency for given inputs

18

Image Source: http://daslab.seas.harvard.edu/datacalculator

Step 2: Learned Primitive Access Models

http://15721.courses.cs.cmu.edu/


GT 8803 // Fall 2018

• For each algorithm in workload, exact algorithm is synthesized

• Cost for target hardware using an expert system is also synthesized

• Based on layout specification of each data structure node in the path of operation, best access 
pattern and expected cost is decided based on the learned models

19

Image Source: http://daslab.seas.harvard.edu/datacalculator

Step 3: Algorithm and Cost Synthesis

http://15721.courses.cs.cmu.edu/


GT 8803 // Fall 2018

EXAMPLE: BINARY SEARCH MODEL

20

http://15721.courses.cs.cmu.edu/


GT 8803 // Fall 2018

EXAMPLE: DICTIONARY OPERATION GET

21

http://15721.courses.cs.cmu.edu/


GT 8803 // Fall 2018
22

http://15721.courses.cs.cmu.edu/


GT 8803 // Fall 2018

WHAT-IF DESIGN

23

Iteratively test different combinations of design/workload/hardware

http://15721.courses.cs.cmu.edu/


GT 8803 // Fall 2018

WHAT-IF DESIGN

• Let users form design questions by varying any one input parameter
• Input

1. High level specifications of existing design
2. Cost with original design
3. Cost with bloom filter variation

• Benefits
1. Quickly test variations of data structure designs simply by altering a high level 

specification, without having to implement, debug, and test a new design
2. A given specification can be tested quickly on alternative environments without 

having to actually deploy code to this new environment

24

http://15721.courses.cs.cmu.edu/


GT 8803 // Fall 2018

AUTO-COMPLETION

25

Automatically identify “the best design possible” to match a workload and hardware

http://15721.courses.cs.cmu.edu/


GT 8803 // Fall 2018

AUTO-COMPLETION

• Complete partial layout specifications given a workload, and a hardware 
profile

• Input
1. Partial layout specification
2. Data
3. Queries
4. Hardware
5. List of candidate elements

26

http://15721.courses.cs.cmu.edu/


GT 8803 // Fall 2018

AUTO-COMPLETION

PROCESS
• Start at the last ‘known’ point, compute the rest of the missing subtree of the hierarchy of 

elements

• At each step consider a new element as candidate for one of the nodes of the missing 
subtree, compute the cost for the different kinds of dictionary operations present in the 
workload

• Design kept only if it is better than all previous ones

• Use a cache to remember specifications and their costs to avoid recomputation

27

http://15721.courses.cs.cmu.edu/


GT 8803 // Fall 2018

SELF-DESIGNING SYSTEM

28

Utilize design continuums and cross design spaces

http://15721.courses.cs.cmu.edu/


GT 8803 // Fall 2018

EXPERIMENTAL ANALYSIS

(1) Implementation
• Core implementation in C++
• Separate module in Python made available for analyzing benchmark results
• Learning process gets done each time we include a new hardware
• Learned coefficients for each model passed to the C++ back-end to be used for cost 

synthesis during design questions

(2) Accurate Cost Synthesis
• Manually written DS specifications for 8 access methods
• Data Calculator generated design of operations and computed latency for each workload
• Verified results against actual implementation
• Learned coefficients for each model passed to the C++ back-end to be used for cost 

synthesis during design questions

29

http://15721.courses.cs.cmu.edu/


GT 8803 // Fall 2018 30

http://15721.courses.cs.cmu.edu/


GT 8803 // Fall 2018

EXPERIMENTAL ANALYSIS
(3) Diverse Machines and Operations

• Performance tested with different hardware (in terms of both CPU and memory properties)
• Updates are changes to the value of a key-value pair i.e. a point query with an additional 

write access

(4) Training Access Primitives
• Inexpensive process that takes just a few minutes

31

http://15721.courses.cs.cmu.edu/


GT 8803 // Fall 2018

EXPERIMENTAL ANALYSIS

(5) Cache Conscious Designs and Skew
• Use of a cache-conscious design, Cache Conscious B+ tree (CSB)
• Captures caching effects of growing data sizes and design patterns where the relative 

position of nodes affects tree traversal costs
• Use of Zipfian distribution and skewed data improves performance

(6) Rich Design Questions
• Capable of handling both point and range queries
• Takes seconds to evaluate new hardware or workload
• Capable of suggesting alternative designs better suitable for the task considering cost 

and scalability 

32

http://15721.courses.cs.cmu.edu/


GT 8803 // Fall 2018

RELATED WORK

• Interactive design
• Generalized indexes
• Modular/Extensible systems and System synthesizers
• Auto-tuning
• Adaptive systems
• Data representation systems

33

http://15721.courses.cs.cmu.edu/


GT 8803 // Fall 2018

SUMMARY AND NEXT STEPS

• Data Calculator allows researchers and engineers to interactively and semi-automatically 
navigate complex design decisions when designing or re-designing data structures, 
considering new workloads, and hardware

• The design space presented here includes basic layout primitives and primitives that 
enable cache conscious designs by dictating the relative positioning of nodes, focusing on 
read only queries.

• Future steps:
1. Find primitives for additional significant design classes
2. Innovations for cost synthesis
3. Machine learning algorithms capable of searching the whole design space

34

http://15721.courses.cs.cmu.edu/


GT 8803 // Fall 2018

DISCUSSION

35

http://15721.courses.cs.cmu.edu/


GT 8803 // Fall 2018

DISCUSSION

• Use of parametric models
– How does it help?

• L1, L2, L3 cache
– Was the experiment necessary?
– Is it incomplete?

• Hardware periodic table

• Comparison to other papers we read
– reduction of a complex state space or computational pipeline into a series of component primitives

• Useful in teaching data structures and algorithms!

36

http://15721.courses.cs.cmu.edu/


GT 8803 // Fall 2018

STRENGTHS

• First work that deals with interactive data structure design to compute the impact on 
performance

• Aids developers in exploring different possible configurations without increasing 
complexity when designing data structures

• Interesting comparison drawn between elements of periodic table and fundamental 
principles of data structures

• Use of parametric models for cost prediction

• Support for what-if design queries

• Focus on different classes of possible data structure designs

37

http://15721.courses.cs.cmu.edu/


GT 8803 // Fall 2018

WEAKNESSES

• Lacks discussion on how to map data structures to their primitives

• Actual performance estimation doesn’t work for individual queries since it is hard to 
precisely estimate certain access primitives without running them

• Current work focuses only on simple updates, while complex ones involving restructuring 
are left out

• Empirical study focuses only on reducing time complexity. What about space complexity?

38

http://15721.courses.cs.cmu.edu/


GT 8803 // Fall 2018
39

http://15721.courses.cs.cmu.edu/

