® L G I
Managing Non-Volatile “Jech &

Memory in Database Systems

A review by
Apaar Shanker

I Jzzzz7z/zZa

DATA ANALYTICS
USING DEEP LEARNING
GT CS 8803 // FALL 2018 //

CREATING THE NEXT"

Vi

Paper under review

Managing Non-Volatile Memory in Database Systems

Authors: Alexander van Renen?, ViKtor Leis, Alfons Kemper?!, Thomas Neumann?,
Takushi Hashida?, Kazuichi Oe?, Yoshiyasu Doi?, Lilan Harada?, Mitsuru Sato?

Technische Universitdt Miinchen, 2Fujitsu Laboratories

Publication: SIGMOD ‘18
doi:https://doi.org/10.1145/3183713.3196897

Georgia
Tech|| GT 8803 // Fall 2018

http://15721.courses.cs.cmu.edu/
https://doi.org/10.1145/3183713.3196897

Salient Aspects of the Computer Memory Hierarchy

Computer Memory Hierarchy

small size
small capacity

processor registers
very fast, very expensive

power on

immediate term

small size processor cache
small capacity

medium size
medium capacity

power on
very short term

small size
large capacity

power off
short term

large size power off
very large capacity mid term

very fast, very expensive

random access memory
fast, affordable

flash / USB memory
slower, cheap

hard drives
slow, very cheap

large size power off
very large capacity long term

tape backup
very slow, affordable

https://en.wikipedia.org/wiki/Memory_hierarchy

Georgia

Tech | GT 8803 // Fall 2018

®
=
2 1 —ReRAM ™
(7] J— --‘,'\ z
» PCM 5 I
, . \
§ 1 — —it
2 Iimited o E R
R - - Bt age,
"i endurance ,,' N b B
1000000 NAND N
3| Rash 4
{_HOD__J
10000 00d oo St
™ 16 17
Memory capacity (bit)

Fig.1. Memory capacity and speed for various
nonvolatile memories recently developed.

DOI: 10.1109/ASPDAC.2014.6742851, Fujita et al. 2014

http://15721.courses.cs.cmu.edu/
https://en.wikipedia.org/wiki/Memory_hierarchy
https://doi.org/10.1109/ASPDAC.2014.6742851

Objective of the Paper

This paper evaluates the current art and
demonstrate a new approach for integrating
NVM into the storage layer of database systems.

Georgia
Tech|| GT 8803 // Fall 2018

http://15721.courses.cs.cmu.edu/

Non Volatile Memory Based Architectures

DRAM e e DRAM DRAM

il

full page mini page

-—— - — ————————

m1=0
Y

(a) NVM Direct (b) Basic NVM BM (¢) Our NVM-Opt Three-Tier BM

B.M : Buffer Manager

ref 1.) Alexander Van Renen et al. 2018

Georgia
Tech|| GT 8803 // Fall 2018

http://15721.courses.cs.cmu.edu/

DRAM

<

2

(a) NVM Direct

Georgia
Tech

K/
%

DS

*

Y/
%

7
%

NVM Direct

NVM Direct systems were investigated by Arulraj et al.

Levarages byte addressability of NVM

Features
> The design keeps all data in NVM
> DRAM is only used for temporary data and to keep a reference to NVM data

Advantages
> minimalist log (containing only in-flight operations) ensures recovery is very efficient
> read operations are very simple because a tuple can be directly requested from the NVM.

Downsides
> Higher latency of NVM compared to DRAM leads to difficulties in achieving a very high transaction
throughputs

> Doing I/0O on NVM directly wears out limited NVM endurance, leading to hardware failures
> Difficulty in programming database engines for NVM as any modification to is potentially persisted,
and can lead to concurrency related problems.

GT 8803 // Fall 2018

http://15721.courses.cs.cmu.edu/

page-grained- — — — — £ — — — —

-

————

22

— —

Georgi

(b) Basic NVM BM

a

Tech

Y/
%

7
%

Basic NVM Buffer Manager

Kimura et al. proposed using a database managed DRAM as a cache in front of NVM

Similar to the commonly used notion of a buffer manager between a volatile memory (RAM) and SSD

Features

>
>

All pages stores on the persistent layer (NVM)
DRAM acts as a software managed buffer/cache layer.

> Transactions operate by accessing pages after loading them onto the buffer pool in DRAM

Advantages
> DRAM comparable latency for accessing data in the buffer pool
> limits read/ write operation on NVM increasing hardware endurance
Downsides
> accessible a tuple not present in the buffered pages, requires loading an entire page onto DRA,
failing to leverage byte addressability
> System is optimized for workloads fitting into DRAM only - and does not scale to workloads on larger

datasets which require accessing NVM resident data frequently as well.

GT 8803 // Fall 2018

http://15721.courses.cs.cmu.edu/

Key Techniques in Current Approach

% Cache-Line-Grained Pages

% Mini Pages

* Pointer Swizzling

Georgia
Tech|| GT 8803 // Fall 2018

http://15721.courses.cs.cmu.edu/

NVM

=

header=2¢|

DRAM

Cache-Line-Grained Pages

nvm® |pld: 3

r: 0

d: 0

resident:1010..1,

dirty:0010..0,

Tokyo

Tokyo

San Jose

Redwood City

Munich

Mountamn View

I 251 more cache lines

I 251 more cache lines

San Francisco

San Francisco

Figure 3: Cache-Line-Grained Pages — The bit masks indicate

e debeEe

which cache lines are resident and which are dirty.

Georgia
Tech

D

7
0‘0

0
L X4

Low nvm latency allows extraction of specific cache-lines rather
than entire pages.

Allows targeted extraction of “hot” data objects from otherwise
cold page.

Buffer manager allocates a page in DRAM without loading data from
NVM

Upon specific transaction request - buffer manager retrieves
corresponding cache lines of the page.

Drawbacks
> cache-line-grained access is more difficult to program
compared to more traditional page-based approach.
A hybrid approach is adopted where only specific operations such as
insert, look-up, delete; that get most benefit from
cache-line-grained access are implemented as such.

GT 8803 // Fall 2018

http://15721.courses.cs.cmu.edu/

Mini Pages

X/
%%®

Allocating space for a full page, even when only few tuples
are required, wastes valuable DRAM space

NVM

DRAM

header=1cl _"_Vn_1§ _| slots: [0, 2, 255] | pld: 3 | * Solution: A mini page that can store upto 16 cache lines
. |[count: 3 | dirty: 0100.0, [fullo % An additional “slots” array stores the line id for an item in
Tokyo —re | Tokyd the original page
San Jose ' Munich . .))
R et wosd CG Pl e ¢ Inorder to resolve the issue of offset, following function
Moiniain Vice '/ prototype is used.
= . i .
g“s’;’“"cf}‘"m’ : o ki void+ MakeResident(Pages p, int offset, int n)
an rrancisco '
1

Figure 4: Mini Pages - The slots array indicates which cache

, | When a mini page does not have enough memory to serve a
lines are loaded (max 16). If promoted, full points to the full page.

request, it is promoted to a full page.

Georgia
Tech|| GT 8803 // Fall 2018

10

http://15721.courses.cs.cmu.edu/

< root
9 par O off: 0
pld: 6 cnt: 1
3 ptr@ |pld:5 pld: 8
#swizzled leaf » <normal leaf »
P par ® | off: 12 R par O | off: 0
pld: 7 | ent: 0 pld: 5| cnt: 0
DRAM
NVM T T T T T T T apped out leafs
oo | pId: 5 pld: 6 pld: 7 pld: 8

Figure 5: Pointer Swizzling - A B-tree with a root (pld: 6) and
three child pages: A swizzled page (pld: 7), a normal DRAM page

Pointer Swizzling

(pld: 5) and a page currently not n DRAM (pld: 8).

Georgia
Tech

' pld: 8

pld: 5

Figure 7: Single-Table Mapping - Using one hash table for
DRAM and NVM-resident pages eliminates most overhead for man-
aging the SSD layer. The hash table entries are identified by their
location in memory (DRAM or NVM).

GT 8803 // Fall 2018

http://15721.courses.cs.cmu.edu/

Cache-line-grained Entire page
page (NVM-backed) (not NVM-backed)
\ /
Q.
@ @ DRAM
eviction
A
(e @3
NVM
admission @
NVM ®
eviction @
Y
[SSD page

Figure 6: Page Life Cycle — There are five possible page transi-
tions and the three critical decisions (DRAM eviction, NVM admis-
sion, and NVM eviction).

Georgia

Design Outline

(2

X/
%®

A 3-tier buffer management is implemented, which
incorporates ssd as well, apart from DRAM and NVM.

Addition of SSD - while not improving latency is important
for management of large datasets.

In current set-up the very cold data is stored in SSD.

Initially, all new-pages start on SSD. On transaction request
page is first directly loaded to DRAM and then relegated to
NVM or SSD based on decisions.

> DRAM eviction

> NVM admission

> NVM eviction

m clock algorithm
O

Tech | GT 8803 // Fall 2018

http://15721.courses.cs.cmu.edu/

Performance Evaluation

 DRAM capacity

NVM capacily

'
|
|
|
1

= | =2GB =10GB

s

] ;

= 34 —&— Main Memory

- —a— 3 Tier BM

=] :

-g. —e— Basic NVM BM

8o 2 5 —#— NVM Direct

_g —o— SSD BM

B) I

o) |

y 15

2] ' '

v ' |

ot ' '

-~ ! \| 0
' I A

L —

2 4 6 8 10 12 14

Data size [GB]

Figure 8: YCSB-RO - Performance for varying data sizes on read-
only YCSB workload. The capacity of DRAM, NVM, and SSD is set
to 2GB, 10 GB, and 50 GB, respectively.

% YCSB s a key-value store benchmark framework
< Only point look up operations considered

Georgia
Tech

DRAM capacity NVM capacity

e ~&— Main Memory
e, —a— 3 Tier BM
g 90 —e— Basic NVM BM
’Ec y —w— NVM Direct
S 40} —&— SSD BM
_c |
[—‘] !
< I
Es_{ 20 +!
l =3 =
0 +—— ?L‘ — e — — e P 5
5 20 40 60 80 100 120

(1) (3.2 (5.7) (8.2) (10.7) (132) (15.7)
Warehouses (Data size [GB])

Figure 9: TPC-C - Performance in TPC-C for an increasing num-
ber of warehouses. The capacity of DRAM, NVM, and SSD is set to
2 GB, 10 GB, and 50GB, respectively.

Y

% TPC-Cis considered the industry standard for

benchmarking transactional database systems.
% Itis aninsert-heavy workload that emulates a
wholesale supplier.

GT 8803 // Fall 2018

13

http://15721.courses.cs.cmu.edu/

Georgia
Tech

Performance Evaluation across Architectures

- 4 4
5
B 5
5 8 |
S B
23
Se 1
b v
g'g. o
S a%es a%es 1;&\‘\%
P LG ?

Figure 10: Performance Drill Down - Effect of proposed opti-
mizations relative to a traditional buffer manager on NVM (YCSB-
RO with 10 GB of data, read only, 2GB DRAM, and 10GB NVM).

GT 8803 // Fall 2018

14

http://15721.courses.cs.cmu.edu/

Evaluation w.r.t NVM hardware characteristics

'7 . 7 h
L] 9 1 —a— 3 Tier BM ﬁ 5}
= —»— NVM Direct -
| —e— Basic NVM BM =
= a.
= oL
8o an
3 =
o 1 o £
k= 5 1 ¢
]
o = —a— 3 Tier BM
; M & o M —w— NVM Direct
e = SR S o o § . —e— Basic NVM BM
- ' : ; e - 0 e ; s : >
20 60 W00 LA LA 1% 20% 40% 60% 80% 100%
NVM latency [ns] DRAM ratio
Figure 12: NVM Latency - The impact of varying NVM latencies . ' A
on the YCSB-RO performance (YCSB with 10GB of data, read only, Figure 13: DRAM Buffer Size — YCSB-RO performance for vary-

2 GB DRAM, and 10 GB NVM).

Georgia
Tech

ing amounts of DRAM and a fixed NVM capacity (YCSB with 10 GB
of data, read only and 10 GB NVM).

GT 8803 // Fall 2018

15

http://15721.courses.cs.cmu.edu/

Georgia
Tech

Comments

Pointer swizzling could compromise data integrity through malicious or unwitting
actors

OS level optimizations not considered.

Tradeoff between performance improvement and usability? - are these only one
time programmer costs?

What are the other metrics for performance other than throughput? Any
economic metrics out there?

GT 8803 // Fall 2018

16

http://15721.courses.cs.cmu.edu/

Georgia
Tech

References

[1] van Renen A, Leis V et al (2018) Managing non-volatile memory in database
systems. SIGMOD 18, pp 1541-1555

[2] GO6tze P, van Renen A (2018) Data management on non-volatile memory: A
perspective, Datenbank Spektrum (2018) 18:171-182

GT 8803 // Fall 2018

17

http://15721.courses.cs.cmu.edu/

