

DATA ANALYTICS USING DEEP LEARNING GT 8803 // Fall 2018 // Joy Arulraj

LECTURE #19: LEARNING STATE REPRESENTATIONS FOR QUERY OPTIMIZATION WITH DEEP REINFORCEMENT LEARNING CREATING THE NE

CREATING THE NEXT[®]

PAPER

- Learning State Representations for Query Optimization with Deep Reinforcement Learning
 - Jennifer Ortiz, Magdalena Balazinska, Johannes Gehrke, S. Sathiya Keerthi
 - University of Washington , Microsoft , Criteo Research
- Key Topics
 - Deep reinforcement learning
 - Query optimization

RELATED LINKS

- Paper https://arxiv.org/abs/1803.08604
- J Ortiz <u>https://homes.cs.washington.edu/~jortiz16/</u>
- M Balazinska <u>https://www.cs.washington.edu/people/faculty/magda</u>
- J Gehrke <u>http://www.cs.cornell.edu/johannes/</u>
- SS Keerthi <u>http://www.keerthis.com/</u>

AGENDA

- Problem Overview
- Background
- Key Ideas
- Technical Details
- Experiments
- Discussion

TODAY'S PAPER

PROBLEM OVERVIEW

- **Query Optimization** is still a difficult problem
- Deep Reinforcement Learning (DRL) is an evolving approach to solve complex problems.
- Can DRL be used to improve query plan optimization?

PROBLEM OVERVIEW

- **Contribution #1**: Generate a model that determine a subquery's cardinality
- **Contribution #2**: Use reinforcement learning as a Markov process to propose a query plan

Some Challenges:

- State isn't obvious like in some contexts (e.g. games)
- Choosing the reward can be tricky

BACKGROUND: QUERY OPTIMIZATION

- Ongoing problem in database systems research
- Current systems still aren't great Why???
 - Plans must be efficient in time and resources tradeoffs
 - Current DBMSs make simplified assumptions
 - Avoid multidimensional/complex methods
 - Result -> Estimation errors and poor query plans

BACKGROUND: QUERY OPTIMIZATION

- Join order
 - When join includes more than 2 relations, join time can vary depending on size of relation
- Subquery optimization
 - group by, exists operators can often be simplified, but...
 - can be computationally complex to determine
- Cardinality estimation
 - Hard to map predicates as new data comes in
 - Requires stats to be updated

https://en.wikipedia.org/wiki/Query_optimization

EXPRESS LEARNING - DATABASE MANAGEMENT SYSTEMS

BACKGROUND: QUERY OPTIMIZATION

- Commonly used approaches
 - Data sketches
 - Sampling
 - Histograms
 - Heuristics

BACKGROUND: DEEP LEARNING

- What is it?
 - Maps input x to output y though a series of hidden layers.
 - Transforms data into representations
 - e.g. images of cats become pixels
 - Hidden layers apply of series of functions
 - Errors decrease over time via backpropagation

BACKGROUND: DEEP LEARNING

- What is it good for?
 - Machine translation
 - Object detection
 - Winning games
 - Much more...

CAT, DOG, DUCK

BACKGROUND: DEEP LEARNING

- Why?
 - Performs well across multiple domains
 - We have improved, cheaper hardware and large datasets for training
 - It's good at finding patterns that aren't obvious to humans (even domain experts)
 - Libraries
 - PyTorch, TensorFlow, Keras

BACKGROUND: REINFORCEMENT LEARNING

- What is it?
 - **Agents** the learner in the model
 - States condition of the environment
 - Actions Inputs from the agent (based on previous learning or trial/error)
 - Rewards Feedback to agent to reward (or not)

BACKGROUND: REINFORCEMENT LEARNING

- What is it good for?
 - Beating Atari games
 - Training autonomous vehicles, robots
 - Optimizing stocks, gambling, auction bids, etc.

BACKGROUND: REINFORCEMENT LEARNING

- Why?
 - May perform better than brute-force deep learning models
 - Agents can use trial/error or greedy approaches to optimize reward
 - Can be good in complex state spaces because you don't have have to provide fully labeled outputs for the model to train on; can just provide more simpler rewards

KEY IDEA

Can deep reinforcement learning be used to learn query representations?

SUBQUERY LEARNING VIA DRL

EXAMPLE

APPROACH

Map query and database to a feature vector

MORE ON APPROACH

- Two options:
 - Transform values using deep networks and output cardinality
 - Needs lots of data very sparse
 - Recursive approach is selected
 - **Recursive approach** taking subquery (h_t) and operation (a_t) as input
 - *h*_t is learned by the model
 - Thus we have NN_{ST} model that learns based on $NN_{Observed}$ and NN_{Init}

HOW TO ENCODE DATA

TECHNICAL DETAIL

STEPS

•
$$NN_{Init} = f(x_0, a_0)$$

x = database properties (min/max values, # distinct values, 1D histogram)

 $a = single relational operator (= \neq < > \leq \geq)$

•
$$NN_{ST} = f(h_t, a_t)$$

h = latent representation of model itself (a subquery)

 $a = single relational operation (<math>\bowtie$)

• NN_{Observed}

Mapping from hidden state to observed variables at time t

EXPERIMENTS

- Uses IMDB dataset
 - 3 GB
 - Real data (has skew and correlations between columns)
- TensorFlow (Python)
- Baseline estimates against SQL Server

- Train init function with properties from IMDB
- 20K queries (15K train/5K test)
- Model uses stochastic gradient descent (SGD)
- Learning rate of .01
- 50 hidden nodes in hidden layer

- Fewer epochs == greater errors
- m=3, 6th epoch similar to SQL Server
- > 6th epoch, outperforms SQL Server
- Greater cardinality == longer to converge (outperforms SQL Server by 9th epoch)

- Combined models
- Select and join operation
 - Where *a* is the join (\bowtie)
- Hidden state is able to store enough info to predict cardinality

NEXT STEPS

Can subquery representations be used to build query plans?

GOAL

• Given a database *D* and a query *Q*, train a model that can learn to predict subquery cardinalities (and the best join)...

ASSUMPTIONS

- Model-free environment where probabilities between states are unknown
- Each state encodes operations that have already been done
- The model needs a good reward to be successful
- Need to determine optimal policy

APPROACH

- For all relations in a database, assume a set of relations with attributes
- Vector at time *t*, represents equi-join predicates and 1D selection predicates
 - e.g. if a predicate exists, set value to 1, otherwise 0

HOW TO REWARD?

- Can be given at each state or at the end.
- Option 1:
 - Minimize cost based on existing query estimators
- Option 2:
 - Use cardinality from learned model
 - Experimental

Q-LEARNING

- Init with random values
- For each state, the next value of Q comes from:
 - Current value of Q
 - Learning rate
 - Reward
 - Max value for a reward given a greedy policy
 - Discount factor

$$QL(s_t, a_t) \leftarrow QL(s_t, a_t) + \alpha [r_{t+1} + \gamma max_{a'}QL(s_{t+1}, a') - QL(s_t, a_t)]$$
(1)

Q-LEARNING

https://medium.freecodecamp.org/an-introduction-to-q-learning-reinforcement-learning-14ac0b4493cc

Georgia Tech

OPEN PROBLEMS

- How to choose rewards?
- State space is large and Q-learning can be impractical
 - Need to approximate solutions

RELATED WORK

- Eliminate optimizer
- Use RL for query processing
- Feedback loop on optimizer
- Neural networks to estimate cardinality
- Neural networks to build fast indexes
- DRL to determine join order

STRENGTHS

- Deep learning is a more feasible approach than manually written queries
- Unique approach with using recursive model
- Deep learning models can approximate and exceed performance of industry-standard optimizers

WEAKNESSES

- Q-Learning is impractical and difficult
 - Large state space
 - Reward selection problem
- Evaluating query plans takes time, but so does training iterative models, would be valuable to compare.

MODEL DETAILS (NOT IN PAPER)

- Space: 1MB 2MB
- Prediction Time: ~1ms
- Training Time: 20min 1hr

FURTHER DISCUSSION

- Strategies to pick a reward function?
- For actions, discuss a value-based recursive approach vs. a policy gradient approach.
- Is there a way to pick the most representative queries to reduce state space?

REFERENCES

- 1. Slides from Jennifer Ortiz, "Deep Learning for Query Plan Resource and Cost Estimation", Teradata Analytics Universe, 2018.
- 2. LIMITED, I. E. (2012). *EXPRESS LEARNING DATABASE MANAGEMENT SYSTEMS*. S.I.: PEARSON EDUCATION INDIA.
- 3. MIT 6.S191: Introduction to Deep Learning, http://introtodeeplearning.com/

