Georgia &

Tech
DATA ANALYTICS R
USING DEEP LEARNING
GT 8803 // FALL 2018 // VENKATA
KISHORE PATCHA

Lecture#16: In-RDBMS Hardware Acceleration of
Advanced Analytics

CREATING THE NEXT®

Vi

Georgia
Tech

TODAY’S PAPER

In-RDBMS Hardware Acceleration of Advanced Analytics

— Authors:

* Divya Mahajan, Joon Kyung Kim, Jacob Sacks
affiliated with Georgia Tech

* Adel Ardalan

Affiliated with The University of Wisconsin
* Arun Kumar, Hadi Esmaeilzadeh

Affiliated with university of California
— Areas of focus:
* Data Base; ML, Hardware Acceleration.

— Slides based on a presentation by Divya @ PVLDB
2018 "

GT 8803 // Fall 2018

TODAY’S AGENDA

e Background
e Existing work

* Objectives
* Approach

* Experiment
* Resources

Georgia

Tech GT 8803 // Fall 2018

BACKGROUND

* CPU cores are powerful, efficient and supports large list of
Instructions. Today’s state of art CPUs have around 10 cores per
CPU. CPUs are used by user program through several
abstractions. CPUs are supporting extremely large number of
application through the support of large list of instructions and
software abstractions. They are developed for ‘generic’ use.

Georgia

Tech GT 8803 // Fall 2018

BACKGROUND

® (PUs are used by user program through several abstractions. Application frameworks, multiple
programming lanquages, continers, vertual environments and so on.

High Level Language

00 and Visual Language |

- Easy for Programmers
to understand
- Contains Engilish Words

~

rorra]_c [Paseat

Al
...

Assembly Language
Low Level Langugae

- The computer’s own
Language
- Binary numbers, in 1's and O’s

Machine Language

justcode.me

Georgia

Tech| GT 8803 // Fall 2018

BACKGROUND

* What is hardware acceleration?
 |f you use any non- CPU hardware that can speed up your
program, that is hardware acceleration.

Examples:
Applications Hardware accelerator

GPUs are good with ‘some’ operations but can
have thousands of cores in a single GPU.
Enables parallel processing. GPUs need CPU to

Computer graphics control them.
Digital signal processing Digital signal processor
Analog signal processing Analog signal processing

Field-programmable gate

Georgia Any computing task arrays (FPGA)
Tech || GT 8803 // Fall 2018

BACKGROUND

. Fleld programmable gate arrays (FPGA)

FPGA is an integrated circuit designed to be configured by a
customer or a designer after manufacturing - hence "field-
programmable”. The FPGA configuration is generally specified using
a hardware description language (HDL).

 Example HDLs: VHDL, Verilog.

library IEEE; use iEEE.STD_LOGIC 1164.ALL; use
IEEE.STD_NUMERIC_STD.ALL; entity notl is port(a:in STD _LOGIC;
b:out STD_logic); end notl; architecture behavioral of notl is begin b
<= not a; end behavioral;

https://youtu.be/L 2wsockKwPQ?t=15

Georgia

Tech GT 8803 // Fall 2018

https://en.wikipedia.org/wiki/Integrated_circuit
https://en.wikipedia.org/wiki/Field-programmability
https://en.wikipedia.org/wiki/Hardware_description_language
https://youtu.be/L2wsockKwPQ?t=15

BACKGROUND

* For a high level language programmers, FPGA do sound cool

but not HDL.

— Luckily, There are many C look a like, python look alike HDL interfaces!
MyHDL is python look a like interface that generates HDL.

Georgia

Tech GT 8803 // Fall 2018

 MyHDL code:

def bin2gray(B, G, width):

wer

Gray encoder.

B -- input intbv signal, binary encoded
G -- output intbv signal, gray encoded
width -- bit width

@always_comb
def logic():
Bext = intbv(@)[width+1:]
Bext[:] = B
for i in range(width):
G.next[i] = Bext[i+1] ™ Bext[i]

return logic

Georgia
Tech

BACKGROUND

 Verilog code:

module bin2gray (
BJ
G

)s

input [7:@] B;
output [7:8] G;
reg [7:0] G;

always @(B) begin: BIN2GRAY_LOGIC
integer 1i;
reg [9-1:8] Bext;
Bext = 2'ho;
Bext = B;
for (i=0; i<8; i=i+1) begin
G[i] <= (Bext[(i + 1)] ~ Bext[i]);
end
end

endmodule

GT 8803 // Fall 2018

BACKGROUND

e Still complex!
* There are Data base implementations that use FPGA under

the hood. User still write only sgl queries and care only about

their application not signals.
— doppioDB - A hardware accelerated database

— Even Postgres, orcale have roadmap or 3rd party plugins
that support FPGA.

* (Centaur: A framework for hybrid cpu-fpga databases. Centaur
Is @ framework for developing applications on CPU-FPGA

shared memory platform, bridging the gap between the

_ application software and accelerators on the FPGA.
Ceqeth GT 8803 // Fall 2018

10

BACKGROUND

* Select pymax(a,b) from ab_table

CREATE FUNCTION pymax (a2 integer, b integer)
RETURNS integer

AS $%
if a > b:

return a
return b
$$ LANGUAGE plpythonu;

* And there is Apache Madlib with all the functions that you need
for analytics. Apache Madlib can be deployed to postgres and
other Relational databases.

Georgia

Tech GT 8803 // Fall 2018

IN-RDBMS Advanced Analytics

Analytics applied
within the database

<

VLDB2018
<

IN-RDBMS Hardware Acceleration
of Advanced Analytics

Divya Mahajan
Joon Kyung Kim
Jacob Sacks

Adel Ardalan®™
Arun Kumar”

Hadi Esmaeilzadeh”

Georgia Institute of Technology

*University of Wisconsin-Madison

T University of California, San Diego
Alternative Computing Technologies (ACT) Lab

UC San Diego Gegqraia WISCONSIN

DANA - in-Database Acceleration of
Advanced Analytics

£5,

Enterprise
In-Database

Catapult

Objectives of DANA

Enterprise
In-Database

Analytical
Programing
Paradigms

=

Acceleration
Platforms

TABLA
Catapult

-

Integration within Databases

IN-RDBMS Advanced Analytics

Data Results N
Conventional
Approach ...

Query Request

Analytics Visualization
Data & Results N
In-Database -ﬂ@g . l
'.-\

Approach ‘l‘l—"‘, Query . .

Analytics applied
within the database

Visualization

Objectives of DANA

Enterprise
In-Database

Analytical
Programing
Paradigms

=

Acceleration
Platforms

TABLA
Catapult

(d Integration within Databases

(d High-performance hardware acceleration

Data growth vs performance of general
purpose compute systems

Growth normalized to 2008

50
45
40
35
30
25
20
15
10

© Performance growth M Data growth

2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020

Source: Data growth trends: 1DC's Digital Universe Study, December 2012
Performance growth trends: Esmaeilzadeh et al, “Dark Silicon and the End of Multicore Scaling,” iISCA 2011

Objectives of DANA

K
—Ce;
Enterprise

In-Database

Analytical
Programing
Paradigms

=

Acceleration
Platforms

TABLA
Catapult

(1 Integration within Database
(d High-performance hardware acceleration

(d Expose a high-level programming interface

A Full-Stack Solution Towards Acceleration

Programming High-level mathematical language

Compilation Accelerator operation scheduling and data mapping

Template architecture

Architecture
Hardware Generation Reconfigure the architecture according to constraints

A Full-Stack Solution Towards Acceleration

Workflow

.., out)
err = linearR.subtract(sum, cutput)
grad = linearR.muiltiply(err, input)
linearR.setinter(grad)

SQL Query

SELECT * FROM dana.linearR
(“training_data_table™);

Translator *

Hierarchical
Dataflow Graph

Parser

T~

Hardware

| _» Generator

t

Compiler

Strider Design

Execution Engine
Design

Strider
Instructions

Operation Map

Compute
Instructions

Query Tree

. {(Logical Plan)

I Catalog I

FPGA

{(Accelerator Design
& Execution Binary)

Page Buffer

Files F1 ..
Access Methods

Buffer Pool L

Data Pages

—» Optimizer —»

Execution
Plan

— Executor —» Euthey
Manager

9

A Full-Stack Solution Towards Acceleration

Workflow

linearR = dana.algo (m, in, , out)
err = linearR.subtract(sum, cutput)
grad = linearR.muiltiply(err, input)
linearR.setinter(grad)

Hardware
—— Gener/ator)
\

SQL Query

T * FROM dana.linearR
(“training_ et le”);

Parser

Compiler

4

Strider Design

Execution Engine
Design

Strider
Instructions

Operation Map

Compute
Instructions

ICatangI FPGA

{(Accelerator Design Page Buffer

& Execution Binary) m %
Files F1 ..

Access Methods

Buffer Pool L

Query Tree

J . {(Logical Plan)

—» Optimizer —»

Execution
Plan

=212 72900 \ ”
¢ Buffer

— Executor —»

Manager

*http://www.postgresqltutorial.com/plpgsql-function-returns-a-table/

10

Using SQL to Specity the Training Data

SELECT * FROM dana.linearR('training data table');

A user defined function specifying a machine learning
algorithm as an iterative update rule in our Python
Embedded Domain Specific Language

11

lterative Update Rules

Learning is solving an iterative optimization problem

Input (X}

Output (Y*)

Output (Y*)

25,1,76,0

1

6,43,9,93

6

23,56,2,0

12

12,0,9,0

O

Training Data

find(w;) 2 {Loss(w;) = >;||lY — Y|} is minimized

Predicted Output (Y)

Intermediate
Model

>Loss (w;)

—

o

Trained
Model

12

Programming Interface

Domain Specific Language in Python to specify the Machine
Learning Algorithm

Update Rule

s = sigma (mo * in, 1)
er =s - out

grad = er *in

up = mu * grad
Mo = Mo - up

Merge Function

grad = merge(grad, mergeCoef, "+")

Convergence Criteria
setEpochs(10000)

User defined function

Table 1: Language constructs of DAnA’s Python-embedded DSL.

Keyword Description
Component To specify an instance of the learning algorithm

input Algorithm 1input

output Algorithm output
Data Types model Machine learning model

inter Interim data type

meta Meta parameters

+,-%, /, >, < Primary operations

Mathematical

) stgmoid, gaussian, sqrt | Non linear operations
Operations

sigma, norm, pi Group operations

merge(x, int, "operation") | Specify merge operation and number of merge instances

Built-In Special setEpochs(int) Set the maximum number of epochs

Functions setConvergence(x) Specify the convergence criterion

setModel(x) Set the model variable

26

Programming Interface
Domain Specific Language in Python to specify the Machine

Learning Algorithm

Update Rule

s = sigma (mo * in, 1)
er =s - out

grad = er *in

merge
boundary

up = mu * grad

Mo = Mo - up ’ grad

Merge Function

grad = merge(grad, mergeCoef, "+")

Convergence Criteria
setEpochs(10000)
mo

Data Flow Graph 14

User defined function

A Full-Stack Solution Towards Acceleration

Workflow

.., out)
err = linearR.subtract(sum, output)
grad = linearR.multiply{err, input)
linearR.setInter(grad)

SQL Query

SELECT FROM dana.linearR
{(“training_data_table”);

Translator ™

Hierarchical
Dataflow Graph

Parser

| .

™,

_ d

“Hardware

£ » Generator

t 4

Compiler

Strider Design L

Execution Engine
Design

Strider
Instructions

Operation Map

Compute I
Instructions . |]

Query Tree

» (Logical Plan)

| Catalog |

(Accelerator Design
& Execution Binary)

Files F1 ..
Access Methods

#1

Buffer Pool L

Data Pages

— Optimizer —»

Execution
Plan

v

—» Executor—»

FPGA
Page Buffer

#n

Buffer
Manager

i

Georgia
Tech

note

e Von Neumann architecture

Central Processing Unit

Control Unit

Input

Arithmetic/Logic Unit Output
Device

Device

Memory Unit

@Kapooht wikipedia

GT 8803 // Fall 2018

29

A Multi-threaded Data Access Engine

Page Read Controls Data From Pagei
i Memory l - 4
: Controller
I | 1 T * Tt
Striders are programmable [Pagesize MIF s —
US|ng a doma|n SpeC|f|C i Tuple Size "'_S‘ l E * - Constants -

- - . I| Tuples per Page S g - Config ’
instruction set architecture | & B [Buffer

! Num Threads Ol ¥ C 39

i Tuple Offset - Gonfig Data

S (R e & e 4____}__
Data for Threadi

Strider

A Multi-threaded Data Access Engine

Buffer Pool or Configuration Data Page Read Controls Data F"im Page;
ey R, e i
—————— —_— 21 1
H 7 1
* + ;] Controller 1
1
— 1= — [_ t” : 1 T * 1 i
— — — — — 1
_Page1 — —Page2— o o o|— Pagei —o $ @] Page Size o <| L O - Insert ‘]l
Finits State — | - _ — i :) L : = - constants -||1
Machine I . 1 L] Tuple Size = l = ¥ :
’ ! 5 B [Confia 11!
! K i| Tuples per Page E E: i Bo:f '9 7 |
Data Config o cooT oo i N Thread = = ==]
Route Data | Striderq Strlder2 e o o! Strlder .. ° o ! um Ihreads ¥ Y] B '
1
_ _ ___.._ 1
i'TI_. * 1 — ‘ Tuple Offset Config Data E
~ 1 1
1
— 1

z — —— “Daia forThread, e
—r—r————

Strider

Thread1
Thread2

gy

Th readi

17

SIMD-MIMD High-Performance
Dataflow Execution Engine

Access Engine

| Controller I_| AU, | ! AU, I oo e AU,
[|
|

I PC I Instruction Buffer I

|Contro||er II AU, I I AU, I oo e AU,
|l | X ¥

| pc | Instruction Buffer |

Integrate DANA with PostgreSQL

BDYANQVAN

PostgreSQL

MADLIib

PostgreSQL | Greenplum

Liblinear &
Dimmwitted

=i

PostgreSQL

19

emote Sensing Logistic Regression and Support Vector Machines 54 581,102 154
Logistic Regression 520 19,937 42

Low Rank Matrix Factorization 6,040; 3,952;10 6,040 o6

Linear Regression 384 53,500 61l

o ach Linear Regression 280 52,397 84
Logistic Regression 2,000 387,944 3,031
Support Vector Machines 1,740|] 678,392 5,300
Low Rank Matrix Factorization 19,880; 19,880; 10 19,880 1,587
Linear Regression 8,000 130,503 4,087
Logistic Regression 6,033| 1,044,024 25,292
Support Vector Machines 7,129|| 1,356,734 38,840
Low Rank Matrix Factorization 28,002; 45,064; 10 45,064 5,067
Linear Regression 8,000|| 1,000,000 32,124

20

End-to-End
Runtime Speedup

Results

Comparison with MADIib an in-database analytics library

MADIib+PostgreSQL B MADIlib+Greenplum B DAnA+PostgreSQL B DANnA+PostgreSQL with strider

28.2 20.2 41.8 278.2

19.0

10.8

2.2

Geomean

1.1 1.01.2 1.0
Remote WLAN Remote Netflix Patient Blog S/N S/N S/N S/N S/E S/E S/E S/E
Sensing Sensing Feedback Logistic SVM LRMF Linear Logistic SVM LRMF Linear
LR SVM

DANA generated accelerators provide 10.8x Speedup /
PostgreSQL+MADIib and 4.9x Speedup / Greenplum+MADIib

Striders contribute 4.7x speedup, as they directly integrate
with the buffer pool of the RDBMS and bypass the CPU

23

Results

Comparison with Liblinear and Dimmwitted

End-to-End Runtime

[MADIib+PostgreSQL Bl MADIib+Greenplum [l Liblinear+PostgreSQL [l DimmWitted+PostgreSQL Il DAnA+PostgreSQL |

41.8

28.2

18.4

Logistic
Regression

6.3

3.4

1.0 1.01.0
0.4 0.2

Remote Sensing LR WLAN

20.2 15.1
SVM 8.7 |Linear
— Regression
5.5
4.4
> 7 3.0
1.01.1 1.0 1.0 1.0
0.10.1 0.10.1 N/A
S/N Logistic Remote Sensing S/N SVM Patient

SVM

Blog Feedback S/N Linear

DANA provides 9.1x speedup over Liblinear and 10.4x over Dimmwitted

24

Georgia
Te v h

Strengths

The authors recognized a connection between three seemingly
unrelated fields of study and were able to bring them together to great
effect.

Domain specific language that bypasses Hardware description
Languages (HDL).

DNaN + Postgres has outperformed MADLib+Postgres and
MADLIib+GreenPlum, @ 8.3x. DNaN generated accelerators performed
better than TABLA, an open source accelerator optimizer.

The architecture of DAnA’s execution engine allows DANnA to take
advantage of data locality when it exists (e.g., when data must be
transferred between different analytic units within a single analytic
cluster), and spread out computation over many analytic units when
data dependencies do not &Xis803 // Fall 2018

Georgia
Te v h

Weaknesses

Is Domain Specific language and graph really needed for
parallelization ? At the end they seems to depend on RDBMs pagination
similarities for running instructions parallel on FPGA. Why not use
existing MyHDL or other languages?

RDBMS are generally used for OLTP database needs. In-RDBMS
analytics may change RDBMS configuration space completely.

There is no comparison with GPU (both cost and speed). GPUs are much
cheaper than FPGA. $0.5 per core on a state of art GPU.

Can Strider be used with Madlib? How will it perform?

GT 8803 // Fall 2018

Conclusion

DANA

Exposes FPGA-based hardware acceleration to high-level
database users

Next Step

Acceleration support for semi-structured data and
column-based databases

Support compression and decompression in database
pages

Extend the application base to support deep learning and
unsupervised machine learning

25

Georgia
Tech

Discussion

GT 8803 // Fall 2018

40

