
Managing Non-Volatile 

Memory in Database Systems

DATA ANALYTICS 
USING DEEP LEARNING

GT CS 8803 // FALL 2018 //

A review by
Apaar Shanker



GT 8803 // Fall 2018

Paper under review 

Managing Non-Volatile Memory in Database SystemS

Authors: Alexander van Renen1, ViKtor Leis, Alfons Kemper1, Thomas Neumann1, 
Takushi Hashida2, Kazuichi Oe2, Yoshiyasu Doi2, Lilan Harada2, Mitsuru Sato2

1Technische Universität München, 2Fujitsu Laboratories

Publication: SIGMOD ‘18

doi:https://doi.org/10.1145/3183713.3196897

2

http://15721.courses.cs.cmu.edu/
https://doi.org/10.1145/3183713.3196897


GT 8803 // Fall 2018

Salient Aspects of the Computer Memory Hierarchy

3

https://en.wikipedia.org/wiki/Memory_hierarchy DOI: 10.1109/ASPDAC.2014.6742851, Fujita et al. 2014

NVM sits here

http://15721.courses.cs.cmu.edu/
https://en.wikipedia.org/wiki/Memory_hierarchy
https://doi.org/10.1109/ASPDAC.2014.6742851


GT 8803 // Fall 2018

Objective of the Paper

This paper evaluates the current art and 
demonstrate a new approach for integrating 
NVM into the storage layer of database systems.

4

http://15721.courses.cs.cmu.edu/


GT 8803 // Fall 2018

Non Volatile Memory Based Architectures

5

ref 1.) Alexander Van Renen et al. 2018

B.M : Buffer Manager

http://15721.courses.cs.cmu.edu/


GT 8803 // Fall 2018

NVM Direct

6

❖ NVM Direct systems were investigated by Arulraj et al.

❖ Levarages byte addressability of NVM

❖ Features
➢ The design keeps all data in NVM
➢ DRAM is only used for temporary data and to keep a reference to NVM data

❖ Advantages
➢ minimalist log (containing only in-flight operations) ensures recovery is very efficient
➢ read operations are very simple because a tuple can be directly requested from the NVM.

❖ Downsides
➢ Higher latency of NVM compared to DRAM leads to difficulties in achieving a very high transaction 

throughputs
➢ Doing I/O on NVM directly wears out limited NVM endurance, leading to hardware failures
➢ Difficulty in programming database engines for NVM as any modification to is potentially persisted, 

and can lead to concurrency related problems.

http://15721.courses.cs.cmu.edu/


GT 8803 // Fall 2018

Basic NVM Buffer Manager

7

❖ Kimura et al. proposed using a database managed DRAM as a cache in front of NVM

❖ Similar to the commonly used notion of a buffer manager between a volatile memory (RAM) and SSD

❖ Features
➢ All pages stores on the persistent layer (NVM)
➢ DRAM acts as a software managed buffer/cache layer.
➢ Transactions operate by accessing pages after loading them onto the buffer pool in DRAM

❖ Advantages
➢ DRAM comparable latency for accessing data in the buffer pool
➢ limits read/ write operation on NVM increasing hardware endurance

❖ Downsides
➢ accessible a tuple not present in the buffered pages, requires loading an entire page onto DRA, 

failing to leverage byte addressability 

➢ System is optimized for workloads fitting into DRAM only - and does not scale to workloads on larger 
datasets which require accessing NVM resident data frequently as well.

http://15721.courses.cs.cmu.edu/


GT 8803 // Fall 2018

Key Techniques in Current Approach

❖ Cache-Line-Grained Pages

❖ Mini Pages

❖ Pointer Swizzling

8

http://15721.courses.cs.cmu.edu/


GT 8803 // Fall 2018

Cache-Line-Grained Pages

❖ Low nvm latency allows extraction of specific cache-lines rather 
than entire pages.

❖ Allows targeted extraction of “hot” data objects from otherwise 
cold page.

❖ Buffer manager allocates a page in DRAM without loading data from 
NVM

❖ Upon specific transaction request - buffer manager retrieves 
corresponding cache lines of the page.

❖ Drawbacks
➢ cache-line-grained access is more difficult to program 

compared to more traditional page-based approach.
❖ A hybrid approach is adopted where only specific operations such as 

insert, look-up, delete; that get most benefit from 
cache-line-grained access are implemented as such.

9

http://15721.courses.cs.cmu.edu/


GT 8803 // Fall 2018

Mini Pages

❖ Allocating space for a full page, even when only few tuples 
are required, wastes valuable DRAM space

❖ Solution: A mini page that can store upto 16 cache lines
❖ An additional “slots” array stores the line id for an item in 

the original page
❖ In order to resolve the issue of offset, following function 

prototype is used.

When a mini page does not have enough memory to serve a 
request, it is promoted to a full page.

10

http://15721.courses.cs.cmu.edu/


GT 8803 // Fall 2018

Pointer Swizzling

11

http://15721.courses.cs.cmu.edu/


GT 8803 // Fall 2018

Design Outline

12

❖ A 3-tier buffer management is implemented, which 
incorporates ssd as well, apart from DRAM and NVM.

❖ Addition of SSD - while not improving latency is important 
for management of large datasets.

❖ In current set-up the very cold data is stored in SSD.

❖ Initially, all new-pages start on SSD. On transaction request 
page is first directly loaded to DRAM and then relegated to 
NVM or SSD based on decisions.
➢ DRAM eviction
➢ NVM admission
➢ NVM eviction

■ clock algorithm
■

http://15721.courses.cs.cmu.edu/


GT 8803 // Fall 2018

Performance Evaluation

13

❖ YCSB is a key-value store benchmark framework
❖ Only point look up operations considered

❖ TPC-C is considered the industry standard for 
benchmarking transactional database systems.

❖ It is an insert-heavy workload that emulates a 
wholesale supplier.

http://15721.courses.cs.cmu.edu/


GT 8803 // Fall 2018

Performance Evaluation across Architectures

14

http://15721.courses.cs.cmu.edu/


GT 8803 // Fall 2018

Evaluation w.r.t NVM hardware characteristics

15

http://15721.courses.cs.cmu.edu/


GT 8803 // Fall 2018

Comments

❖ Pointer swizzling could compromise data integrity through malicious or unwitting 
actors

❖ OS level optimizations not considered.

❖ Tradeoff between performance improvement and usability? - are these only one 
time programmer costs?

❖ What are the other metrics for performance other than throughput? Any 
economic metrics out there?

16

http://15721.courses.cs.cmu.edu/


GT 8803 // Fall 2018

References

[1] van Renen A, Leis V et al (2018) Managing non-volatile memory in database 
systems. SIGMOD ’18, pp 1541–1555

[2] Götze P, van Renen A (2018) Data management on non-volatile memory: A 
perspective, Datenbank Spektrum (2018) 18:171–182

17

http://15721.courses.cs.cmu.edu/

