
DATA ANALYSIS
AND DEEP LEARNING

CS 8803 // FALL 2018 // 
Sneha Venkatachalam

Main Memory Database Systems: An Overview 
IEEE 1992

1



GT 8803 // Fall 2018

TODAY’S PAPER
“Main Memory Database Systems: An Overview ”

AUTHORS
Hector Garcia-Molina and Kenneth Salem

AREAS OF FOCUS
Access methods, application programming interface, commit 

processing, concurrency control, data clustering, data 
representation, main memory database system (MMDB), query 

processing, recovery. 

2



GT 8803 // Fall 2018

TODAY’S AGENDA
• Concepts
• Problem Overview
• Key Idea
• Technical Details
• Evaluation
• Discussion

3



GT 8803 // Fall 2018

OVERVIEW
• Memory resident database systems (MMDB’s) store their data in
main physical memory and provide very high-speed access

• Conventional database systems (DRDB) are optimized for the
particular characteristics of disk storage mechanisms.

• Memory resident systems, on the other hand, use different
optimizations to structure and organize data, as well as to make it
reliable

• This paper surveys the major memory residence optimizations and
briefly discusses some of the memory resident systems that have
been designed or implemented

4



GT 8803 // Fall 2018

DIFFERENCE BETWEEN MEMORY AND DISK
• The access time for main memory is orders of magnitude less than
for disk storage.

• Main memory is normally volatile, while disk storage is not.

• Disks have a high, fixed cost per access as they are block-oriented
storage device, however main memory is not block oriented

• The layout of data on a disk is much more critical than the layout
of data in main memory, since sequential access to a disk is faster
than random access

• Main memory is normally directly accessible by the processor(s),
while disks are not, which makes data in memory more vulnerable
to software errors

5



GT 8803 // Fall 2018

MEMORY AND DISK

6



GT 8803 // Fall 2018

Is it reasonable to assume that the entire 
database fits in main memory?

• Yes, for some applications:
1. Cases where database is of limited size or is growing at a

slower rate than memory capacities are growing
• Ex. Database containing employee data.

• It is reasonable to expect that memory can hold
a few hundred or thousand bytes per employee
or customer

2. Real-time applications where data must be memory
resident to meet the real-time constraints
• Ex1. Telecommunications: 800 telephone numbers

need to be translated to real numbers
• Ex2. Radar tracking: Signatures of objects need to be

matched against a database of known aircraft

7



GT 8803 // Fall 2018

Is it reasonable to assume that the entire 
database fits in main memory?

• No for cases where the database does not fit in memory
– Ex. An application with satellite image data
– DRDB will continue to be important here

• However, these applications can be classified into ’hot’ (accessed
frequently) and ‘cold’ (accessed rarely) data
– Data can be partitioned into one or more logical databases,

and the hottest one can be stored in main memory
– A collection of databases is now managed by both MMDB

and DRDB
– Ex. In banking, account records (ex., containing balances)

are hot; customer records (ex., containing address, mother’s
maiden name) are colder

– IMS database system: Provides Fast Path for memory
resident data, and conventional IMS for the rest

8



GT 8803 // Fall 2018

What is the difference between a MMDB and a 
DRDB with a very large cache? 

• Large DRDB cache enables storing copies of datasets in memory
at all times

• This does not take full advantage of the memory

• Ex. Say an application wishes to access a given tuple
– The disk address will have to be computed
– The buffer manager will be invoked to check if the

corresponding block is in memory
– Once the block is found, the tuple will be copied into an

application tuple buffer, where it is actually examined.
– Clearly, if the record will always be in memory, it is more

efficient to refer to it by its memory address

9



GT 8803 // Fall 2018

What is the difference between a MMDB and a 
DRDB with a very large cache? 

• Some DRDB and some object-oriented storage systems (OOSS)
are beginning to recognize that with large caches some of their
data will reside often in memory, and are beginning to
implement some of the inmemory optimizations of MMDB
– Ex. Some new systems convert a tuple or object into an in-

memory representation and give applications a direct
pointer to it

– This is called “swizzling”

• In future, the differences between a MMDB and DRDB might
disappear

• Any good database management system will recognize and
exploit the fact that some data will reside permanently in
memory and should be managed accordingly

10



GT 8803 // Fall 2018

Can we assume that main memory is nonvolatile and 
reliable by introducing special purpose hardware? 

• Performance improvement; No crash recovery code

• There is no “yes” or “no” answer

• Memory can be made more reliable by techniques
– Battery-backed up memory boards
– Uninterruptable power supplies
– Error detecting and correcting memory
– Triple modular redundancy

• However, this only reduces the probability of media failure

• Thus one will always have to have a backup copy of the
database, probably on disk

11



GT 8803 // Fall 2018

FACTORS AFFECTING FREQUENCY OF 
BACKUPS FOR MMDB

• Memory is directly accessible by the processor and is more
vulnerable to operating system errors.
– Hence, system crashes will lead to loss of memory

• When a memory board fails, typically the entire machine must be
powered down, losing the entire database
– A recent backup is required as recovery of the data will be

much more time consuming otherwise

• Battery backed memory, or uninterruptable power supplies (UPS)
are “active” devices and lead to higher probability of data loss
than do disks
– A UPS can run out of gas or can overheat.
– Batteries can leak or lose their charge.

12



GT 8803 // Fall 2018

VIDEO

https://www.youtube.com/watch?v=p3q5zWC
w8J4

13

https://www.youtube.com/watch?v=p3q5zWCw8J4


GT 8803 // Fall 2018

IMPACT OF MEMORY RESIDENT DATA 
Concurrency Control 

• Access to main memory is so much faster than disk access

• Hence, we can expect transactions to complete more quickly in a
main memory system

• In systems that use lock-based concurrency controls, this means
that locks will not be held as long

• Therefore, lock contention may not be as important as it is when
the data is disk resident.

14



GT 8803 // Fall 2018

IMPACT OF MEMORY RESIDENT DATA 
Concurrency Control 

• The actual implementation of the locking mechanism can also
be optimized for memory residence of the objects to be locked

• In a conventional system, locks are implemented via a hash table
that contains entries for the objects currently locked

• The objects themselves (on disk) contain no lock information

• If the objects are in memory, we may be able to afford a small
number of bits in them to represent their lock status

15



GT 8803 // Fall 2018

IMPACT OF MEMORY RESIDENT DATA 
Commit Processing 

• To protect against media failures, it is necessary to have a
backup copy and keep a log of transaction activity

• The need for a stable log threatens to undermine the
performance advantages that can be achieved with memory
resident data

• Logging can impact response time, since each transaction must
wait for at least one stable write before committing

• Logging can also affect throughput if the log becomes a
bottleneck

• Several solutions have been suggested for this problem

16



GT 8803 // Fall 2018

IMPACT OF MEMORY RESIDENT DATA 
Commit Processing 

• A small amount of stable main memory can be used to hold a
portion of the log

• A transaction is committed by writing its log information into the
stable memory (relatively fast)

• A special process or processor is then responsible for copying
data from the stable memory to the log disks

• This can eliminate the response time problem, since transactions
need never wait for disk operations

17



GT 8803 // Fall 2018

IMPACT OF MEMORY RESIDENT DATA 
Commit Processing 

• In case stable memory is not available for the log tail,
transactions can be pre-committed

• Pre-committing is accomplished by releasing a transaction’s
locks as soon as its log record is placed in the log, without
waiting for the information to be propagated to the disk

• The sequential nature of the log ensures that transactions
cannot commit before others on which they depend.

• This may reduce the blocking delays (and hence, the response
time) of other, concurrent transactions

18



GT 8803 // Fall 2018

IMPACT OF MEMORY RESIDENT DATA 
Commit Processing 

• A technique called group commits can be used to relieve a log
bottleneck

• Under group commit, a transaction’s log record need not be sent
to the log disk as soon as it commits

• Instead, the records of several transactions are allowed to
accumulate in memory

• When enough have accumulated (ex., when a page is full), all are
flushed to the log disk in a single disk operation

• Group commit reduces the total number of operations performed
by the log disks since a single operation commits multiple
transactions

19



GT 8803 // Fall 2018

IMPACT OF MEMORY RESIDENT DATA 
Access Methods 

• A wide variety of index structures have been proposed and
evaluated for main memory databases

• These include various forms of hashing and of trees

• Hashing provides fast lookup and update, but not as space-
efficient as a tree, and does not support range queries well.

• Trees such as the T-Tree have been designed explicitly for
memory-resident databases

• Index structures can store pointers to the indexed data, rather
than the data itself

• This eliminates the problem of storing variable length fields in
an index and saves space as long as the pointers are smaller
than the data they point to

20



GT 8803 // Fall 2018

VIDEO

https://www.youtube.com/watch?v=TQQ2gYft
nqY

21

https://www.youtube.com/watch?v=TQQ2gYftnqY


GT 8803 // Fall 2018

IMPACT OF MEMORY RESIDENT DATA 
Data Representation

• Main memory databases take advantage of efficient pointer
following for data representation

• Relational tuples can be represented as a set of pointers to data
values

• The use of pointers is space efficient when large values appear
multiple times in the database, since the actual value needs to
only be stored once

• Pointers also simplify the handling of variable length fields since
variable length data can be represented using pointers into a
heap

22



GT 8803 // Fall 2018

IMPACT OF MEMORY RESIDENT DATA 
Query Processing 

• Sequential access is not significantly faster than random access 
in a memory resident database

• Hence, query processing techniques that take advantage of 
faster sequential access lose that advantage
– Ex. Sort-merge join processing, which first creates 

sequential access by sorting the joined relations
– The sorted relations could be represented easily in a main 

memory database using pointer lists

• Some relational operations can be performed very efficiently 
when relational tuples are implemented as a set of pointers to 
the data values 

• The key idea is that because data is in memory, it is possible to 
construct appropriate, compact data structures that can speed up 
queries

23



GT 8803 // Fall 2018

IMPACT OF MEMORY RESIDENT DATA 
Query Processing 

• Query processors for memory resident data must focus on
processing costs, whereas most conventional systems attempt to
minimize disk access

• One difficulty is that processing costs can be difficult to measure
in a complex data management system

• Costly operations (e.g., creating an index or copying data) must
first be identified, and then strategies must be designed to
reduce their occurrence

• Operation costs may vary substantially from system to system, so
that an optimization technique that works well in one system
may perform poorly in another

24



GT 8803 // Fall 2018

IMPACT OF MEMORY RESIDENT DATA 
Recovery

• Backups of memory resident databases must be maintained on
disk or other stable storage to insure against loss of the volatile
data

• Techniques such as commit processing require checkpointing,
which brings the disk resident copy of the database more up-to-
date

• This eliminates the need for the least recent log entries

25



GT 8803 // Fall 2018

IMPACT OF MEMORY RESIDENT DATA 
Recovery

• In a memory resident system, checkpointing and failure recovery
are only reasons to access the disk-resident copy of the database

• Application transactions never require access to disk resident
data

• Hence, disk access in a memory resident system can be tailored
to suit the needs of the checkpointer alone

• Disk I/O should be performed using a very large block size, as
large blocks are more effeciently written though they take
longer

• Checkpointing should interfere with transaction processing as
little as possible

26



GT 8803 // Fall 2018

IMPACT OF MEMORY RESIDENT DATA 
Recovery

• After a failure, a memory resident database manager must
restore its data from disk resident backup and bring it upto-date

• Transferring data from the disks may take a long time

• One possible solution is to load blocks of the database ‘on
demand’ until all of the data has been loaded

• Another possible solution to database restoration is to use disk
striping or disk arrays

• The database is spread across multiple disks and read in parallel

• However in this case, there should be independent paths from
disk to memory

27



GT 8803 // Fall 2018

IMPACT OF MEMORY RESIDENT DATA 
Performance

• The performance of a main memory database manager depends
primarily on processing time, and not on the disks

• Even recovery management, which involves the disks, affects
performance primarily through the processor, since disk
operations are normally performed outside the critical paths of
the transactions

• This contrasts with models of disk-based ’ systems which count
I/O operations to determine the performance of an algorithm
– Ex. In conventional systems, making does not impact

performance during normal system operation, so this
component tends not to be studied carefully

– In a MMDB, backups will be more frequent

• Thus the performance of backup or checkpointing algorithms is
much more critical and studied more carefully

28



GT 8803 // Fall 2018

IMPACT OF MEMORY RESIDENT DATA 
API and Protection

• In conventional DRDB’s, applications exchange data with the
database management system via private buffers

• In a MMDB, access to objects can be more efficient

• Applications may be given the actual memory position of the object,
which is used instead of a more general object id

• A second optimization is to eliminate the private buffer and to give
transactions direct access to the object
– Ex. If a transaction is simple, most of its time may be spent

copying bits from and to buffers
– By cutting this out, the number of instructions a transaction

must execute can be cut in half or more
– Problem: Once transactions can access the database directly,

they can read or modify unauthorized parts
– Solution: Only run transactions that were compiled by a special

database system compiler (checks for proper authorization)
29



GT 8803 // Fall 2018

Data Clustering and Migration 
• In a DRDB, data objects (e.g., tuples, fields) that are accessed

together are frequently stored together, or clustered

• For instance, if queries often look at a “department” and all the
“employees” that work in it, then the employee records can be
stored in the same disk page as the department they work in

• In a MMDB there is no need to cluster objects

• If an object is to migrate to disk from memory, how and where
should it be stored?

• Solutions
– Users specify how objects are to be clustered if they

migrate
– The system determines the access patterns and clusters

automatically

30



GT 8803 // Fall 2018

VIDEO

https://www.youtube.com/watch?v=j3knIXR-
KHQ

31

https://www.youtube.com/watch?v=j3knIXR-KHQ


GT 8803 // Fall 2018

SYSTEMS 

32



GT 8803 // Fall 2018

OBE 
• Part of IBM’s Office-By-Example (OBE) database project

• The system is designed to run on the IBM 370 architecture

• Its focus is on handling ad hoc queries rather than high update
loads

• Data representation in the OBE system makes heavy use of
pointers

• Query processing and optimization focus on reducing processing
costs since queries do not involve disk operations

• Optimization techniques are also geared toward reducing or
eliminating processor intensive activities

33



GT 8803 // Fall 2018

MM-DBMS
• The MM-DBMS system was designed at the University of

Wisconsin

• Like OBE, MM-DBMS implements a relational data model and
makes extensive use of pointers for data representation and
access methods

• Variable length attribute values are represented by pointers into
a heap, and temporary relations are implemented using pointers
to tuples in the relations from which they were derived

• Index structures point directly to the indexed tuples, and do not
store data values

• For recovery purposes, memory is divided into large self-
contained blocks

• MM-DBMS uses two-phase locking for concurrency control

34



GT 8803 // Fall 2018

IMS/VS Fast Path
• IMS/VS Fast Path is a commercial database product from IBM

which supports memory resident data

• Disk resident data are supported as well

• Each database is classified statically as either memory or disk
resident

• Fast Path performs updates to memory resident data at commit
time

• Transactions are group committed to support high throughput

• The servicing of lock requests is highly optimized to minimize
the cost of concurrency control

• Record-granule locks are used

• Fast Path is designed to handle very frequently accessed data,
since it is particularly beneficial to place such data in memory

35



GT 8803 // Fall 2018

MARS 
• The MARS MMDB was designed at Southern Methodist

University

• It uses a pair of processors to provide rapid transaction
execution against memory resident data

• The MARS system includes a database processor and a recovery
processor, each of which can access a volatile main memory
containing the database

• A nonvolatile memory is also available to both processors

• The recovery processor has access to disks for the log and for a
backup copy of the database

• The records are also copied into a nonvolatile log buffer

• Concurrency is controlled using two-phase locking with large
lock granules (entire relations)

36



GT 8803 // Fall 2018

HALO 
• Dedicated processors for recovery related activities such as

logging and checkpointing?

• HArdware Logging (HALO) is a proposed special-purpose device
for transaction logging

• It transparently off-loads logging activity from the processor(s)
that executes transactions

• HALO intercepts communications between a processor and
memory controllers to produce a word-level log of all memory
updates

• Each time a write request is intercepted, HALO creates a log
entry consisting of the location of the update and the new and
old values at that address

• HALO includes a transaction identifier with each log record

37



GT 8803 // Fall 2018

TPK
• TPK is a prototype multiprocessor main-memory transaction

processing system implemented at Princeton University

• TPK’s emphasis is on rapid execution of debit/credit type
transactions

• A simple data model consisting of records with unique identifiers

• Transactions may read and update records using the identifiers

• The TPK system of four types: input, consists of a set execution,
output, of concurrent threads and checkpoint.

• Two copies of the database (primary and secondary) are retained
in-memory
– The primary copy supports all transaction reads and updates
– The purpose of the secondary database is to eliminate data

contention between the checkpoint and execution threads
during the checkpoint operation

38



GT 8803 // Fall 2018

System M
• System M is a transaction processing testbed system developed

at Princeton for main memory databases

• Like the TPK prototype, System M is designed for a transactional
workload rather than ad hoc database queries

• It supports a simple record-oriented data model

• System M is implemented as a collection of cooperating servers
(threads) on the Mach operating system

• Unlike TPK, System M is capable of processing transactions
concurrently

• Since the focus of System M is empirical comparison of recovery
techniques, a variety of checkpointing and logging techniques
are implemented

39



GT 8803 // Fall 2018

QUESTIONS OR COMMENTS?

40



GT 8803 // Fall 2018

DISCUSSIONS
STRENGTHS

• A comprehensive explanation of in-memory databases
along with a look into different in-memory database
systems

• The paper provides insights into non-volatile memory and
their impact

41



GT 8803 // Fall 2018

DISCUSSIONS
WEAKNESSES

42

• Insights into dynamic RAMs and virtual memory would
have been useful

• An extensive performance evaluation was lacking;
evaluation was mostly qualitative



GT 8803 // Fall 2018

THANK YOU!

43


