® L G I
Managing Non-Volatile “Jech &

Memory in Database Systems

A review by
Apaar Shanker

I Jzzzz7z/zZa

DATA ANALYTICS
USING DEEP LEARNING
GT CS 8803 // FALL 2018 //

CREATING THE NEXT"

Vi



Paper under review

Managing Non-Volatile Memory in Database Systems

Authors: Alexander van Renen?, ViKtor Leis, Alfons Kemper?!, Thomas Neumann?,
Takushi Hashida?, Kazuichi Oe?, Yoshiyasu Doi?, Lilan Harada?, Mitsuru Sato?

Technische Universitdt Miinchen, 2Fujitsu Laboratories

Publication: SIGMOD ‘18
doi:https://doi.org/10.1145/3183713.3196897

Georgia
Tech|| GT 8803 // Fall 2018


http://15721.courses.cs.cmu.edu/
https://doi.org/10.1145/3183713.3196897

Salient Aspects of the Computer Memory Hierarchy

Computer Memory Hierarchy
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Fig.1. Memory capacity and speed for various
nonvolatile memories recently developed.

DOI: 10.1109/ASPDAC.2014.6742851, Fujita et al. 2014


http://15721.courses.cs.cmu.edu/
https://en.wikipedia.org/wiki/Memory_hierarchy
https://doi.org/10.1109/ASPDAC.2014.6742851

Objective of the Paper

This paper evaluates the current art and
demonstrate a new approach for integrating
NVM into the storage layer of database systems.
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Non Volatile Memory Based Architectures
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ref 1.) Alexander Van Renen et al. 2018
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NVM Direct

NVM Direct systems were investigated by Arulraj et al.

Levarages byte addressability of NVM

Features
> The design keeps all data in NVM
> DRAM is only used for temporary data and to keep a reference to NVM data

Advantages
> minimalist log (containing only in-flight operations) ensures recovery is very efficient
> read operations are very simple because a tuple can be directly requested from the NVM.

Downsides
> Higher latency of NVM compared to DRAM leads to difficulties in achieving a very high transaction
throughputs

> Doing I/0O on NVM directly wears out limited NVM endurance, leading to hardware failures
> Difficulty in programming database engines for NVM as any modification to is potentially persisted,
and can lead to concurrency related problems.
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Basic NVM Buffer Manager

Kimura et al. proposed using a database managed DRAM as a cache in front of NVM

Similar to the commonly used notion of a buffer manager between a volatile memory (RAM) and SSD

Features

>
>

All pages stores on the persistent layer (NVM)
DRAM acts as a software managed buffer/cache layer.

> Transactions operate by accessing pages after loading them onto the buffer pool in DRAM

Advantages
>  DRAM comparable latency for accessing data in the buffer pool
> limits read/ write operation on NVM increasing hardware endurance
Downsides
> accessible a tuple not present in the buffered pages, requires loading an entire page onto DRA,
failing to leverage byte addressability
>  System is optimized for workloads fitting into DRAM only - and does not scale to workloads on larger

datasets which require accessing NVM resident data frequently as well.
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Key Techniques in Current Approach

% Cache-Line-Grained Pages

*%* Mini Pages

* Pointer Swizzling
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Figure 3: Cache-Line-Grained Pages — The bit masks indicate
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Low nvm latency allows extraction of specific cache-lines rather
than entire pages.

Allows targeted extraction of “hot” data objects from otherwise
cold page.

Buffer manager allocates a page in DRAM without loading data from
NVM

Upon specific transaction request - buffer manager retrieves
corresponding cache lines of the page.

Drawbacks
> cache-line-grained access is more difficult to program
compared to more traditional page-based approach.
A hybrid approach is adopted where only specific operations such as
insert, look-up, delete; that get most benefit from
cache-line-grained access are implemented as such.
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Mini Pages
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Allocating space for a full page, even when only few tuples
are required, wastes valuable DRAM space
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Figure 4: Mini Pages - The slots array indicates which cache

, | When a mini page does not have enough memory to serve a
lines are loaded (max 16). If promoted, full points to the full page.

request, it is promoted to a full page.
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Figure 5: Pointer Swizzling - A B-tree with a root (pld: 6) and
three child pages: A swizzled page (pld: 7), a normal DRAM page

Pointer Swizzling

(pld: 5) and a page currently not n DRAM (pld: 8).

Georgia
Tech

' pld: 8

pld: 5

Figure 7: Single-Table Mapping - Using one hash table for
DRAM and NVM-resident pages eliminates most overhead for man-
aging the SSD layer. The hash table entries are identified by their
location in memory (DRAM or NVM).
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Figure 6: Page Life Cycle — There are five possible page transi-
tions and the three critical decisions (DRAM eviction, NVM admis-
sion, and NVM eviction).
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A 3-tier buffer management is implemented, which
incorporates ssd as well, apart from DRAM and NVM.

Addition of SSD - while not improving latency is important
for management of large datasets.

In current set-up the very cold data is stored in SSD.

Initially, all new-pages start on SSD. On transaction request
page is first directly loaded to DRAM and then relegated to
NVM or SSD based on decisions.

> DRAM eviction

> NVM admission

> NVM eviction

m clock algorithm
O
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Performance Evaluation
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Figure 8: YCSB-RO - Performance for varying data sizes on read-
only YCSB workload. The capacity of DRAM, NVM, and SSD is set
to 2GB, 10 GB, and 50 GB, respectively.

% YCSB s a key-value store benchmark framework
< Only point look up operations considered
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Figure 9: TPC-C - Performance in TPC-C for an increasing num-
ber of warehouses. The capacity of DRAM, NVM, and SSD is set to
2 GB, 10 GB, and 50GB, respectively.
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%  TPC-Cis considered the industry standard for

benchmarking transactional database systems.
% Itis aninsert-heavy workload that emulates a
wholesale supplier.
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Performance Evaluation across Architectures
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Figure 10: Performance Drill Down - Effect of proposed opti-
mizations relative to a traditional buffer manager on NVM (YCSB-
RO with 10 GB of data, read only, 2GB DRAM, and 10GB NVM).
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Evaluation w.r.t NVM hardware characteristics
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Figure 12: NVM Latency - The impact of varying NVM latencies . ' A
on the YCSB-RO performance (YCSB with 10GB of data, read only, Figure 13: DRAM Buffer Size — YCSB-RO performance for vary-

2 GB DRAM, and 10 GB NVM).
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ing amounts of DRAM and a fixed NVM capacity (YCSB with 10 GB
of data, read only and 10 GB NVM).
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Comments

Pointer swizzling could compromise data integrity through malicious or unwitting
actors

OS level optimizations not considered.

Tradeoff between performance improvement and usability? - are these only one
time programmer costs?

What are the other metrics for performance other than throughput? Any
economic metrics out there?
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