
DATA ANALYTICS

USING DEEP LEARNING

GT 8803 // FALL 2019 // JOY ARULRAJ

L E C T U R E # 0 5 : I N T R O D U C T I O N T O D A T A B A S E

S Y S T E M S A N D A D V A N C E D S Q L

GT 8803 // Fall 2019

a d m i n i s t r i v i a

• Assignment 1
– Due on Sep 18

– Focuses on topics covered in first four lectures

• Project ideas
– Share a list next week

– Start looking for team-mates!

2

GT 8803 // Fall 2019

L A S T C L A S S

• Introduction to neural networks
– Non-linear activation functions

– Computational graphs

– Backpropagation

• Image classification
– Classification function, Loss function, Optimization

– KNN, Linear Classifier, Neural networks, etc.

3

GT 8803 // Fall 2019

T O D A Y ’ s A G E N D A

• Introduction to database systems

• Advanced SQL

4

GT 8803 // Fall 2018

DATABASE
SYSTEMS

5

GT 8803 // Fall 2019

D A T A B A S E

• Organized collection of inter-related data that

models some aspect of the real-world.

• Databases are core the component of most

computer applications.

6

GT 8803 // Fall 2019

D A T A B A S E E X A M P L E

• Create a database that models a digital music

store to keep track of artists and albums.

• Things we need store:
– Information about Artists
– What Albums those Artists released

7

GT 8803 // Fall 2019

F L A T F I L E S T R A W M A N

• Store our database as comma-separated

value (CSV) files that we manage in our own

code.
– Use a separate file per entity.

– The application has to parse the files each time

they want to read/update records.

8

GT 8803 // Fall 2019

F L A T F I L E S T R A W M A N

• Create a database that models a digital music

store.

9

"Enter the Wu Tang","Wu Tang Clan",1993

"St.Ides Mix Tape","Wu Tang Clan",1994

"AmeriKKKa's Most Wanted","Ice Cube",1990

Album(name, artist, year)

"Wu Tang Clan",1992,"USA"

"Notorious BIG",1992,"USA"

"Ice Cube",1989,"USA"

Artist(name, year, country)

GT 8803 // Fall 2019

F L A T F I L E S T R A W M A N

• Example: Get the year that Ice Cube went

solo.

10

"Wu Tang Clan",1992,"USA"

"Notorious BIG",1992,"USA"

"Ice Cube",1989,"USA"

Artist(name, year, country)

GT 8803 // Fall 2019

F L A T F I L E S T R A W M A N

• Example: Get the year that Ice Cube went

solo.

11

for line in file:

record = parse(line)

if “Ice Cube” == record[0]:

print int(record[1])

"Wu Tang Clan",1992,"USA"

"Notorious BIG",1992,"USA"

"Ice Cube",1989,"USA"

Artist(name, year, country)

GT 8803 // Fall 2019

F L A T F I L E S : D A T A I N T E G R I T Y

12

GT 8803 // Fall 2019

F L A T F I L E S : D A T A I N T E G R I T Y

• How do we ensure that the artist is the same

for each album entry?

• What if somebody overwrites the album year

with an invalid string?

• How do we store that there are multiple

artists on an album?

13

GT 8803 // Fall 2019

F L A T F I L E S : D A T A I N T E G R I T Y

• How do we ensure that the artist is the same

for each album entry?

• What if somebody overwrites the album year

with an invalid string?

• How do we store that there are multiple

artists on an album?

14

GT 8803 // Fall 2019

F L A T F I L E S : D A T A I N T E G R I T Y

• How do we ensure that the artist is the same

for each album entry?

• What if somebody overwrites the album year

with an invalid string?

• How do we store that there are multiple

artists on an album?

15

GT 8803 // Fall 2019

F L A T F I L E S : I M P L E M E N T A T I O N

16

GT 8803 // Fall 2019

F L A T F I L E S : I M P L E M E N T A T I O N

• How do you find a particular record?

• What if we now want to create a new

application that uses the same database?

• What if two threads try to write to the same

file at the same time?

17

GT 8803 // Fall 2019

F L A T F I L E S : I M P L E M E N T A T I O N

• How do you find a particular record?

• What if we now want to create a new

application that uses the same database?

• What if two threads try to write to the same

file at the same time?

18

GT 8803 // Fall 2019

F L A T F I L E S : I M P L E M E N T A T I O N

• How do you find a particular record?

• What if we now want to create a new

application that uses the same database?

• What if two threads try to write to the same

file at the same time?

19

GT 8803 // Fall 2019

F L A T F I L E S : D U R A B I L I T Y

20

GT 8803 // Fall 2019

F L A T F I L E S : D U R A B I L I T Y

• What if the machine crashes while our

program is updating a record?

• What if we want to replicate the database on

multiple machines for high availability?

21

GT 8803 // Fall 2019

F L A T F I L E S : D U R A B I L I T Y

• What if the machine crashes while our

program is updating a record?

• What if we want to replicate the database on

multiple machines for high availability?

22

GT 8803 // Fall 2019

D A T A B A S E M A N A G E M E N T S Y S T E M

• A DBMS is software that allows applications

to store and analyze information in a

database.

• A general-purpose DBMS is designed to allow

the definition, creation, querying, update, and

administration of databases.

23

GT 8803 // Fall 2019

WHAT GOES AROUND COMES AROUND
Readings in DB Systems, 4th Edition, 2006.

H I S T O R Y R E P E A T S I T S E L F

• 1960s: Hierarchical & Network Data Models

• 1970s: Relational Data Model

• 1980s: Object-Oriented Databases

• 2000s: Data warehouses

• 2010s: NewSQL, Hybrid, and Cloud Systems

24

GT 8803 // Fall 2019

H I S T O R Y R E P E A T S I T S E L F

• Old database issues are still relevant today.

• The “SQL vs. NoSQL” debate is reminiscent of

“Relational vs. CODASYL” debate.

25

GT 8803 // Fall 2019

1 9 6 0 S – I B M I M S

• Information Management System

• Early DBMS developed to keep track of

purchase orders for Apollo moon mission.
– Hierarchical data model
– Programmer-defined physical storage format

– Tuple-at-a-time queries

26

GT 8803 // Fall 2019

H I E R A R C H I C A L D A T A M O D E L

SUPPLIER
(sno, sname, scity, sstate)

PART
(pno, pname, psize, qty, price)

Schema Instance

27

GT 8803 // Fall 2019

H I E R A R C H I C A L D A T A M O D E L

SUPPLIER
(sno, sname, scity, sstate)

PART
(pno, pname, psize, qty, price)

Schema Instance

sno sname scity sstate parts

1001 Dirty Rick New York NY

1002 Squirrels Boston MA

28

GT 8803 // Fall 2019

H I E R A R C H I C A L D A T A M O D E L

SUPPLIER
(sno, sname, scity, sstate)

PART
(pno, pname, psize, qty, price)

Schema Instance

sno sname scity sstate parts

1001 Dirty Rick New York NY

1002 Squirrels Boston MA

pno pname psize qty price

999 Batteries Large 10 $100

29

GT 8803 // Fall 2019

H I E R A R C H I C A L D A T A M O D E L

SUPPLIER
(sno, sname, scity, sstate)

PART
(pno, pname, psize, qty, price)

Schema Instance

sno sname scity sstate parts

1001 Dirty Rick New York NY

1002 Squirrels Boston MA

pno pname psize qty price

999 Batteries Large 10 $100

pno pname psize qty price

999 Batteries Large 14 $99

30

GT 8803 // Fall 2019

H I E R A R C H I C A L D A T A M O D E L

SUPPLIER
(sno, sname, scity, sstate)

PART
(pno, pname, psize, qty, price)

Schema Instance

sno sname scity sstate parts

1001 Dirty Rick New York NY

1002 Squirrels Boston MA

pno pname psize qty price

999 Batteries Large 10 $100

pno pname psize qty price

999 Batteries Large 14 $99

Duplicate Data

31

GT 8803 // Fall 2019

H I E R A R C H I C A L D A T A M O D E L

SUPPLIER
(sno, sname, scity, sstate)

PART
(pno, pname, psize, qty, price)

Schema Instance

sno sname scity sstate parts

1001 Dirty Rick New York NY

1002 Squirrels Boston MA

pno pname psize qty price

999 Batteries Large 10 $100

pno pname psize qty price

999 Batteries Large 14 $99

Duplicate Data

Data Dependencies

32

GT 8803 // Fall 2019

H I E R A R C H I C A L D A T A M O D E L

• Advantages
– No need to reinvent the wheel for every application

– Logical data independence: New record types may

be added as the logical requirements of an application

may change over time.

33

GT 8803 // Fall 2019

H I E R A R C H I C A L D A T A M O D E L

• Limitations
– Tree structured data models are very restrictive

– No physical data independence: Cannot freely

change storage organizations to tune a database

application because there is no guarantee that the

applications will continue to run

– Optimization: A tuple-at-a-time user interface forces

the programmer to do manual query optimization,

and this is often hard

34

GT 8803 // Fall 2019

1 9 6 0 s – I D S

• Integrated Data Store

• Developed internally at GE in the early 1960s.

• GE sold their computing division to

Honeywell in 1969.

• One of the first DBMSs:
– Network data model

– Tuple-at-a-time queries

35

GT 8803 // Fall 2019

1 9 6 0 s – C O D A S Y L

• COBOL people got together and proposed

a standard for how programs will access

a database. Lead by Charles Bachman.
– Network data model.

– Tuple-at-a-time queries.

Bachman

36

GT 8803 // Fall 2019

N E T W O R K D A T A M O D E L

SUPPLY

(qty, price)

SUPPLIER
(sno, sname, scity, sstate)

PART
(pno, pname, psize)

Schema

SUPPLIES SUPPLIED_BY

37

GT 8803 // Fall 2019

N E T W O R K D A T A M O D E L

SUPPLY

(qty, price)

SUPPLIER
(sno, sname, scity, sstate)

PART
(pno, pname, psize)

Schema

SUPPLIES SUPPLIED_BY

38

GT 8803 // Fall 2019

N E T W O R K D A T A M O D E L

SUPPLY

(qty, price)

SUPPLIER
(sno, sname, scity, sstate)

PART
(pno, pname, psize)

Schema

SUPPLIES SUPPLIED_BY

39

GT 8803 // Fall 2019

N E T W O R K D A T A M O D E L

SUPPLY

(qty, price)

SUPPLIER
(sno, sname, scity, sstate)

PART
(pno, pname, psize)

Schema

SUPPLIES SUPPLIED_BY

Complex Queries

40

GT 8803 // Fall 2019

N E T W O R K D A T A M O D E L

SUPPLY

(qty, price)

SUPPLIER
(sno, sname, scity, sstate)

PART
(pno, pname, psize)

Schema

SUPPLIES SUPPLIED_BY

Complex Queries

Easily Corrupted

41

GT 8803 // Fall 2019

N E T W O R K D A T A M O D E L

• Advantages
– Graph structured data models are less restrictive

• Limitations
– Poorer physical and logical data independence:

Cannot freely change physical data storage

organization or change logical application schema

– Slow loading and recovery: Data is typically stored in

one large network. This much larger object had to be

bulk-loaded all at once, leading to very long load

times.

42

GT 8803 // Fall 2019

1 9 7 0 s – R E L A T I O N A L M O D E L

• Ted Codd was a mathematician working

at IBM Research.
– He saw developers spending their time rewriting

IMS and Codasyl programs every time the

database’s schema or layout changed.

• Relational abstraction to avoid this:
– Store database in simple data structures.

– Access data via high-level declarative language.

– Physical storage left up to implementation.

Codd

43

GT 8803 // Fall 2019

R E L A T I O N A L D A T A M O D E L

SUPPLY
(sno, pno, qty, price)

SUPPLIER
(sno, sname, scity, sstate)

PART
(pno, pname, psize)

Schema

44

GT 8803 // Fall 2019

R E L A T I O N A L D A T A M O D E L

SUPPLY
(sno, pno, qty, price)

SUPPLIER
(sno, sname, scity, sstate)

PART
(pno, pname, psize)

Schema

45

GT 8803 // Fall 2019

R E L A T I O N A L D A T A M O D E L

SUPPLY
(sno, pno, qty, price)

SUPPLIER
(sno, sname, scity, sstate)

PART
(pno, pname, psize)

Schema

46

GT 8803 // Fall 2019

R E L A T I O N A L D A T A M O D E L

SUPPLY
(sno, pno, qty, price)

SUPPLIER
(sno, sname, scity, sstate)

PART
(pno, pname, psize)

Schema

47

GT 8803 // Fall 2018 48

GT 8803 // Fall 2019

R E L A T I O N A L D A T A M O D E L

• Advantages
– Set-a-time languages are good, regardless of the

data model, since they offer physical data

independence

– Logical data independence is easier with a simple

data model than with a complex one.

– Query optimizers can beat all but the best tuple-at-a-

time DBMS application programmers

49

GT 8803 // Fall 2019

R E L A T I O N A L D A T A M O D E L

• Early implementations of relational DBMS:
– System R – IBM Research

– INGRES – U.C. Berkeley

– Oracle – Larry Ellison

50

EllisonGray Stonebraker

GT 8803 // Fall 2019

R E L A T I O N A L D A T A M O D E L

• The relational model wins.
– IBM comes out with DB2 in 1983.

– “SEQUEL” becomes the standard (SQL).

• Many new “enterprise” DBMSs

but Oracle wins marketplace.

51

GT 8803 // Fall 2019

1 9 8 0 s – O B J E C T - O R I E N T E D D A T A B A S E S

• Avoid “relational-object impedance

mismatch” by tightly coupling objects and

database.

• Few of these original DBMSs from the 1980s

still exist today but many of the technologies

exist in other forms (JSON, XML)

52

GT 8803 // Fall 2019

O B J E C T - O R I E N T E D M O D E L

53

Application Code

class Student {
int id;
String name;
String email;
String phone[];

}

GT 8803 // Fall 2019

O B J E C T - O R I E N T E D M O D E L

54

Application Code

class Student {
int id;
String name;
String email;
String phone[];

}

Relational Schema

STUDENT
(id, name, email)

STUDENT_PHONE
(sid, phone)

GT 8803 // Fall 2019

O B J E C T - O R I E N T E D M O D E L

55

Application Code

class Student {
int id;
String name;
String email;
String phone[];

}

Relational Schema

STUDENT
(id, name, email)

STUDENT_PHONE
(sid, phone)

id name email

1001 M.O.P. ante@up.com

sid phone

1001 444-444-4444

1001 555-555-5555

GT 8803 // Fall 2019

O B J E C T - O R I E N T E D M O D E L

56

Application Code

class Student {
int id;
String name;
String email;
String phone[];

}

Relational Schema

STUDENT
(id, name, email)

STUDENT_PHONE
(sid, phone)

id name email

1001 M.O.P. ante@up.com

sid phone

1001 444-444-4444

1001 555-555-5555

GT 8803 // Fall 2019

O B J E C T - O R I E N T E D M O D E L

57

Application Code

class Student {
int id;
String name;
String email;
String phone[];

}

GT 8803 // Fall 2019

O B J E C T - O R I E N T E D M O D E L

58

Application Code

class Student {
int id;
String name;
String email;
String phone[];

}

Student

{

“id”: 1001,

“name”: “M.O.P.”,

“email”: “ante@up.com”,

“phone”: [

“444-444-4444”,

“555-555-5555”

]

}

GT 8803 // Fall 2019

O B J E C T - O R I E N T E D M O D E L

59

Application Code

class Student {
int id;
String name;
String email;
String phone[];

}

Student

{

“id”: 1001,

“name”: “M.O.P.”,

“email”: “ante@up.com”,

“phone”: [

“444-444-4444”,

“555-555-5555”

]

}

Complex Queries

GT 8803 // Fall 2019

O B J E C T - O R I E N T E D M O D E L

60

Application Code

class Student {
int id;
String name;
String email;
String phone[];

}

Student

{

“id”: 1001,

“name”: “M.O.P.”,

“email”: “ante@up.com”,

“phone”: [

“444-444-4444”,

“555-555-5555”

]

}

Complex Queries

No Standard API

GT 8803 // Fall 2019

1 9 9 0 s – B O R I N G D A Y S

• No major advancements in database systems

or application workloads.
– Microsoft forks Sybase and creates SQL Server.

– MySQL is written as a replacement for mSQL.

– Postgres gets SQL support.

– SQLite started in early 2000.

61

GT 8803 // Fall 2019

1 9 9 0 s – B O R I N G D A Y S

• Multimedia databases
– Feature engineering

– Accuracy, robustness, and performance

62

SELECT image_date

FROM images
WHERE event = ‘Sunrise’

GT 8803 // Fall 2019

2 0 0 0 s – I N T E R N E T B O O M

• All the big players were heavyweight and

expensive. Open-source databases were

missing important features.

• Many companies wrote their own custom

middleware to scale out database across

single-node DBMS instances.

63

GT 8803 // Fall 2019

2 0 0 0 s – D A T A W A R E H O U S E S

• Rise of the special purpose OLAP DBMSs.
– Distributed / Shared-Nothing

– Relational / SQL

– Usually closed-source.

• Significant performance benefits from using

columnar storage organization

64

GT 8803 // Fall 2019

2 0 0 0 s – N o S Q L S Y S T E M S

• Focus on high-availability & high-scalability:
– Schemaless (i.e., “Schema Last”)

– Non-relational data models (document, key/value,

etc.)

– No ACID transactions

– Custom APIs instead of SQL

– Usually open-source

65

GT 8803 // Fall 2019

2 0 1 0 s – N E W S Q L S Y S T E M S

• Provide same performance for OLTP

workloads as NoSQL DBMSs without giving

up ACID:
– Relational / SQL

– Distributed

– Usually closed-source

66

GT 8803 // Fall 2019

2 0 1 0 s – H Y B R I D S Y S T E M S

• Hybrid Transactional-Analytical Processing

• Execute fast OLTP like a NewSQL system while

also executing complex OLAP queries like a

data warehouse system.
– Distributed / Shared-Nothing

– Relational / SQL
– Mixed open/closed-source.

67

GT 8803 // Fall 2019

2 0 1 0 s – C L O U D S Y S T E M S

• First database-as-a-service (DBaaS) offerings

were "containerized" versions of existing

DBMSs.

• There are new DBMSs that are designed from

scratch explicitly for running in a cloud

environment.

68

GT 8803 // Fall 2019

2 0 1 0 s – S P E C I A L I Z E D S Y S T E M S

• Shared-disk DBMSs

• Embedded DBMSs

• Times Series DBMS

• Multi-Model DBMSs

• Blockchain DBMSs

69

GT 8803 // Fall 2019

2 0 1 0 s – S P E C I A L I Z E D S Y S T E M S

• Shared-disk DBMSs

• Embedded DBMSs

• Times Series DBMS

• Multi-Model DBMSs

• Blockchain DBMSs

70

GT 8803 // Fall 2019

S U M M A R Y

• There are many innovations that come from

both industry and academia:
– Lots of ideas start in academia but few build

complete DBMSs to verify them.

– IBM was the vanguard during 1970-1980s but now

there is no single trendsetter.

– Oracle borrows ideas from anybody.

• The relational model has won for operational

databases.

71

GT 8803 // Fall 2019

G O A L : V I D E O A N A L Y T I C S D B M S

• Feature Engineering

• Robustness

• Computational Efficiency

• Usability

72

GT 8803 // Fall 2019

C H A L L E N G E S : M U L T I M E D I A D B M S s

• Feature Engineering
– The same multi-media data could mean different

things to different people. Second, users typically

have diverse information needs.

– Thus, a single feature may not be sufficient to

completely index a given video.

– Therefore, it becomes difficult to identify the

features that are most appropriate in any given

environment.

73

GT 8803 // Fall 2019

C H A L L E N G E S : M U L T I M E D I A D B M S s

• Robustness
– Works well on one dataset, but completely breaks

on another dataset from the same domain

– Example: Two traffic cameras in different cities

– Limits the utility of the database system

– Need inherent support for coping with data drift

74

GT 8803 // Fall 2019

C H A L L E N G E S : C O M P U T E R V I S I O N P I P E L I N E S

• Computational Efficiency
– These pipelines are computationally infeasible at

scale

– Example: State-of-the-art object detection models

run at 3 frames per second (fps) (e.g., Mask R-CNN)

– It will take 8 decades of GPU time to process 100

cameras over a month of video

75

GT 8803 // Fall 2019

C H A L L E N G E S : C O M P U T E R V I S I O N P I P E L I N E S

• Usability
– These techniques require complex, imperative

programming across many low-level libraries (e.g.,

Pytorch and OpenCV)

– This is an ad-hoc, tedious process that ignores

opportunity for cross-operator optimization

– Traditional database systems were successful due

to their ease of use (i.e., SQL is declarative)

76

GT 8803 // Fall 2019

G O A L : V I D E O A N A L Y T I C S D B M S

77

GT 8803 // Fall 2018

ADVANCED
SQL

78

GT 8803 // Fall 2019

R E L A T I O N A L L A N G U A G E S

• User only needs to specify what answer that

they want, not how to compute it.

• The DBMS is responsible for efficient

evaluation of the query.
– Query optimizer: re-orders operations and

generates query plan

79

GT 8803 // Fall 2019

S Q L H I S T O R Y

• Originally “SEQUEL” from IBM’s

System R prototype.
– Structured English Query Language

– Adopted by Oracle in the 1970s.

• IBM releases DB2 in 1983.

• ANSI Standard in 1986. ISO in 1987
– Structured Query Language

80

GT 8803 // Fall 2019

S Q L H I S T O R Y

• Current standard is SQL:2016
– SQL:2016 → JSON, Polymorphic tables

– SQL:2011→ Temporal DBs, Pipelined DML

– SQL:2008→ TRUNCATE, Fancy ORDER

– SQL:2003→ XML, windows, sequences, auto-

generated IDs.

– SQL:1999→ Regex, triggers, OO

• Most DBMSs at least support SQL-92

81

GT 8803 // Fall 2019

R E L A T I O N A L L A N G U A G E S

• Language
– Data Manipulation Language (DML)

– Data Definition Language (DDL)

– Data Control Language (DCL)

– View definition

– Integrity & Referential Constraints

– Transactions

• Important: SQL is based on bags (duplicates)

not sets (no duplicates).

82

GT 8803 // Fall 2019

A D V A N C E D S Q L

• Aggregations + Group By

• Output Control + Redirection

• Nested Queries

• Common Table Expressions

• Window Functions

83

GT 8803 // Fall 2018

E X A M P L E D A T A B A S E

84

student(sid,name,login,gpa) enrolled(sid,cid,grade)

course(cid,name)

sid name login age gpa

53666 Kanye kayne@cs 39 4.0

53688 Bieber jbieber@cs 22 3.9

53655 Tupac shakur@cs 26 3.5

sid cid grade

53666 15-445 C

53688 15-721 A

53688 15-826 B

53655 15-445 B

53666 15-721 C
cid name

15-445 Database Systems

15-721 Advanced Database Systems

15-826 Data Mining

15-823 Advanced Topics in Databases

GT 8803 // Fall 2019

A G G R E G A T E S

• Functions that return a single value from a

bag of tuples:
– AVG(col)→ Return the average col value.

– MIN(col)→ Return minimum col value.

– MAX(col)→ Return maximum col value.

– SUM(col)→ Return sum of values in col.

– COUNT(col)→ Return # of values for col.

85

GT 8803 // Fall 2019

A G G R E G A T E S

• Aggregate functions can only be used in the

SELECT output list.

• Get # of students with a “@cs” login:

86

SELECT COUNT(login) AS cnt
FROM student WHERE login LIKE '%@cs'

GT 8803 // Fall 2019

A G G R E G A T E S

• Aggregate functions can only be used in the

SELECT output list.

• Get # of students with a “@cs” login:

87

SELECT COUNT(login) AS cnt
FROM student WHERE login LIKE '%@cs'

GT 8803 // Fall 2019

A G G R E G A T E S

• Aggregate functions can only be used in the

SELECT output list.

• Get # of students with a “@cs” login:

88

SELECT COUNT(login) AS cnt
FROM student WHERE login LIKE '%@cs'

SELECT COUNT(*) AS cnt
FROM student WHERE login LIKE '%@cs'

GT 8803 // Fall 2019

A G G R E G A T E S

• Aggregate functions can only be used in the

SELECT output list.

• Get # of students with a “@cs” login:

89

SELECT COUNT(login) AS cnt
FROM student WHERE login LIKE '%@cs'

SELECT COUNT(*) AS cnt
FROM student WHERE login LIKE '%@cs'

SELECT COUNT(1) AS cnt
FROM student WHERE login LIKE '%@cs'

GT 8803 // Fall 2019

M U L T I P L E A G G R E G A T E S

• Get the number of students and their average

GPA that have a “@cs” login.

90

SELECT AVG(gpa), COUNT(sid)
FROM student WHERE login LIKE '%@cs'

GT 8803 // Fall 2019

M U L T I P L E A G G R E G A T E S

• Get the number of students and their average

GPA that have a “@cs” login.

91

SELECT AVG(gpa), COUNT(sid)
FROM student WHERE login LIKE '%@cs'

AVG(gpa) COUNT(sid)

3.25 12

GT 8803 // Fall 2019

D I S T I N C T A G G R E G A T E S

• COUNT, SUM, AVG support DISTINCT

• Get the number of unique students that have an

“@cs” login.

92

SELECT COUNT(DISTINCT login)
FROM student WHERE login LIKE '%@cs'

GT 8803 // Fall 2019

D I S T I N C T A G G R E G A T E S

• COUNT, SUM, AVG support DISTINCT

• Get the number of unique students that have an

“@cs” login.

93

SELECT COUNT(DISTINCT login)
FROM student WHERE login LIKE '%@cs'

COUNT(DISTINCT login)

10

GT 8803 // Fall 2019

A G G R E G A T E S

• Output of other columns outside of an

aggregate is undefined.

• Get the average GPA of students enrolled in

each course.

94

SELECT AVG(s.gpa), e.cid
FROM enrolled AS e, student AS s
WHERE e.sid = s.sid

GT 8803 // Fall 2019

A G G R E G A T E S

• Output of other columns outside of an

aggregate is undefined.

• Get the average GPA of students enrolled in

each course.

95

SELECT AVG(s.gpa), e.cid
FROM enrolled AS e, student AS s
WHERE e.sid = s.sid

AVG(s.gpa) e.cid

3.5 ???

GT 8803 // Fall 2019

G R O U P B Y

• Project tuples into subsets and calculate

aggregates against

each subset.

96

SELECT AVG(s.gpa), e.cid
FROM enrolled AS e, student AS s
WHERE e.sid = s.sid

GROUP BY e.cid

GT 8803 // Fall 2019

G R O U P B Y

• Project tuples into subsets and calculate

aggregates against

each subset.

97

e.sid s.sid s.gpa e.cid

53435 53435 2.25 15-721

53439 53439 2.70 15-721

56023 56023 2.75 15-826

59439 59439 3.90 15-826

53961 53961 3.50 15-826

58345 58345 1.89 15-445

SELECT AVG(s.gpa), e.cid
FROM enrolled AS e, student AS s
WHERE e.sid = s.sid

GROUP BY e.cid

GT 8803 // Fall 2019

G R O U P B Y

• Project tuples into subsets and calculate

aggregates against

each subset.

98

e.sid s.sid s.gpa e.cid

53435 53435 2.25 15-721

53439 53439 2.70 15-721

56023 56023 2.75 15-826

59439 59439 3.90 15-826

53961 53961 3.50 15-826

58345 58345 1.89 15-445

SELECT AVG(s.gpa), e.cid
FROM enrolled AS e, student AS s
WHERE e.sid = s.sid

GROUP BY e.cid

GT 8803 // Fall 2019

G R O U P B Y

• Project tuples into subsets and calculate

aggregates against

each subset.

99

AVG(s.gpa) e.cid

2.46 15-721

3.39 15-826

1.89 15-445

e.sid s.sid s.gpa e.cid

53435 53435 2.25 15-721

53439 53439 2.70 15-721

56023 56023 2.75 15-826

59439 59439 3.90 15-826

53961 53961 3.50 15-826

58345 58345 1.89 15-445

SELECT AVG(s.gpa), e.cid
FROM enrolled AS e, student AS s
WHERE e.sid = s.sid

GROUP BY e.cid

GT 8803 // Fall 2019

G R O U P B Y

• Project tuples into subsets and calculate

aggregates against

each subset.

100

AVG(s.gpa) e.cid

2.46 15-721

3.39 15-826

1.89 15-445

e.sid s.sid s.gpa e.cid

53435 53435 2.25 15-721

53439 53439 2.70 15-721

56023 56023 2.75 15-826

59439 59439 3.90 15-826

53961 53961 3.50 15-826

58345 58345 1.89 15-445

SELECT AVG(s.gpa), e.cid
FROM enrolled AS e, student AS s
WHERE e.sid = s.sid

GROUP BY e.cid

GT 8803 // Fall 2019

G R O U P B Y

• Non-aggregated values in SELECT output

clause must appear in GROUP BY clause.

101

SELECT AVG(s.gpa), e.cid, s.name
FROM enrolled AS e, student AS s
WHERE e.sid = s.sid
GROUP BY e.cid

GT 8803 // Fall 2019

G R O U P B Y

• Non-aggregated values in SELECT output

clause must appear in GROUP BY clause.

102

SELECT AVG(s.gpa), e.cid, s.name
FROM enrolled AS e, student AS s
WHERE e.sid = s.sid
GROUP BY e.cid

GT 8803 // Fall 2019

G R O U P B Y

• Non-aggregated values in SELECT output

clause must appear in GROUP BY clause.

103

SELECT AVG(s.gpa), e.cid, s.name
FROM enrolled AS e, student AS s
WHERE e.sid = s.sid
GROUP BY e.cid X

GT 8803 // Fall 2019

G R O U P B Y

• Non-aggregated values in SELECT output

clause must appear in GROUP BY clause.

104

SELECT AVG(s.gpa), e.cid, s.name
FROM enrolled AS e, student AS s
WHERE e.sid = s.sid
GROUP BY e.cid X
SELECT AVG(s.gpa), e.cid, s.name
FROM enrolled AS e, student AS s
WHERE e.sid = s.sid
GROUP BY e.cid, s.name

GT 8803 // Fall 2019

H A V I N G

• Filters results based on aggregation.

• Like a WHERE clause for a GROUP BY

105

SELECT AVG(s.gpa) AS avg_gpa, e.cid
FROM enrolled AS e, student AS s
WHERE e.sid = s.sid
AND avg_gpa > 3.9

GROUP BY e.cid

GT 8803 // Fall 2019

H A V I N G

• Filters results based on aggregation.

• Like a WHERE clause for a GROUP BY

106

SELECT AVG(s.gpa) AS avg_gpa, e.cid
FROM enrolled AS e, student AS s
WHERE e.sid = s.sid
AND avg_gpa > 3.9

GROUP BY e.cid

GT 8803 // Fall 2019

H A V I N G

• Filters results based on aggregation.

• Like a WHERE clause for a GROUP BY

107

SELECT AVG(s.gpa) AS avg_gpa, e.cid
FROM enrolled AS e, student AS s
WHERE e.sid = s.sid
AND avg_gpa > 3.9

GROUP BY e.cid
X

GT 8803 // Fall 2019

H A V I N G

• Filters results based on aggregation.

• Like a WHERE clause for a GROUP BY

108

SELECT AVG(s.gpa) AS avg_gpa, e.cid
FROM enrolled AS e, student AS s
WHERE e.sid = s.sid
AND avg_gpa > 3.9

GROUP BY e.cid
X

SELECT AVG(s.gpa) AS avg_gpa, e.cid
FROM enrolled AS e, student AS s
WHERE e.sid = s.sid
GROUP BY e.cid
HAVING avg_gpa > 3.9;

GT 8803 // Fall 2019

H A V I N G

• Filters results based on aggregation.

• Like a WHERE clause for a GROUP BY

109

SELECT AVG(s.gpa) AS avg_gpa, e.cid
FROM enrolled AS e, student AS s
WHERE e.sid = s.sid
AND avg_gpa > 3.9

GROUP BY e.cid

AVG(s.gpa) e.cid

3.75 15-415

3.950000 15-721

3.900000 15-826

avg_gpa e.cid

3.950000 15-721

X
SELECT AVG(s.gpa) AS avg_gpa, e.cid
FROM enrolled AS e, student AS s
WHERE e.sid = s.sid
GROUP BY e.cid
HAVING avg_gpa > 3.9;

GT 8803 // Fall 2019

O U T P U T R E D I R E C T I O N

• Store query results in another table:
– Table must not already be defined.

– Table will have the same # of columns with the

same types as the input.

110

CREATE TABLE CourseIds (
SELECT DISTINCT cid FROM enrolled);

SELECT DISTINCT cid INTO CourseIds
FROM enrolled;

MySQL

SQL-92

GT 8803 // Fall 2019

O U T P U T R E D I R E C T I O N

• Insert tuples from query into another table:

– Inner SELECT must generate the same columns as

the target table.

– DBMSs have different options/syntax on what to

do with duplicates.

111

INSERT INTO CourseIds
(SELECT DISTINCT cid FROM enrolled);

SQL-92

GT 8803 // Fall 2019

O U T P U T C O N T R O L

• ORDER BY <column*> [ASC|DESC]
– Order the output tuples by the values in one or

more of their columns.

112

SELECT sid, grade FROM enrolled
WHERE cid = '15-721'
ORDER BY grade

GT 8803 // Fall 2019

O U T P U T C O N T R O L

• ORDER BY <column*> [ASC|DESC]
– Order the output tuples by the values in one or

more of their columns.

113

SELECT sid, grade FROM enrolled
WHERE cid = '15-721'
ORDER BY grade

sid grade

53123 A

53334 A

53650 B

53666 D

GT 8803 // Fall 2019

O U T P U T C O N T R O L

• ORDER BY <column*> [ASC|DESC]
– Order the output tuples by the values in one or

more of their columns.

114

SELECT sid, grade FROM enrolled
WHERE cid = '15-721'
ORDER BY grade

SELECT sid FROM enrolled
WHERE cid = '15-721'
ORDER BY grade DESC, sid ASC

sid grade

53123 A

53334 A

53650 B

53666 D

GT 8803 // Fall 2019

O U T P U T C O N T R O L

• ORDER BY <column*> [ASC|DESC]
– Order the output tuples by the values in one or

more of their columns.

115

SELECT sid, grade FROM enrolled
WHERE cid = '15-721'
ORDER BY grade

SELECT sid FROM enrolled
WHERE cid = '15-721'
ORDER BY grade DESC, sid ASC

sid grade

53123 A

53334 A

53650 B

53666 D

sid

53666

53650

53123

53334

GT 8803 // Fall 2019

O U T P U T C O N T R O L

• LIMIT <count> [offset]
– Limit the # of tuples returned in output.

– Can set an offset to return a “range”

116

SELECT sid, name FROM student
WHERE login LIKE '%@cs'
LIMIT 10

GT 8803 // Fall 2019

O U T P U T C O N T R O L

• LIMIT <count> [offset]
– Limit the # of tuples returned in output.

– Can set an offset to return a “range”

117

SELECT sid, name FROM student
WHERE login LIKE '%@cs'
LIMIT 10

SELECT sid, name FROM student
WHERE login LIKE '%@cs'
LIMIT 20 OFFSET 10

GT 8803 // Fall 2019

N E S T E D Q U E R I E S

• Queries containing other queries.

• They are often difficult to optimize.

• Inner queries can appear (almost) anywhere

in query.

118

GT 8803 // Fall 2019

N E S T E D Q U E R I E S

• Queries containing other queries.

• They are often difficult to optimize.

• Inner queries can appear (almost) anywhere

in query.

119

SELECT name FROM student WHERE
sid IN (SELECT sid FROM enrolled)

GT 8803 // Fall 2019

N E S T E D Q U E R I E S

• Queries containing other queries.

• They are often difficult to optimize.

• Inner queries can appear (almost) anywhere

in query.

120

SELECT name FROM student WHERE
sid IN (SELECT sid FROM enrolled)

Outer Query

Inner Query

GT 8803 // Fall 2019

N E S T E D Q U E R I E S

• Queries containing other queries.

• They are often difficult to optimize.

• Inner queries can appear (almost) anywhere

in query.

121

SELECT name FROM student WHERE
sid IN (SELECT sid FROM enrolled)

Outer Query

Inner Query

GT 8803 // Fall 2019

N E S T E D Q U E R I E S

• Get the names of students in '15-445'

122

SELECT name FROM student
WHERE ...

“sid in the set of people that take 15-445"

GT 8803 // Fall 2019

N E S T E D Q U E R I E S

• Get the names of students in '15-445'

123

SELECT name FROM student
WHERE ...
SELECT name FROM student
WHERE ...
SELECT sid FROM enrolled
WHERE cid = '15-445'

GT 8803 // Fall 2019

N E S T E D Q U E R I E S

• Get the names of students in '15-445'

124

SELECT name FROM student
WHERE ...
SELECT name FROM student
WHERE ...
SELECT sid FROM enrolled
WHERE cid = '15-445'

SELECT name FROM student
WHERE sid IN (
SELECT sid FROM enrolled
WHERE cid = '15-445'

)

GT 8803 // Fall 2019

N E S T E D Q U E R I E S

• Get the names of students in '15-445'

125

SELECT name FROM student
WHERE ...
SELECT name FROM student
WHERE ...
SELECT sid FROM enrolled
WHERE cid = '15-445'

SELECT name FROM student
WHERE sid IN (
SELECT sid FROM enrolled
WHERE cid = '15-445'

)

GT 8803 // Fall 2019

N E S T E D Q U E R I E S

• ANY→Must satisfy expression for at least one

row in sub-query.

• IN→ Equivalent to '=ANY()' .

• EXISTS→ At least one row is returned.

• ALL→Must satisfy expression for all rows in

sub-query

126

GT 8803 // Fall 2019

N E S T E D Q U E R I E S

• Get the names of students in ‘15-445’

127

SELECT name FROM student
WHERE sid = ANY(
SELECT sid FROM enrolled
WHERE cid = '15-445'

)

GT 8803 // Fall 2019

N E S T E D Q U E R I E S

• Get the names of students in ‘15-445’

128

SELECT name FROM student
WHERE sid = ANY(
SELECT sid FROM enrolled
WHERE cid = '15-445'

)

SELECT (SELECT S.name FROM student AS S
WHERE S.sid = E.sid) AS sname

FROM enrolled AS E
WHERE cid = '15-445'

GT 8803 // Fall 2019

N E S T E D Q U E R I E S

129

GT 8803 // Fall 2019

N E S T E D Q U E R I E S

130

SELECT MAX(e.sid), s.name
FROM enrolled AS e, student AS s
WHERE e.sid = s.sid;

GT 8803 // Fall 2019

N E S T E D Q U E R I E S

• Find student record with the highest id that is

enrolled in at least one course.

• Won't work in SQL-92.

131

SELECT MAX(e.sid), s.name
FROM enrolled AS e, student AS s
WHERE e.sid = s.sid; X

GT 8803 // Fall 2019

N E S T E D Q U E R I E S

• Find student record with the highest id that is

enrolled in at least one course.

132

SELECT sid, name FROM student
WHERE ...

GT 8803 // Fall 2019

N E S T E D Q U E R I E S

• Find student record with the highest id that is

enrolled in at least one course.

133

SELECT sid, name FROM student
WHERE ...

"Is greater than every other sid"

GT 8803 // Fall 2019

N E S T E D Q U E R I E S

• Find student record with the highest id that is

enrolled in at least one course.

134

SELECT sid, name FROM student
WHERE ...
SELECT sid, name FROM student
WHERE sid
SELECT sid FROM enrolled

is greater than every

GT 8803 // Fall 2019

N E S T E D Q U E R I E S

• Find student record with the highest id that is

enrolled in at least one course.

135

SELECT sid, name FROM student
WHERE ...
SELECT sid, name FROM student
WHERE sid
SELECT sid FROM enrolled

is greater than every
SELECT sid, name FROM student
WHERE sid => ALL(
SELECT sid FROM enrolled

)

sid name

53688 Bieber

GT 8803 // Fall 2019

N E S T E D Q U E R I E S

• Find student record with the highest id that is

enrolled in at least one course.

136

SELECT sid, name FROM student
WHERE ...
SELECT sid, name FROM student
WHERE sid
SELECT sid FROM enrolled

is greater than every
SELECT sid, name FROM student
WHERE sid => ALL(
SELECT sid FROM enrolled

)

SELECT sid, name FROM student
WHERE sid IN (
SELECT MAX(sid) FROM enrolled

)

GT 8803 // Fall 2019

N E S T E D Q U E R I E S

• Find student record with the highest id that is

enrolled in at least one course.

137

SELECT sid, name FROM student
WHERE ...
SELECT sid, name FROM student
WHERE sid
SELECT sid FROM enrolled

is greater than every
SELECT sid, name FROM student
WHERE sid => ALL(
SELECT sid FROM enrolled

)

SELECT sid, name FROM student
WHERE sid IN (
SELECT MAX(sid) FROM enrolled

)

SELECT sid, name FROM student
WHERE sid IN (
SELECT sid FROM enrolled
ORDER BY sid DESC LIMIT 1

)

GT 8803 // Fall 2019

N E S T E D Q U E R I E S

• Find all courses that has no students enrolled in

it.

138

SELECT * FROM course
WHERE ...

“with no tuples in the ‘enrolled’ table”

sid cid grade

53666 15-445 C

53688 15-721 A

53688 15-826 B

53655 15-445 B

53666 15-721 C

cid name

15-445 Database Systems

15-721 Advanced Database Systems

15-826 Data Mining

15-823 Advanced Topics in Databases

GT 8803 // Fall 2019

N E S T E D Q U E R I E S

• Find all courses that has no students enrolled in

it.

139

SELECT * FROM course
WHERE ...

“with no tuples in the ‘enrolled’ table”

SELECT * FROM course
WHERE NOT EXISTS(

)
tuples in the ‘enrolled’ table

GT 8803 // Fall 2019

N E S T E D Q U E R I E S

• Find all courses that has no students enrolled in

it.

140

SELECT * FROM course
WHERE ...

“with no tuples in the ‘enrolled’ table”

SELECT * FROM course
WHERE NOT EXISTS(

)
tuples in the ‘enrolled’ table

SELECT * FROM course
WHERE NOT EXISTS(
SELECT * FROM enrolled
WHERE course.cid = enrolled.cid

)

cid name

15-823 Advanced Topics in Databases

GT 8803 // Fall 2019

N E S T E D Q U E R I E S

• Find all courses that has no students enrolled in

it.

141

SELECT * FROM course
WHERE ...

“with no tuples in the ‘enrolled’ table”

SELECT * FROM course
WHERE NOT EXISTS(

)
tuples in the ‘enrolled’ table

SELECT * FROM course
WHERE NOT EXISTS(
SELECT * FROM enrolled
WHERE course.cid = enrolled.cid

)

cid name

15-823 Advanced Topics in Databases

GT 8803 // Fall 2019

W I N D O W F U N C T I O N S

• Performs a "sliding" calculation across a set of

tuples that are related.

• Like an aggregation but tuples are not

grouped into a single output tuples.

142

SELECT ... FUNC-NAME(...) OVER (...)
FROM tableName

GT 8803 // Fall 2019

W I N D O W F U N C T I O N S

• Performs a "sliding" calculation across a set of

tuples that are related.

• Like an aggregation but tuples are not

grouped into a single output tuples.

143

SELECT ... FUNC-NAME(...) OVER (...)
FROM tableName

Aggregation Functions
Special Functions

GT 8803 // Fall 2019

W I N D O W F U N C T I O N S

• Performs a "sliding" calculation across a set of

tuples that are related.

• Like an aggregation but tuples are not

grouped into a single output tuples.

144

SELECT ... FUNC-NAME(...) OVER (...)
FROM tableName

Aggregation Functions
Special Functions

How to “slice” up data
Can also sort

GT 8803 // Fall 2019

W I N D O W F U N C T I O N S

• Aggregation functions:
– Anything that we discussed earlier

• Special window functions:
– ROW_NUMBER()→ # of the current row
– RANK()→ Order position of the current

row.

145

SELECT *, ROW_NUMBER() OVER () AS row_num
FROM enrolled

GT 8803 // Fall 2019

W I N D O W F U N C T I O N S

• Aggregation functions:
– Anything that we discussed earlier

• Special window functions:
– ROW_NUMBER()→ # of the current row
– RANK()→ Order position of the current

row.

146

SELECT *, ROW_NUMBER() OVER () AS row_num
FROM enrolled

sid cid grade row_num

53666 15-445 C 1

53688 15-721 A 2

53688 15-826 B 3

53655 15-445 B 4

53666 15-721 C 5

GT 8803 // Fall 2019

W I N D O W F U N C T I O N S

• Aggregation functions:
– Anything that we discussed earlier

• Special window functions:
– ROW_NUMBER()→ # of the current row
– RANK()→ Order position of the current

row.

147

SELECT *, ROW_NUMBER() OVER () AS row_num
FROM enrolled

sid cid grade row_num

53666 15-445 C 1

53688 15-721 A 2

53688 15-826 B 3

53655 15-445 B 4

53666 15-721 C 5

GT 8803 // Fall 2019

W I N D O W F U N C T I O N S

• The OVER keyword specifies how to group

together tuples when computing the window

function.

• Use PARTITION BY to specify group.

148

SELECT cid, sid,
ROW_NUMBER() OVER (PARTITION BY cid)

FROM enrolled
ORDER BY cid

GT 8803 // Fall 2019

W I N D O W F U N C T I O N S

• The OVER keyword specifies how to group

together tuples when computing the window

function.

• Use PARTITION BY to specify group.

149

SELECT cid, sid,
ROW_NUMBER() OVER (PARTITION BY cid)

FROM enrolled
ORDER BY cid

cid sid row_number

15-445 53666 1

15-445 53655 2

15-721 53688 1

15-721 53666 2

15-826 53688 1

GT 8803 // Fall 2019

W I N D O W F U N C T I O N S

• The OVER keyword specifies how to group

together tuples when computing the window

function.

• Use PARTITION BY to specify group.

150

SELECT cid, sid,
ROW_NUMBER() OVER (PARTITION BY cid)

FROM enrolled
ORDER BY cid

cid sid row_number

15-445 53666 1

15-445 53655 2

15-721 53688 1

15-721 53666 2

15-826 53688 1

GT 8803 // Fall 2019

W I N D O W F U N C T I O N S

• You can also include an ORDER BY in the

window grouping to sort entries in each

group.

151

SELECT *,
ROW_NUMBER() OVER (ORDER BY cid)

FROM enrolled
ORDER BY cid

GT 8803 // Fall 2019

W I N D O W F U N C T I O N S

• Find the student with the highest grade for each

course.

152

SELECT * FROM (
SELECT *,

RANK() OVER (PARTITION BY cid
ORDER BY grade ASC)

AS rank
FROM enrolled) AS ranking

WHERE ranking.rank = 1

GT 8803 // Fall 2019

W I N D O W F U N C T I O N S

• Find the student with the highest grade for each

course.

153

SELECT * FROM (
SELECT *,

RANK() OVER (PARTITION BY cid
ORDER BY grade ASC)

AS rank
FROM enrolled) AS ranking

WHERE ranking.rank = 1

Group tuples by cid
Then sort by grade

GT 8803 // Fall 2019

W I N D O W F U N C T I O N S

• Find the student with the highest grade for each

course.

154

SELECT * FROM (
SELECT *,

RANK() OVER (PARTITION BY cid
ORDER BY grade ASC)

AS rank
FROM enrolled) AS ranking

WHERE ranking.rank = 1

Group tuples by cid
Then sort by grade

GT 8803 // Fall 2019

C O M M O N T A B L E E X P R E S S I O N S

• Provides a way to write auxiliary statements

for use in a larger query.
– Improves readability by decomposing the task

– Think of it like a temp table just for one query.

• Alternative to nested queries and views.

155

WITH cteName AS (
SELECT 1

)
SELECT * FROM cteName

GT 8803 // Fall 2019

C O M M O N T A B L E E X P R E S S I O N S

• Provides a way to write auxiliary statements

for use in a larger query.
– Improves readability by decomposing the task

– Think of it like a temp table just for one query.

• Alternative to nested queries and views.

156

WITH cteName AS (
SELECT 1

)
SELECT * FROM cteName

GT 8803 // Fall 2019

C O M M O N T A B L E E X P R E S S I O N S

• You can bind output columns to names

before the AS keyword.

157

WITH cteName (col1, col2) AS (
SELECT 1, 2

)
SELECT col1 + col2 FROM cteName

GT 8803 // Fall 2019

C O M M O N T A B L E E X P R E S S I O N S

• Find student record with the highest id that is

enrolled in at least one course.

158

WITH cteSource (maxId) AS (
SELECT MAX(sid) FROM enrolled

)
SELECT name FROM student, cteSource
WHERE student.sid = cteSource.maxId

GT 8803 // Fall 2019

C O M M O N T A B L E E X P R E S S I O N S

• Find student record with the highest id that is

enrolled in at least one course.

159

WITH cteSource (maxId) AS (
SELECT MAX(sid) FROM enrolled

)
SELECT name FROM student, cteSource
WHERE student.sid = cteSource.maxId

GT 8803 // Fall 2019

C T E – R E C U R S I O N

• Supports recursion unlike nested queries

• Print the sequence of numbers from 1 to 10.

160

WITH RECURSIVE cteSource (counter) AS (
(SELECT 1)
UNION ALL
(SELECT counter + 1 FROM cteSource
WHERE counter < 10)

)
SELECT * FROM cteSource

GT 8803 // Fall 2019

C T E – R E C U R S I O N

• Supports recursion unlike nested queries

• Print the sequence of numbers from 1 to 10.

161

WITH RECURSIVE cteSource (counter) AS (
(SELECT 1)
UNION ALL
(SELECT counter + 1 FROM cteSource
WHERE counter < 10)

)
SELECT * FROM cteSource

GT 8803 // Fall 2019

S U M M A R Y

• SQL is not a dead language.

• You should (almost) always strive to compute

your answer as a single SQL statement.

• How do these operators generalize to videos?
– JOIN operator

– What is a TABLE in this domain?

162

GT 8803 // Fall 2019

N E X T L E C T U R E

• Data Storage

163

