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Salient Aspects of the Computer Memory Hierarchy
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https://en.wikipedia.org/wiki/Memory_hierarchy DOI: 10.1109/ASPDAC.2014.6742851, Fujita et al. 2014

NVM sits here
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Objective of the Paper

This paper evaluates the current art and 
demonstrate a new approach for integrating 
NVM into the storage layer of database systems.
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Non Volatile Memory Based Architectures
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ref 1.) Alexander Van Renen et al. 2018

B.M : Buffer Manager
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NVM Direct
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❖ NVM Direct systems were investigated by Arulraj et al.

❖ Levarages byte addressability of NVM

❖ Features
➢ The design keeps all data in NVM
➢ DRAM is only used for temporary data and to keep a reference to NVM data

❖ Advantages
➢ minimalist log (containing only in-flight operations) ensures recovery is very efficient
➢ read operations are very simple because a tuple can be directly requested from the NVM.

❖ Downsides
➢ Higher latency of NVM compared to DRAM leads to difficulties in achieving a very high transaction 

throughputs
➢ Doing I/O on NVM directly wears out limited NVM endurance, leading to hardware failures
➢ Difficulty in programming database engines for NVM as any modification to is potentially persisted, 

and can lead to concurrency related problems.
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Basic NVM Buffer Manager
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❖ Kimura et al. proposed using a database managed DRAM as a cache in front of NVM

❖ Similar to the commonly used notion of a buffer manager between a volatile memory (RAM) and SSD

❖ Features
➢ All pages stores on the persistent layer (NVM)
➢ DRAM acts as a software managed buffer/cache layer.
➢ Transactions operate by accessing pages after loading them onto the buffer pool in DRAM

❖ Advantages
➢ DRAM comparable latency for accessing data in the buffer pool
➢ limits read/ write operation on NVM increasing hardware endurance

❖ Downsides
➢ accessible a tuple not present in the buffered pages, requires loading an entire page onto DRA, 

failing to leverage byte addressability 

➢ System is optimized for workloads fitting into DRAM only - and does not scale to workloads on larger 
datasets which require accessing NVM resident data frequently as well.
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Key Techniques in Current Approach

❖ Cache-Line-Grained Pages

❖ Mini Pages

❖ Pointer Swizzling
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Cache-Line-Grained Pages

❖ Low nvm latency allows extraction of specific cache-lines rather 
than entire pages.

❖ Allows targeted extraction of “hot” data objects from otherwise 
cold page.

❖ Buffer manager allocates a page in DRAM without loading data from 
NVM

❖ Upon specific transaction request - buffer manager retrieves 
corresponding cache lines of the page.

❖ Drawbacks
➢ cache-line-grained access is more difficult to program 

compared to more traditional page-based approach.
❖ A hybrid approach is adopted where only specific operations such as 

insert, look-up, delete; that get most benefit from 
cache-line-grained access are implemented as such.
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Mini Pages

❖ Allocating space for a full page, even when only few tuples 
are required, wastes valuable DRAM space

❖ Solution: A mini page that can store upto 16 cache lines
❖ An additional “slots” array stores the line id for an item in 

the original page
❖ In order to resolve the issue of offset, following function 

prototype is used.

When a mini page does not have enough memory to serve a 
request, it is promoted to a full page.
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Pointer Swizzling
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Design Outline
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❖ A 3-tier buffer management is implemented, which 
incorporates ssd as well, apart from DRAM and NVM.

❖ Addition of SSD - while not improving latency is important 
for management of large datasets.

❖ In current set-up the very cold data is stored in SSD.

❖ Initially, all new-pages start on SSD. On transaction request 
page is first directly loaded to DRAM and then relegated to 
NVM or SSD based on decisions.
➢ DRAM eviction
➢ NVM admission
➢ NVM eviction

■ clock algorithm
■
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Performance Evaluation
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❖ YCSB is a key-value store benchmark framework
❖ Only point look up operations considered

❖ TPC-C is considered the industry standard for 
benchmarking transactional database systems.

❖ It is an insert-heavy workload that emulates a 
wholesale supplier.
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Performance Evaluation across Architectures
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Evaluation w.r.t NVM hardware characteristics
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Comments

❖ Pointer swizzling could compromise data integrity through malicious or unwitting 
actors

❖ OS level optimizations not considered.

❖ Tradeoff between performance improvement and usability? - are these only one 
time programmer costs?

❖ What are the other metrics for performance other than throughput? Any 
economic metrics out there?
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