DATA ANALYTICS USING DEEP LEARNING
 GT 8803 // FALL 2019 // JOY ARULRAJ
 LECTURE \#03: LOSS FUNCTIONS \& OPTIMIZATION

ADMINISTRIVIA

- Assignment 0
- One-page overview of your background
- Submit via Gradescope
- Due on Wednesday

TEACHING ASSISTANTS

- TA \#1: Jaeho Bang
- Ph.D. student in CS
- B.S. from Carnegie Mellon
- Office hours: Tue 3:30-4:30 PM

- TA \#2: Gaurav Tarlok Kakkar
- M.S. student in CS
- B.S. from IIT Kanpur
- Office hours: Thu/Fri 3:00-4:00 PM

HACKER NEWS

- https://news.ycombinator.com/

Y Hacker News new | past | comments | ask | show | jobs | submit

1. Huawei Seeks Independence from the US with RISC-V and Ascend Chips (tomshardware.com)
2. Δ How Does Esperanto Sound? (martinrue.com)
3. 4 Recognizing the signs of disruption in our urban habitat (strongtowns.org)
4. 1 Show HN: Zero-Config Documentation Websites for Python (timothycrosley.github.io)
5. Δ Pronunciations for hexadecimal numbers (1968) (twilter.com)
6. Δ Fuzzification: Anti-Fuzzing Techniques [pdf] (usenix.org)
7. \triangle Do-It-Yourself OpenJDK Garbage Collector (shipilev.net)
8. Δ Super Mario 64 has been decompiled (github.com)
y sluut 2 hours ago | hide $\mid 26$ comme
9. Δ Installing Debian Linux 2.0 (1998) (debian.org)
10. Δ Fast Tensors in Clojure - A Sneak Peek (dragan.rocks)
11. Δ Swift on Raspberry Pi (lickability.com)
12. \triangle Beyond Meat and KFC partner to test fried plant-based 'chicken' (theverge.com)
13. \triangle Moscow's blockchain voting system cracked a month before election (zdnet.com)
14. 4 Elon Musk Gambled Tesla to Save SolarCity (vanityfair.com)
15. 4 The New Museum of the Dog

5 points by wholeness 1 hour ago | hide 16 comments
6. \triangle Major book publishers sue Amazon's Audible over new speech-to-text feature (theverge.com) 227 points by bookofioe 12 hours ago | hide $\mid 317$ comments

LAST CLASS: CHALLENGES OF RECOGNITION

LAST CLASS: KNN, DATA-DRIVEN APPROACH

1-NN classifier

5-NN classifier

train	test	
train	validation	test

LAST CLASS: LINEAR CLASSIFIER

LAST CLASS: LINEAR CLASSIFIER

TODAY'S AGENDA

- Loss functions
- Multi-class SVM loss function
- Regularization
- Softmax loss function
- Optimization
- Gradients
- Stochastic Gradient Descent

LOSS FUNCTIONS

LOSS FUNCTION

Suppose: 3 training examples, 3 classes.
With some W the scores $f(x, W)=W x$ are:

cat
3.2
1.3
2.2
car 5.1
4.9
2.5
frog -1.7 $2.0 \quad$-3.1

LOSS FUNCTION

Suppose: 3 training examples, 3 classes.
With some W the scores $f(x, W)=W x$ are:

cat
3.2
1.3
2.2
$\begin{array}{llll}\text { car } & 5.1 & 4.9 & 2.5\end{array}$
frog $-1.7 \quad 2.0 \quad-3.1$

Loss Function:

A loss function tells how good our current classifier is

Given a dataset of examples

$$
\left\{\left(x_{i}, y_{i}\right)\right\}_{i=1}^{N}
$$

Where x_{i} is image and y_{i} is (integer) label

Loss over the dataset is a average of loss over examples:

$$
L=\frac{1}{N} \sum_{i} L_{i}\left(f\left(x_{i}, W\right), y_{i}\right)
$$

MULTICLASS SVM LOSS FUNCTION

Suppose: 3 training examples, 3 classes.
With some W the scores $f(x, W)=W x$ are:
Multiclass SVM loss:

cat
3.2
1.3
2.2

$$
\begin{aligned}
& \text { car } 5.1 \\
& 4.9 \quad 2.5 \\
& L_{i}=\sum_{j \neq y_{i}} \begin{cases}0 & \text { if } s_{y_{i}} \geq s_{j}+1 \\
s_{j}-s_{y_{i}}+1 & \text { otherwise }\end{cases} \\
& \text { frog -1.7 } 2.0 \quad \text {-3.1 }=\sum_{j \neq \mu_{i}} \max \left(0, s_{j}-s_{y_{i}}+1\right)
\end{aligned}
$$

Given an example (x_{i}, y_{i}) where x_{i} is the image and where y_{i} is the (integer) label, and using the shorthand for the scores vector: $s=f\left(x_{i}, W\right)$

MULTICLASS SVM LOSS FUNCTION

Suppose: 3 training examples, 3 classes.
With some W the scores $f(x, W)=W x$ are:

cat
3.2

2.2

Multiclass SVM loss:

car
5.1
4.9
2.5
$L_{i}=\sum_{j \neq y_{i}} \begin{cases}0 & \text { if } s_{y_{i}} \geq s_{j}+1 \\ s_{j}-s_{y_{i}}+1 & \text { otherwise }\end{cases}$
frog -1.7
2.0
-3.1

$$
=\sum_{j \neq y_{i}} \max \left(0, s_{j}-s_{y_{i}}+1\right)
$$

MULTICLASS SVM LOSS FUNCTION

Suppose: 3 training examples, 3 classes.

With some W the scores $f(x, W)=W x$ are:

cat
3.2
1.3
2.2
car 5.1
4.9
2.5
frog $-1.7 \quad 2.0 \quad$-3.1

Multiclass SVM loss:

Given an example $\left(x_{i}, y_{i}\right)$ where x_{i} is the image and where y_{i} is the (integer) label, and using the shorthand for the scores vector: $s=f\left(x_{i}, W\right)$
the SVM loss has the form:
$L_{i}=\sum_{j \neq y_{i}} \max \left(0, s_{j}-s_{y_{i}}+1\right)$

MULTICLASS SVM LOSS FUNCTION

Suppose: 3 training examples, 3 classes.

With some W the scores $f(x, W)=W x$ are:

cat
car

frog	-1.7
2.9	

1.3
2.2
4.9
2.0
-3.1

Multiclass SVM loss:

Given an example (x_{i}, y_{i}) where x_{i} is the image and where y_{i} is the (integer) label, and using the shorthand for the scores vector: $s=f\left(x_{i}, W\right)$
the SVM loss has the form:

$$
\begin{aligned}
L_{i} & =\sum_{j \neq y_{i}} \max \left(0, s_{j}-s_{y_{i}}+1\right) \\
& =\max (0,5.1-3.2+1) \\
& +\max (0,-1.7-3.2+1) \\
& =\max (0,2.9)+\max (0,-3.9) \\
& =2.9+0 \\
& =2.9
\end{aligned}
$$

MULTICLASS SVM LOSS FUNCTION

Suppose: 3 training examples, 3 classes.
With some W the scores $f(x, W)=W x$ are:

cat 3.2
car 5.1
frog -1.7
Losses: 2.9

2.2
2.5
-3.1

Multiclass SVM loss:

Given an example (x_{i}, y_{i}) where x_{i} is the image and where y_{i} is the (integer) label, and using the shorthand for the scores vector: $s=f\left(x_{i}, W\right)$
the SVM loss has the form:

$$
\begin{aligned}
L_{i} & =\sum_{j \neq y_{i}} \max \left(0, s_{j}-s_{y_{i}}+1\right) \\
& =\max (0,1.3-4.9+1) \\
& +\max (0,2.0-4.9+1) \\
& =\max (0,-2.6)+\max (0,-1.9) \\
& =0+0 \\
& =0
\end{aligned}
$$

MULTICLASS SVM LOSS FUNCTION

Suppose: 3 training examples, 3 classes.
With some W the scores $f(x, W)=W x$ are:

cat 3.2
car 5.1
frog -1.7
2.2
4.9
2.5
2.0
-3.1
12.9

Multiclass SVM loss:

Given an example (x_{i}, y_{i}) where x_{i} is the image and where y_{i} is the (integer) label, and using the shorthand for the scores vector: $s=f\left(x_{i}, W\right)$
the SVM loss has the form:

$$
\begin{aligned}
L_{i} & =\sum_{j \neq y_{i}} \max \left(0, s_{j}-s_{y_{i}}+1\right) \\
& =\max (0,2.2-(-3.1)+1) \\
& +\max (0,2.5-(-3.1)+1) \\
& =\max (0,6.3)+\max (0,6.6) \\
& =6.3+6.6 \\
& =12.9
\end{aligned}
$$

2.9

MULTICLASS SVM LOSS FUNCTION

Suppose: 3 training examples, 3 classes.
With some W the scores $f(x, W)=W x$ are:

cat
3.2
1.3
2.2
car
5.1
4.9
2.5
frog -1.7
2.0
-3.1
Losses: 2.9
0

Multiclass SVM loss:

Given an example (x_{i}, y_{i}) where x_{i} is the image and where y_{i} is the (integer) label, and using the shorthand for the scores vector: $s=f\left(x_{i}, W\right)$
the SVM loss has the form:
$L_{i}=\sum_{j \neq y_{i}} \max \left(0, s_{j}-s_{y_{i}}+1\right)$
Loss over full dataset is average:

$$
\begin{gathered}
L=\frac{1}{N} \sum_{i=1}^{N} L_{i} \\
\mathrm{~L}=(2.9+0+12.9) / 3=5.27
\end{gathered}
$$

MULTICLASS SVM LOSS FUNCTION

Suppose: 3 training examples, 3 classes.

With some W the scores $f(x, W)=W x$ are:

cat
3.2
1.3
2.2
car 5.1
4.9
2.5
frog -1.7
2.0

0
2.9

Losses:
-3.1
12.9

Multiclass SVM loss:
Given an example (x_{i}, y_{i}) where x_{i} is the image and where y_{i} is the (integer) label, and using the shorthand for the scores vector: $s=f\left(x_{i}, W\right)$
the SVM loss has the form:
$L_{i}=\sum_{j \neq y_{i}} \max \left(0, s_{j}-s_{y_{i}}+1\right)$
Q: What happens to loss if the scores for the car image change a bit?

MULTICLASS SVM LOSS FUNCTION

Suppose: 3 training examples, 3 classes.

With some W the scores $f(x, W)=W x$ are:

cat
3.2
1.3
2.2
car 5.1
4.9
2.5
frog -1.7
2.0

0

Multiclass SVM loss:

Given an example (x_{i}, y_{i}) where x_{i} is the image and where y_{i} is the (integer) label, and using the shorthand for the scores vector: $s=f\left(x_{i}, W\right)$
the SVM loss has the form:
$L_{i}=\sum_{j \neq y_{i}} \max \left(0, s_{j}-s_{y_{i}}+1\right)$
Q2: What is the min/max possible loss?

MULTICLASS SVM LOSS FUNCTION

Suppose: 3 training examples, 3 classes.

With some W the scores $f(x, W)=W x$ are:

cat
3.2
1.3
2.2
car 5.1
4.9
2.5
frog -1.7
2.0

0
2.9

Losses:
-3.1

Multiclass SVM loss:
Given an example (x_{i}, y_{i}) where x_{i} is the image and where y_{i} is the (integer) label, and using the shorthand for the scores vector: $s=f\left(x_{i}, W\right)$
the SVM loss has the form:
$L_{i}=\sum_{j \neq y_{i}} \max \left(0, s_{j}-s_{y_{i}}+1\right)$
Q3: At initialization W is small so all $s \approx 0$.
What is the loss?

MULTICLASS SVM LOSS FUNCTION

Suppose: 3 training examples, 3 classes.

With some W the scores $f(x, W)=W x$ are:

cat
3.2
1.3
2.2
car 5.1
4.9
2.5
frog -1.7
Losses:
2.9
2.0

0
-3.1

MULTICLASS SVM LOSS FUNCTION

Suppose: 3 training examples, 3 classes.

With some W the scores $f(x, W)=W x$ are:

cat
3.2
1.3
car 5.1
4.9
frog -1.7
2.0

0
2.9
-3.1 12.9

2.2
2.5

Multiclass SVM loss:

Given an example (x_{i}, y_{i}) where x_{i} is the image and where y_{i} is the (integer) label, and using the shorthand for the scores vector: $s=f\left(x_{i}, W\right)$
the SVM loss has the form:
$L_{i}=\sum_{j \neq y_{i}} \max \left(0, s_{j}-s_{y_{i}}+1\right)$
Q5: What if we used mean instead of sum?
Georgia
Tech

MULTICLASS SVM LOSS FUNCTION

Suppose: 3 training examples, 3 classes.
With some W the scores $f(x, W)=W x$ are:

cat
3.2
1.3
2.2
car 5.1
4.9
2.5

Multiclass SVM loss:
Given an example (x_{i}, y_{i}) where x_{i} is the image and where y_{i} is the (integer) label, and using the shorthand for the scores vector: $s=f\left(x_{i}, W\right)$
the SVM loss has the form:
$L_{i}=\sum_{j \neq y_{i}} \max \left(0, s_{j}-s_{y_{i}}+1\right)$
frog -1.7
2.0
-3.1
Q6: What if we used
$L_{i}=\sum_{j \neq y_{i}} \max \left(0, s_{j}-s_{y_{i}}+1\right)^{2}$
Losses: 2.9
0 12.9

MULTICLASS SVM LOSS FUNCTION

$$
L_{i}=\sum_{j \neq y_{i}} \max \left(0, s_{j}-s_{y_{i}}+1\right)
$$

```
def L_i_vectorized(x, y, W):
    scores = W.dot(x)
    margins = np.maximum(0, scores - scores[y] + 1)
    margins[y] = 0
    loss_i = np.sum(margins)
    return loss_i
```


MULTICLASS SVM LOSS FUNCTION

$$
\begin{aligned}
& f(x, W)=W x \\
& L=\frac{1}{N} \sum_{i=1}^{N} \sum_{j \neq y_{i}} \max \left(0, f\left(x_{i} ; W\right)_{j}-f\left(x_{i} ; W\right)_{y_{i}}+1\right)
\end{aligned}
$$

- Suppose that we found a W such that $L=0$.
- Is this W unique?

MULTICLASS SVM LOSS FUNCTION

$f(x, W)=W x$
$L=\frac{1}{N} \sum_{i=1}^{N} \sum_{j \neq y_{i}} \max \left(0, f\left(x_{i} ; W\right)_{j}-f\left(x_{i} ; W\right)_{y_{i}}+1\right)$

- Suppose that we found a W such that $\mathrm{L}=0$.
- Is this W unique?
- No! 2W is also has $L=0$!

MULTICLASS SVM LOSS FUNCTION

cat	$\mathbf{3 . 2}$	1.3	2.2
car	5.1	$\mathbf{4 . 9}$	2.5
frog	-1.7	2.0	$\mathbf{- 3 . 1}$
Losses:	2.9	0	

Tech

MULTICLASS SVM LOSS FUNCTION

$f(x, W)=W x$
$L=\frac{1}{N} \sum_{i=1}^{N} \sum_{j \neq y_{i}} \max \left(0, f\left(x_{i} ; W\right)_{j}-f\left(x_{i} ; W\right)_{y_{i}}+1\right)$

- Suppose that we found a W such that $\mathrm{L}=0$.
- Is this W unique?
- No! 2W is also has $L=0$!
- How do we choose between W and 2W?

regularization

$$
L(W)=\frac{1}{N} \sum_{i=1}^{N} L_{i}\left(f\left(x_{i}, W\right), y_{i}\right)
$$

Data loss: Model predictions should match training data

REGULARIZATION

$$
L(W)=\underbrace{\frac{1}{N} \sum_{i=1}^{N} L_{i}\left(f\left(x_{i}, W\right), y_{i}\right)}+\underbrace{\lambda R(W)}
$$

Data loss: Model predictions should match training data

Regularization: Prevent the model from doing too well on training data

REGULARIZATION

$$
L(W)=\underbrace{\frac{1}{N} \sum_{i=1}^{N} L_{i}\left(f\left(x_{i}, W\right), y_{i}\right)}+\lambda R(W)
$$

λ = regularization strength (hyperparameter)

Data loss: Model predictions should match training data

Regularization: Prevent the model from doing too well on training data

REGULARIZATION

$$
L(W)=\underbrace{\frac{1}{N} \sum_{i=1}^{N} L_{i}\left(f\left(x_{i}, W\right), y_{i}\right)}+\underbrace{\lambda R(W)}
$$

λ = regularization strength (hyperparameter)

Data loss: Model predictions should match training data

Regularization: Prevent the model from doing too well on training data

Simple examples

L2 regularization: $\quad R(W)=\sum_{k} \sum_{l} W_{k, l}^{2}$
L1 regularization: $\quad R(W)=\sum_{k} \sum_{l}\left|W_{k, l}\right|$
Elastic net (L1 + L2): $\quad R(W)=\sum_{k} \sum_{l} \beta W_{k, l}^{2}+\left|W_{k, l}\right|$

REGULARIZATION

$$
L(W)=\underbrace{\frac{1}{N} \sum_{i=1}^{N} L_{i}\left(f\left(x_{i}, W\right), y_{i}\right)}+\underbrace{\lambda R(W)}
$$

λ = regularization strength (hyperparameter)

Data loss: Model predictions should match training data

Regularization: Prevent the model from doing too well on training data

Simple examples

L2 regularization: $\quad R(W)=\sum_{k} \sum_{l} W_{k, l}^{2}$
L1 regularization: $\quad R(W)=\sum_{k} \sum_{l}\left|W_{k, l}\right|$

More complex:

Dropout
Batch normalization
Stochastic depth, etc.

REGULARIZATION

$$
L(W)=\underbrace{\frac{1}{N} \sum_{i=1}^{N} L_{i}\left(f\left(x_{i}, W\right), y_{i}\right)}+\underbrace{\lambda R(W)}
$$

λ = regularization strength (hyperparameter)

Data loss: Model predictions should match training data

Regularization: Prevent the model from doing too well on training data

Why regularize?

- Express preferences over weights
- Make the model simple so it works on test data
- Improve optimization by adding curvature

REGULARIZATION: EXPRESSING PREFERENCES

$$
\begin{aligned}
x= & {[1,1,1,1] } \\
w_{1}= & {[1,0,0,0] } \\
w_{2}= & {[0.25,0.25,0.25,0.25] } \\
& w_{1}^{T} x=w_{2}^{T} x=1
\end{aligned}
$$

L2 Regularization

$R(W)=\sum_{k} \sum_{l} W_{k, l}^{2}$

REGULARIZATION: EXPRESSING PREFERENCES

$$
\begin{aligned}
x & =[1,1,1,1] \\
w_{1} & =[1,0,0,0] \\
w_{2} & =[0.25,0.25,0.25,0.25]
\end{aligned}
$$

L2 Regularization

$R(W)=\sum_{k} \sum_{l} W_{k, l}^{2}$

L2 regularization likes to
"spread out" the weights

$$
w_{1}^{T} x=w_{2}^{T} x=1
$$

REGULARIZATION: PREFER SIMPLER MODELS

REGULARIZATION: PREFER SIMPLER MODELS

REGULARIZATION: PREFER SIMPLER MODELS

SOFTMAX LOSS FUNCTIONS

SOFTMAX LOSS FUNCTION

Want to interpret raw classifier scores as probabilities
cat 3.2
car 5.1
frog -1.7

SOFTMAX LOSS FUNCTION

Want to interpret raw classifier scores as probabilities

$$
s=f\left(x_{i} ; W\right) \quad P\left(Y=k \mid X=x_{i}\right)=\left\lvert\, \frac{e^{s_{k}}}{\sum_{j} e^{s_{j}}} \quad \begin{aligned}
& \text { Softmax } \\
& \text { Function }
\end{aligned}\right.
$$

cat 3.2
car 5.1
frog -1.7

SOFTMAX LOSS FUNCTION

Want to interpret raw classifier scores as probabilities $s=f\left(x_{i} ; W\right) \quad P\left(Y=k \mid X=x_{i}\right)=\frac{e^{s_{k}}}{\sum_{j} e^{s_{j}}} \quad \begin{gathered}\text { Softmax } \\ \text { Function }\end{gathered}$

Probabilities
must be $>=0$

cat	3.2	24.5
car	$5.1 \xrightarrow{\text { exp }}$	164.0
frog	-1.7	0.18

probabilities

SOFTMAX LOSS FUNCTION

Want to interpret raw classifier scores as probabilities $s=f\left(x_{i} ; W\right) \quad P\left(Y=k \mid X=x_{i}\right)=\frac{e^{s_{k}}}{\sum_{j} e^{s_{j}}}$ Softmax $\begin{gathered}\text { Function }\end{gathered}$

Probabilities Probabilities
must be $>=0 \quad$ must sum to 1

cat	3.2	24.5		0.13
car	5.1 exp	164.0	normalize	0.87
frog	-1.7	0.18		0.00

SOFTMAX LOSS FUNCTION

Want to interpret raw classifier scores as probabilities $s=f\left(x_{i} ; W\right) \quad P\left(Y=k \mid X=x_{i}\right)=\frac{e^{s_{k}}}{\sum_{j} e^{s_{j}}} \quad \begin{gathered}\text { Softmax } \\ \text { Function }\end{gathered}$

Probabilities \quad Probabilities $\quad L_{i}=-\log P\left(Y=y_{i} \mid X=x_{i}\right)$
must be $>=0 \quad$ must sum to 1

SOFTMAX LOSS FUNCTION

Want to interpret raw classifier scores as probabilities

$$
s=f\left(x_{i} ; W\right) \quad P\left(Y=k \mid X=x_{i}\right)=\frac{e^{s_{k}}}{\sum_{j} e^{s_{j}}}
$$

Probabilities
must be $>=0$

Probabilities

$$
L_{i}=-\log P\left(Y=y_{i} \mid X=x_{i}\right)
$$

must sum to 1

cat	3.2	24.5		0.13	$\rightarrow \begin{aligned} \rightarrow & \mathrm{L}_{\mathrm{i}} \end{aligned}=-\log (0.13)$
car	5.1 exp	164.0	normalize	0.87	Maximum Likelihood Estimation
frog	-1.7	0.18		0.00	Choose weights to maximize the likelihood of the observed data
		normalize		robabilit	

SOFTMAX LOSS FUNCTION

Want to interpret raw classifier scores as probabilities $s=f\left(x_{i} ; W\right) \quad P\left(Y=k \mid X=x_{i}\right)=\frac{e^{s_{k}}}{\sum_{j} e^{s_{j}}} \quad \begin{gathered}\text { Softmax } \\ \text { Function }\end{gathered}$

Probabilities \quad Probabilities $\quad L_{i}=-\log P\left(Y=y_{i} \mid X=x_{i}\right)$
must be $>=0$
must sum to 1

SOFTMAX LOSS FUNCTION

Want to interpret raw classifier scores as probabilities $s=f\left(x_{i} ; W\right) \quad P\left(Y=k \mid X=x_{i}\right)=\frac{e^{s_{k}}}{\sum_{j} e^{s_{j}}} \quad \begin{gathered}\text { Softmax } \\ \text { Function }\end{gathered}$

Probabilities \quad Probabilities $\quad L_{i}=-\log P\left(Y=y_{i} \mid X=x_{i}\right)$
must be $>=0$
must sum to 1

SOFTMAX LOSS FUNCTION

Want to interpret raw classifier scores as probabilities $s=f\left(x_{i} ; W\right) \quad P\left(Y=k \mid X=x_{i}\right)=\frac{e^{s_{k}}}{\sum_{j} e^{s_{j}}} \quad \begin{gathered}\text { Softmax } \\ \text { Function }\end{gathered}$

Probabilities \quad Probabilities $\quad L_{i}=-\log P\left(Y=y_{i} \mid X=x_{i}\right)$
must be $>=0$
must sum to 1

SOFTMAX LOSS FUNCTION

Want to interpret raw classifier scores as probabilities

$$
s=f\left(x_{i} ; W\right) \quad P\left(Y=k \mid X=x_{i}\right)=\frac{e^{s_{k}}}{\sum_{j} e^{s_{j}}} \quad \begin{aligned}
& \text { Softmax } \\
& \text { Function }
\end{aligned}
$$

Maximize probability of correct class Putting it all together:

$$
L_{i}=-\log P\left(Y=y_{i} \mid X=x_{i}\right) \quad L_{i}=-\log \left(\frac{e^{s y_{i}}}{\sum_{j} e^{s_{j}}}\right)
$$

cat 3.2
car 5.1
frog -1.7

SOFTMAX LOSS FUNCTION

Want to interpret raw classifier scores as probabilities

$$
s=f\left(x_{i} ; W\right) \quad P\left(Y=k \mid X=x_{i}\right)=\frac{e^{s_{k}}}{\sum_{j} e^{s_{j}}} \quad \begin{aligned}
& \text { Softmax } \\
& \text { Function }
\end{aligned}
$$

Maximize probability of correct class Putting it all together:

$$
L_{i}=-\log P\left(Y=y_{i} \mid X=x_{i}\right) \quad L_{i}=-\log \left(\frac{e^{s y_{i}}}{\sum_{j} e^{s_{j}}}\right)
$$

cat 3.2
Q : What is the min / \max possible loss L_i?
frog -1.7

SOFTMAX LOSS FUNCTION

Want to interpret raw classifier scores as probabilities

$$
s=f\left(x_{i} ; W\right) \quad P\left(Y=k \mid X=x_{i}\right)=\frac{e^{s_{k}}}{\sum_{j} e^{s_{j}}} \quad \begin{aligned}
& \text { Softmax } \\
& \text { Function }
\end{aligned}
$$

Maximize probability of correct class Putting it all together:
$L_{i}=-\log P\left(Y=y_{i} \mid X=x_{i}\right) \quad L_{i}=-\log \left(\frac{e^{s y_{i}}}{\sum_{j} e^{s_{j}}}\right)$
cat 3.2
Q : What is the min / \max possible loss L_i?
A: min 0, max infinity
frog
-1.7

SOFTMAX LOSS FUNCTION

Want to interpret raw classifier scores as probabilities

$$
s=f\left(x_{i} ; W\right) \quad P\left(Y=k \mid X=x_{i}\right)=\frac{e^{s_{k}}}{\sum_{j} e^{s_{j}}} \quad \begin{aligned}
& \text { Softmax } \\
& \text { Function }
\end{aligned}
$$

Maximize probability of correct class Putting it all together:

$$
L_{i}=-\log P\left(Y=y_{i} \mid X=x_{i}\right) \quad L_{i}=-\log \left(\frac{e^{s y_{i}}}{\sum_{j} e^{s_{j}}}\right)
$$

cat 3.2
Q2: At initialization all s will be approximately equal; what is the loss?

SOFTMAX LOSS FUNCTION

Want to interpret raw classifier scores as probabilities

$$
s=f\left(x_{i} ; W\right) \quad P\left(Y=k \mid X=x_{i}\right)=\frac{e^{s_{k}}}{\sum_{j} e^{s_{j}}} \quad \begin{aligned}
& \text { Softmax } \\
& \text { Function }
\end{aligned}
$$

Maximize probability of correct class Putting it all together:

$$
L_{i}=-\log P\left(Y=y_{i} \mid X=x_{i}\right) \quad L_{i}=-\log \left(\frac{e^{s y_{i}}}{\sum_{j} e^{s_{j}}}\right)
$$

cat 3.2

Q2: At initialization all s will be approximately equal; what is the loss? A: $\log (C)$, eg $\log (10) \approx 2.3$

SOFTMAX VS SVM LOSS FUNCTION

SOFTMAX VS SVM LOSS FUNCTION

$$
L_{i}=-\log \left(\frac{e^{e_{i_{i}}}}{\sum_{j} e_{j}^{j}}\right) \quad L_{i}=\sum_{j \neq y_{i}} \max \left(0, s_{j}-s_{y_{i}}+1\right)
$$

SOFTMAX VS SVM LOSS FUNCTION

$$
L_{i}=-\log \left(\frac{e^{s y_{i}}}{\sum_{j} e^{s_{j}}}\right) \quad L_{i}=\sum_{j \neq y_{i}} \max \left(0, s_{j}-s_{y_{i}}+1\right)
$$

assume scores:

[10, -2, 3]
[10, 9, 9]
[10, -100, -100]
and $y_{i}=0$

Q: Suppose I take a datapoint and I jiggle a bit (changing its score slightly). What happens to the loss in both cases?

RECAP: LOSS FUNCTIONS

- We have some dataset of (x.v)
- We have a score function: $s=f(x ; W) \stackrel{\text { e.g. }}{=} W x$
- We have a loss function:

$$
\begin{aligned}
& L_{i}=-\log \left(\frac{e^{s y_{i}}}{\sum_{j} e^{s_{j}}}\right) \\
& L_{i}=\sum_{j \neq y_{i}} \max \left(0, s_{j}-s_{y_{i}}+1\right) \\
& L=\frac{1}{N} \sum_{i=1}^{N} L_{i}+R(W) \text { Full loss }
\end{aligned}
$$

RECAP: LOSS FUNCTIONS

- We have some dataset of (x.v)
- We have a score function: $s=f(x ; W) \stackrel{\text { e.g. }}{=} W x$
- We have a loss function:

$$
L_{i}=-\log \left(\frac{e^{s y_{i}}}{\sum_{j} e^{s_{j}}}\right) \quad \text { Hoftmax do we find the best W? }
$$

$$
\begin{aligned}
& L_{i}=-\log \left(\frac{e^{s y_{i}}}{\sum_{j} e^{s_{j}}}\right) \\
& L_{i}=\sum_{j \neq y_{i}} \max \left(0, s_{j}-s_{y_{i}}+1\right) \\
& L=\frac{1}{N} \sum_{i=1}^{N} L_{i}+R(W) \text { Full loss }
\end{aligned}
$$

OPTIMIZATION

OPTIMIZATION

OPTIMIZATION

STRATEGY \#1: RANDOM SEARCH

```
# assume X_train is the data where each column is an example (e.g. 3073 x 50,000)
# assume Y train are the labels (e.g. 1D array of 50,000)
# assume the function L evaluates the loss function
bestloss = float("inf") # Python assigns the highest possible float value
for num in xrange(1000):
    W = np.random.randn(10, 3073) * 0.0001 # generate random parameters
    loss = L(X_train, Y_train, W) # get the loss over the entire training set
    if loss < bestloss: # keep track of the best solution
        bestloss = loss
        bestW = W
    print 'in attempt %d the loss was %f, best %f' % (num, loss, bestloss)
# prints:
# in attempt 0 the loss was 9.401632, best 9.401632
# in attempt 1 the loss was 8.959668, best 8.959668
# in attempt 2 the loss was 9.044034, best 8.959668
# in attempt 3 the loss was 9.278948, best 8.959668
# in attempt 4 the loss was 8.857370, best 8.857370
# in attempt 5 the loss was 8.943151, best 8.857370
# in attempt 6 the loss was 8.605604, best 8.605604
# ... (trunctated: continues for 1000 lines)
```


STRATEGY \#1: RANDOM SEARCH

```
# Assume X test is [3073 x 10000], Y test [10000 x 1]
scores = Wbest.dot(Xte_cols) # 10 x 10000, the class scores for all test examples
# find the index with max score in each column (the predicted class)
Yte_predict = np.argmax(scores, axis = 0)
# and calculate accuracy (fraction of predictions that are correct)
np.mean(Yte_predict == Yte)
# returns 0.1555
```


15.5\% accuracy! not bad!
 (SOTA is ~95\%)

STRATEGY \#2: FOLLOW THE SLOPE

STRATEGY \#2: FOLLOW THE SLOPE

In 1-dimension, the derivative of a function:

$$
\frac{d f(x)}{d x}=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

In multiple dimensions, the gradient is the vector of (partial derivatives) along each dimension The slope in any direction is the dot product of the direction with the gradient
The direction of steepest descent is the negative gradient

current W:	$\mathbf{W}+\mathbf{h}$ (first dim):	gradient dW:
[0.34,	[0.34 + 0.0001,	[?,
-1.11,	-1.11,	?,
0.78,	0.78,	?,
0.12 ,	0.12,	?,
0.55,	0.55,	?,
2.81,	2.81,	?,
-3.1,	-3.1,	?,
-1.5,	-1.5,	?,
0.33,...]	0.33,...]	?,...]
loss 1.25347	$\underset{\text { loss } 1.25322}{\text { gitge3 } / \text { /ful } 2019}$	

current W:	$\mathbf{W}+\mathrm{h}$ (first dim):	gradient dW:
[0.34,	[0.34 + 0.0001,	[-2.5,
-1.11,	-1.11,	?,
0.78,	0.78,	?,
0.12,	0.12,	?,
0.55,	0.55,	?,
2.81,	2.81,	?
-3.1,	-3.1,	?
-1.5,	-1.5,	?,
$0.33, \ldots]$	$0.33, \ldots]$?,...]
loss 1.25347		

curren
[0.34,
-1.11,
0.78 ,
0.12 ,
0.55 ,
2.81,
-3.1,
-1.5,
0.33,...]
loss 1.25347

loss

$\mathbf{W}+\mathbf{h}($ first dim):
[0.34 + 0.0001,
-1.11,
0.78 ,
0.12 ,
0.55,
2.81,
-3.1,
-1.5,
0.33,...]
loss 1.25322
(1.25353-1.25347)/0.0001
$=0.6$

$$
\frac{d f(x)}{d x}=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

gradient dW:

[-2.5, 0.6,

current W:	$\mathbf{W}+\mathbf{h}$ (first dim):	gradient dW:
[0.34,	[0.34 + 0.0001,	[-2.5,
-1.11,	-1.11,	0.6,
0.78,	0.78,	?,
0.12 ,	0.12,	?
0.55,	0.55,	?,
2.81,	2.81,	?,
-3.1,	-3.1,	?,
-1.5,	-1.5,	?,
$0.33, \ldots]$	$0.33, \ldots .$.	?,...]
loss 1.25347	loss 1.25322	

current W:	$\mathbf{W}+\mathbf{h}$ (first dim)) ${ }^{\text {gradient }} \mathrm{dW}$:
$\begin{aligned} & {[0.34,} \\ & -1.11, \\ & 0.78, \\ & 0.12, \end{aligned}$	$\begin{aligned} & {[0.34+0.0001,} \\ & -1.11, \\ & 0.78, \\ & 0.12, \end{aligned}$	$\begin{aligned} & {[-2.5,} \\ & 0.6, \\ & 0 \\ & ?, \end{aligned}$
0.55,	0.55, (1.20	
2.81,	2.81, $=$	${ }_{=0}^{(1.25347-1.25347) / 0.0001}$ $=0$
-3.1,		$\frac{d f(x)}{d x}=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$
0.33,...]	$\begin{aligned} & 0.33, \ldots .] \\ & \text { loss } 1.25322 \end{aligned}$?,...]
loss 1.25347		

current W:	$\mathbf{W}+\mathrm{h}$ (first dim)	gradient dW:
$\begin{aligned} & {[0.34,} \\ & -1.11, \\ & 0.78, \end{aligned}$	$\begin{aligned} & {[0.34+0.0001} \\ & -1.11 \\ & 0.78 \end{aligned}$	$\begin{aligned} & {[-2.5,} \\ & 0.6, \\ & 0, \end{aligned}$
$\begin{aligned} & 0.12, \\ & 0.55, \\ & 2.81, \\ & -3.1, \end{aligned}$	0.12, N 0.55, - 2.81, -3.1, -	Numeric Gradient - Slow! Need to loop over all dimensions - Approximate
-1.5,	-1.5,	?
$\begin{aligned} & 0.33, . .] \\ & \text { loss } 1.25347 \end{aligned}$	$\begin{aligned} & 0.33, \ldots] \\ & \text { loss } 1.25322 \end{aligned}$?,...]

ANALYTIC GRADIENT

- This is silly. The loss is just a function of W:

$$
L=\frac{1}{N} \sum_{i=1}^{N} L_{i}+\sum_{k} W_{k}^{2}
$$

$$
L_{i}=\sum_{j \neq y_{i}} \max \left(0, s_{j}-s_{y_{i}}+1\right)
$$

$$
s=f(x ; W)=W x
$$

- want $\nabla_{W} L$

ANALYTIC GRADIENT

- This is silly. The loss is just a function of W:

$$
\begin{aligned}
& L=\frac{1}{N} \sum_{i=1}^{N} L_{i}+\sum_{k} W_{k}^{2} \\
& L_{i}=\sum_{j \neq y_{i}} \max \left(0, s_{j}-s_{y_{i}}+1\right) \\
& s=f(x ; W)=W x
\end{aligned}
$$

- Want $\nabla_{W} L$
- Use calculus to compute analytic gradient

SUMMARY

- Types of Gradients
- Numerical gradient: approximate, slow, easy to write
- Analytic gradient: exact, fast, error-prone
- In practice: Always use analytic gradient, but check implementation with numerical gradient. This is called a gradient check.

gRADIENT DESCENT

\# Vanilla Gradient Descent
while True:
weights_grad = evaluate_gradient(loss_fun, data, weights) weights += - step_size * weights_grad \# perform parameter update

gRADIENT DESCENT

\# Vanilla Gradient Descent
while True:
weights_grad = evaluate_gradient(loss_fun, data, weights) weights += - step_size * weights_grad \# perform parameter update

STOCHASTIC GRADIENT DESCENT [SGD]

$$
\begin{aligned}
L(W) & =\frac{1}{N} \sum_{i=1}^{N} L_{i}\left(x_{i}, y_{i}, W\right)+\lambda R(W) \\
\nabla_{W} L(W) & =\frac{1}{N} \sum_{i=1}^{N} \nabla_{W} L_{i}\left(x_{i}, y_{i}, W\right)+\lambda \nabla_{W} R(W)
\end{aligned}
$$

Full sum expensive when N is large!

Approximate sum using a minibatch of examples 32 / 64 / 128 common

```
# Vanilla Minibatch Gradient Descent
while True:
    data_batch = sample_training_data(data, 256) # sample 256 examples
    weights_grad = evaluate_gradient(loss_fun, data_batch, weights)
    weights += - step_size * weights_grad # perform parameter update
```


INTERACTIVE WEB DEMO

- http://vision.stanford.edu/teaching/cs231n-demos/linearclassify/

${ }_{4}^{W[0,0}$	$\underset{\Delta}{\mathrm{w}[0,1]}$	$\underset{\Delta}{\mathrm{b}[0]}$	x [0]	x [1]	Y	$s[0]$	s[1]	s [2]	L
2.06	1.48	-0.42	0.50	0.40	0	1.20	0.01	0.22	0.02
V	V	\checkmark	0.80	0.30	0	1.67	0.33	1.10	0.44
4	4	Δ	0.30	0.80	0	1.38	-0.80	-1.05	0.00
0.44	$\left[\begin{array}{l} -1,82 \\ -0,37 \end{array}\right.$	$\begin{aligned} & 0.52 \\ & 0.12 \end{aligned}$	-0.40	0.30	1	-0.80	-0.20	-1.62	0.39
w 2.	w[2, ${ }^{\text {c }}$	b 21	-0.30	0.70	1	-0.01	-0.88	-2.21	1.87
		\pm	-0.70	0.20	1	-1.57	-0.15	-2.10	0.00
	V	-0.11	0.70	-0.40	2	0.43	1.55	2.31	0.25
			0.50	-0.60	2	-0.28	1.83	2.26	0.57
Step stie: 0,10000			-0.40	-0.50	2	-1.98	1.26	0.01	2.24
Singlo paraneter updata									mean:
Start repeosted update			Total data loss: 0.64 Regularization loss: 1.92 Total loss: 2.57						0.64
Stop repeated update									
Rascomize paramuers			L2 Regularization strength: 0.10000						

ASIDE: IMAGE FEATURES

Class scores

ASIDE: IMAGE FEATURES

IMAGE FEATURES: MOTIVATION

Cannot separate red and blue points with linear classifier

IMAGE FEATURES: MOTIVATION

Cannot separate red and blue points with linear classifier

$$
f(x, y)=(r(x, y), \theta(x, y))
$$

After applying feature transform, points can be separated by linear classifier

EXAMPLE: COLOR HISTOGRAM

example: histogram of oriented gradients [hog]

Divide image into 8×8 pixel regions
Within each region quantize edge direction into 9 bins

Example: 320x240 image gets divided into 40×30 bins; in each bin there are 9 numbers so feature vector has $30 * 40 * 9=$ 10,800 numbers

EXAMPLE: BAG OF WORDS

Step 1: Build codebook

Extract random patches

Step 2: Encode images

ASIDE: IMAGE FEATURES

IMAGE FEATURES VS CONVNETS

NEXT LECTURE

- Introduction to neural networks
- Backpropagation

