LECTURE #19: LEARNING STATE REPRESENTATIONS FOR QUERY OPTIMIZATION WITH DEEP REINFORCEMENT LEARNING
• Learning State Representations for Query Optimization with Deep Reinforcement Learning
 – Jennifer Ortiz, Magdalena Balazinska, Johannes Gehrke, S. Sathiya Keerthi
 – University of Washington, Microsoft, Criteo Research

• Key Topics
 – Deep reinforcement learning
 – Query optimization
RELATED LINKS

- M Balazinska - https://www.cs.washington.edu/people/faculty/magda
- J Gehrke - http://www.cs.cornell.edu/johannes/
- SS Keerthi - http://www.keerthis.com/
AGENDA

• Problem Overview
• Background
• Key Ideas
• Technical Details
• Experiments
• Discussion
TODAY’S PAPER

SELECT * FROM FRUIT F INNER join FRUIT_COLOR FC ON F.color = FC.id WHERE F.name = 'orange'

Query

Database

Reinforcement Learning

Deep Learning

Query Cardinality

GT 8803 // FALL 2018
Problem Overview

- **Query Optimization** is still a difficult problem
- **Deep Reinforcement Learning (DRL)** is an evolving approach to solve complex problems.
- *Can DRL be used to improve query plan optimization?*
PROBLEM OVERVIEW

- **Contribution #1**: Generate a model that determine a subquery’s cardinality
- **Contribution #2**: Use reinforcement learning as a Markov process to propose a query plan
- **Some Challenges**:
 - State isn’t obvious like in some contexts (e.g. games)
 - Choosing the reward can be tricky
BACKGROUND: QUERY OPTIMIZATION

• Ongoing problem in database systems research
• Current systems still aren’t great - Why???
 – Plans must be efficient in time and resources - tradeoffs
 – Current DBMSs make simplified assumptions
 • Avoid multidimensional/complex methods
 – Result -> Estimation errors and poor query plans
BACKGROUND: QUERY OPTIMIZATION

- **Join order**
 - When join includes more than 2 relations, join time can vary depending on size of relation

- **Subquery optimization**
 - group by, exists operators can often be simplified, but...
 - can be computationally complex to determine

- **Cardinality estimation**
 - Hard to map predicates as new data comes in
 - Requires stats to be updated

https://en.wikipedia.org/wiki/Query_optimization
BACKGROUND: QUERY OPTIMIZATION

• Commonly used approaches
 – Data sketches
 – Sampling
 – Histograms
 – Heuristics
BACKGROUND: DEEP LEARNING

• What is it?
 – Maps input x to output y though a series of hidden layers.
 – Transforms data into representations
 • e.g. images of cats become pixels
 – Hidden layers apply series of functions
 – Errors decrease over time via backpropagation
BACKGROUND: DEEP LEARNING

• What is it good for?
 – Machine translation
 – Object detection
 – Winning games
 – Much more…

CAT, DOG, DUCK
BACKGROUND: DEEP LEARNING

• Why?
 – Performs well across multiple domains
 – We have improved, cheaper hardware and large datasets for training
 – It’s good at finding patterns that aren’t obvious to humans (even domain experts)
 – Libraries
 • PyTorch, TensorFlow, Keras
BACKGROUND: REINFORCEMENT LEARNING

- What is it?
 - **Agents** – the learner in the model
 - **States** – condition of the environment
 - **Actions** – Inputs from the agent (based on previous learning or trial/error)
 - **Rewards** – Feedback to agent to reward (or not)

BACKGROUND: REINFORCEMENT LEARNING

• What is it good for?
 – Beating Atari games
 – Training autonomous vehicles, robots
 – Optimizing stocks, gambling, auction bids, etc.
BACKGROUND: REINFORCEMENT LEARNING

• Why?
 – May perform better than brute-force deep learning models
 – Agents can use trial/error or greedy approaches to optimize reward
 – Can be good in complex state spaces because you don’t have to provide fully labeled outputs for the model to train on; can just provide more simpler rewards
Can deep reinforcement learning be used to learn query representations?
SUBQUERY LEARNING VIA DRL

State t
- Representation of Database Properties

Action t
- Query operation at time t

State $t+1$
- Subquery Representation

Action $t+1$
- Query operation at time $t+1$

State $t+2$
- Subquery Representation

State Transition Function NN_{ST}

representation at time t

action at time t

representation at time $t+1$
EXAMPLE

select * from customers C, orders O where C.col1 = O.col1 and O.col1 <= 10
APPRAOCH

• Map **query** and **database** to a **feature vector**

\[(Q,D) \rightarrow x = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}\]

• Two options:
 - Transform values using deep networks and output cardinality
 - Recursive approach taking subquery \(h_t\) and operation \(a_t\) as input
MORE ON APPROACH

• Two options:
 – Transform values using deep networks and output cardinality
 • Needs lots of data – very sparse
 • Recursive approach is selected
 – **Recursive approach** taking subquery \((h_t) \) and operation \((a_t) \) as input
 • \(h_t \) is learned by the model
 • Thus we have \(NN_{ST} \) model that learns based on \(NN_{Observed} \) and \(NN_{Init} \)
HOW TO ENCODE DATA

Input Array

Orders × Customers

Data

Basic Statistics:
1D-Histograms

SQL Query

Encode Join Predicates
Encode Selections

Histogram of Orders column

join on customers and orders

join on customers and region

GT 8803 // FALL 2018
Use cardinality as an observed variable.
STEPS

- $\text{NN}_{\text{Init}} = f(x_0, a_0)$
 - x = database properties (min/max values, # distinct values, 1D histogram)
 - a = single relational operator ($= \neq < > \leq \geq$)

- $\text{NN}_{ST} = f(h_t, a_t)$
 - h = latent representation of model itself (a subquery)
 - a = single relational operation (⋈)

- $\text{NN}_{\text{Observed}}$
 - Mapping from hidden state to observed variables at time t
EXPERIMENTS

- Uses IMDB dataset
 - 3 GB
 - Real data (has skew and correlations between columns)
- TensorFlow (Python)
- Baseline estimates against SQL Server
EXPERIMENT #1

• Train init function with properties from IMDB
• 20K queries (15K train/5K test)
• Model uses stochastic gradient descent (SGD)
• Learning rate of .01
• 50 hidden nodes in hidden layer
EXPERIMENT #1

- Fewer epochs == greater errors
- $m=3$, 6th epoch similar to SQL Server
- $>6^{th}$ epoch, outperforms SQL Server
- Greater cardinality == longer to converge
 (outperforms SQL Server by 9th epoch)
EXPERIMENT #1
EXPERIMENT #2

• Combined models
• Select and join operation
 – Where a is the join (\bowtie)
• Hidden state is able to store enough info to predict cardinality
EXPERIMENT #2
NEXT STEPS

Can subquery representations be used to build query plans?
GOAL

• Given a database D and a query Q, train a model that can learn to predict subquery cardinalities (and the best join)…
ASSUMPTIONS

- Model-free environment where probabilities between states are unknown
- Each state encodes operations that have already been done
- The model needs a good reward to be successful
- Need to determine optimal policy
Example:

Example: $S \otimes T \otimes U$
APPROACH

- For all relations in a database, assume a set of relations with attributes
- Vector at time t, represents equi-join predicates and 1D selection predicates
 - e.g. if a predicate exists, set value to 1, otherwise 0
HOW TO REWARD?

• Can be given at each state or at the end.
• Option 1:
 – Minimize cost based on existing query estimators
• Option 2:
 – Use cardinality from learned model
 – Experimental
Q-LEARNING

• Init with random values
• For each state, the next value of Q comes from:
 – Current value of Q
 – Learning rate
 – Reward
 – Max value for a reward given a greedy policy
 – Discount factor

$$QL(s_t, a_t) \leftarrow QL(s_t, a_t) + \alpha [r_{t+1} + \gamma \max_{a'} QL(s_{t+1}, a') - QL(s_t, a_t)]$$

(1)
Q-LEARNING

https://medium.freecodecamp.org/an-introduction-to-q-learning-reinforcement-learning-14ac0b4493cc
Open Problems

- How to choose rewards?
- State space is large and Q-learning can be impractical
 - Need to approximate solutions
Related Work

- Eliminate optimizer
- Use RL for query processing
- Feedback loop on optimizer
- Neural networks to estimate cardinality
- Neural networks to build fast indexes
- DRL to determine join order
STRENGTHS

• Deep learning is a more feasible approach than manually written queries
• Unique approach with using recursive model
• Deep learning models can approximate and exceed performance of industry-standard optimizers
WEAKNESSES

• Q-Learning is impractical and difficult
 – Large state space
 – Reward selection problem
• Evaluating query plans takes time, but so does training iterative models, would be valuable to compare.
MODEL DETAILS (NOT IN PAPER)

- Space: 1MB – 2MB
- Prediction Time: ~1ms
- Training Time: 20min – 1hr
FURTHER DISCUSSION

• Strategies to pick a reward function?
• For actions, discuss a value-based recursive approach vs. a policy gradient approach.
• Is there a way to pick the most representative queries to reduce state space?
REFERENCES

