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a d m i n i s t r i v i a

• Project ideas
– List shared on Piazza

– Start looking for team-mates!

– Sign up for discussion slots during office hours
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L A S T  C L A S S

• History of DBMSs
– In a way though, it really was a history of data 

models

• Data Models
– Hierarchical data model (tree) (IMS)

– Network data model (graph) (CODASYL)

– Relational data model (tables) (System R, INGRES)

• Overarching theme about all these systems
– They were all disk-based DBMSs
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T O D A Y ’ s  A G E N D A

• Disk-centric DBMSs

• In-Memory DBMSs
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DISK-CENTRIC

DBMSs
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A N A T O M Y  O F  A  D A T A B A S E  S Y S T E M

Connection Manager + Admission Control

Query Parser

Query Optimizer

Query Executor

Lock Manager (Concurrency Control)

Access Methods (or Indexes)

Buffer Pool Manager

Log Manager

Memory Manager + Disk Manager

Networking Manager
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Query
Transactional 

Storage Manager

Query Processor

Shared Utilities

Process Manager

Source: Anatomy of a Database System 
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A N A T O M Y  O F  A  D A T A B A S E  S Y S T E M
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• Process Manager
– Manages client connections

• Query Processor
– Parse, plan and execute queries on top of storage manager

• Transactional Storage Manager
– Knits together buffer management, concurrency control, 

logging and recovery

• Shared Utilities
– Manage hardware resources across threads
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T O P I C S

• Implications of availability of large DRAM 

chips for database systems
– Buffer Management

– Query Processing

– Concurrency Control

– Logging and Recovery
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B A C K G R O U N D

• Much of the history of DBMSs is about dealing 

with the limitations of hardware.

• Hardware was much different when the 

original DBMSs were designed:
– Uniprocessor (single-core CPU)

– RAM was severely limited (few MB).
– The database had to be stored on disk.

– Disk is slow. No seriously, I mean really slow.
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B A C K G R O U N D

• But now DRAM capacities are large enough 

that most databases can fit in memory.
– Structured data sets are smaller (e.g., tables with 

numeric data).

– Unstructured data sets are larger (e.g., videos).

• So why not just use a "traditional" disk-

oriented DBMS with a really large cache?
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D I S K - O R I E N T E D  D B M S  O V E R H E A D
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Measured CPU Instructions

OLTP THROUGH THE LOOKING GLASS, 
AND WHAT WE FOUND THERE
SIGMOD, pp. 981-992, 2008.
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D I S K - O R I E N T E D  D B M S  O V E R H E A D
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D I S K - O R I E N T E D  D B M S  O V E R H E A D

13

BUFFER POOL

LATCHING

LOCKING

LOGGING

B-TREE KEYS

REAL WORK

34%

Measured CPU Instructions

OLTP THROUGH THE LOOKING GLASS, 
AND WHAT WE FOUND THERE
SIGMOD, pp. 981-992, 2008.



GT 8803 // Fall 2018

D I S K - O R I E N T E D  D B M S  O V E R H E A D
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D I S K - O R I E N T E D  D B M S  O V E R H E A D
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D I S K - O R I E N T E D  D B M S  O V E R H E A D
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D I S K - O R I E N T E D  D B M S  O V E R H E A D
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b U F F E R  M A N A G E M E N T

• The primary storage location of the database 

is on non-volatile storage (e.g., SSD).
– The database is stored in a file as a collection of 

fixed-length blocks called slotted pages on disk.

• The system uses an volatile in-memory buffer 

pool to cache blocks fetched from disk.
– Its job is to manage the movement of those blocks 

back and forth between disk and memory.
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b U F F E R  M A N A G E M E N T

• When a query accesses a page, the DBMS 

checks to see if that page is already in 

memory in a buffer pool
– If it’s not, then the DBMS has to retrieve it from disk 

and copy it into a free frame in the buffer pool.

– If there are no free frames, then find a page to evict 

guided by the page replacement policy.

– If the page being evicted is dirty, then the DBMS has 

to write it back to disk to ensure the durability 

(ACID) of data.
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b U F F E R  M A N A G E M E N T

• Page replacement policy is a differentiating 

factor between open-source and commercial 

DBMSs.
– What kind of data does it contain?

– Is the page dirty?

– How likely is the page to be accessed in the near 

future?

– Examples: LRU, LFU, CLOCK, ARC
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b U F F E R  M A N A G E M E N T

• Once the page is in memory, the DBMS 

translates any on-disk addresses to their in-

memory addresses.

(Page Identifier)              (Page Pointer)

[#100]                          [0x5050]
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b U F F E R  M A N A G E M E N T
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b U F F E R  M A N A G E M E N T
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b U F F E R  M A N A G E M E N T
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b U F F E R  M A N A G E M E N T
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b U F F E R  M A N A G E M E N T
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b U F F E R  M A N A G E M E N T
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b U F F E R  M A N A G E M E N T
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b U F F E R  M A N A G E M E N T
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b U F F E R  M A N A G E M E N T
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b U F F E R  M A N A G E M E N T
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b U F F E R  M A N A G E M E N T
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b U F F E R  M A N A G E M E N T

• Every tuple access has to go through the 

buffer pool manager regardless of whether 

that data will always be in memory.
– Always have to translate a tuple’s record id to its 

memory location.

– Worker thread has to pin pages that it needs to 

make sure that they are not swapped to disk.
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B U F F E R  M A N A G E M E N T

35



GT 8803 // Fall 2019

B U F F E R  M A N A G E M E N T

• Q: What do we gain by managing an in-

memory buffer?
– A: Accelerate query processing by storing 

frequently-accessed pages in fast memory

• Q: Can we “learn” an optimal page 

replacement policy?
– A: Recent paper from Google on learning memory 

accesses based on LSTM models.
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B U F F E R  M A N A G E M E N T

• Q: What do we gain by managing an in-

memory buffer?
– A: Accelerate query processing by storing 

frequently-accessed pages in fast memory
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replacement policy?
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Q U E R Y  P R O C E S S I N G

39

Tuple-at-a-time
→ Each operator calls next on their child to 

get the next tuple to process.

Operator-at-a-time
→ Each operator materializes their entire 

output for their parent operator.

Vector-at-a-time
→ Each operator calls next on their child to 

get the next chunk of data to process.

SELECT A.id, B.value
FROM A, B

WHERE A.id = B.id
AND B.value > 100

A B

A.id=B.id

value>100

A.id, B.value

⨝

s

p
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Q U E R Y  P R O C E S S I N G

• The best strategy for executing a query plan 

in a disk-centric DBMS
– Sequential scans over a table are much faster than 

random accesses

• The traditional tuple-at-a-time iterator 

model works well
– Because output of an operator will not fit in limited 

memory
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C O N C U R R E N C Y  C O N T R O L

• In a disk-oriented DBMS, the systems assumes 

that a txn could stall at any time when it tries 

to access data that is not in memory.
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C O N C U R R E N C Y  C O N T R O L

• Execute other txns at the same time so that if 

one txn stalls then others can keep running.
– This is not because the DBMS is trying to use all 

cores in the CPU (still focusing on single-core CPUs)

– We do this to let system make forward progress by 

executing another txn while the current txn is 

waiting for data to be fetched from disk
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C O N C U R R E N C Y  C O N T R O L

• Concurrency control policy
– Responsible for deciding how to interleave 

operations of concurrent transactions in such a way 

that it appears as if they are running serially

– This property is referred to as serializability of 

transactions
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C O N C U R R E N C Y  C O N T R O L

• Concurrency control policy
– DBMS has to set locks and latches to ensure the 

highest level of isolation (ACID) between 

transactions

– Locks are stored in a separate data structure (lock 

table) to avoid being swapped to disk.
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L O G G I N G  &  R E C O V E R Y

• This protocol helps ensure the atomicity and 

durability properties (ACID)
– Durability: Changes made by committed

transactions must be present in the database after 

recovering from a power failure.

– Atomicity: Changes made by uncommitted (in-

progress/aborted) transactions must not be present 

in the database after recovering from a power 

failure.
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L O G G I N G  &  R E C O V E R Y

• DBMSs use STEAL and NO-FORCE buffer pool 

management policies.
– STEAL: DBMS can flush pages dirtied by 

uncommitted transactions to disk.

– NO-FORCE: DBMS is not required to flush all pages 

dirtied by committed transactions to disk.

– So all page modifications have to be flushed to the    

write-ahead log (WAL) before a txn can commit
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L O G G I N G  &  R E C O V E R Y

• Each log entry contains the before and after

images of modified tuples.
– STEAL: Modifications made by uncommitted 

transactions that are flushed to disk have to rolled 

back.

– NO-FORCE: Modifications made by committed 

transactions might not have been flushed to disk.

47



GT 8803 // Fall 2019

L O G G I N G  &  R E C O V E R Y

• Each log entry contains the before and after

images of modified tuples.
– Recording the before and after images in the log is 

critical to ensuring atomicity and durability

– Lots of work to keep track of log sequence numbers 

(LSNs) all throughout the DBMS.
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L O G G I N G  &  R E C O V E R Y
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L O G G I N G  &  R E C O V E R Y

• Q: What would happen if we use a NO-STEAL 

policy?
– A: Cannot support large transactions that make 

changes larger than the buffer pool

• Q: What would happen if we use a FORCE 

policy?
– A: Performance would drop by orders of 

magnitude since need to randomly write to disk all 

the time.
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L O G G I N G  &  R E C O V E R Y
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L O G G I N G  &  R E C O V E R Y
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T A K E A W A Y S

• Disk-oriented DBMSs do a lot of extra stuff 

because they are predicated on the 

assumption that data has to reside on disk

• In-memory DBMSs maximize performance by 

optimizing these protocols and algorithms
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IN-MEMORY

DBMSs
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I N - M E M O R Y  D B M S S

• Assume that the primary storage location of 

the database is permanently in memory.

• Early ideas proposed in the 1980s but it is 

now feasible because DRAM prices are low 

and capacities are high.
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B O T T L E N E C K S

• If I/O is no longer the slowest resource, much 

of the DBMS’s architecture will have to 

change account for other bottlenecks:
– Locking/latching

– Cache misses

– Predicate evaluations

– Data movement & copying

– Networking (between application & DBMS)
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S T O R A G E  A C C E S S  L A T E N C I E S
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L3 DRAM SSD HDD

Read Latency ~20 ns 60 ns 25,000 ns 10,000,000 ns

Write Latency ~20 ns 60 ns 300,000 ns 10,000,000 ns

LET’S TALK ABOUT STORAGE & RECOVERY METHODS FOR 
NON-VOLATILE MEMORY DATABASE SYSTEMS
SIGMOD, pp. 707-722, 2015.
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S T O R A G E  A C C E S S  L A T E N C I E S
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Jim Gray’s analogy:
→Reading from L3 cache: Reading a book on a table

→Reading from HDD: Flying to Pluto to read that book

Because everything fits in DRAM, we can do 

more sophisticated things in software. 
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b U F F E R  M A N A G E M E N T

• An in-memory DBMS does not need to store 

the database in slotted pages but it will still 

organize tuples in blocks:
– Direct memory pointers vs. tuple identifiers

– Separate pools for fixed-length (e.g., numeric data) 

and variable-length data (e.g., images)

– Use checksums to detect software errors from 

trashing the database.
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b U F F E R  M A N A G E M E N T
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Fixed-Length
Data Blocks

Index Variable-Length
Data Blocks
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b U F F E R  M A N A G E M E N T
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b U F F E R  M A N A G E M E N T
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b U F F E R  M A N A G E M E N T
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b U F F E R  M A N A G E M E N T

• DRAM is fast, but data is not accessed with 

the same frequency and in the same manner.
– Hot Data: OLTP Operations (Tweets posted 

yesterday)

– Cold Data: OLAP Queries (Tweets posted last year)

• We will study techniques for how to bring 

back disk-resident data without slowing 

down the entire system.
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Q U E R Y  P R O C E S S I N G
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SELECT A.id, B.value
FROM A, B

WHERE A.id = B.id
AND B.value > 100
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Q U E R Y  P R O C E S S I N G
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Tuple-at-a-time
→ Each operator calls next on their child to 

get the next tuple to process.

Operator-at-a-time
→ Each operator materializes their entire 

output for their parent operator.

Vector-at-a-time
→ Each operator calls next on their child to 

get the next chunk of data to process.
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Q U E R Y  P R O C E S S I N G
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Q U E R Y  P R O C E S S I N G

• The best strategy for executing a query plan 

in a DBMS changes when all of the data is 

already in memory.
– Sequential scans are no longer significantly faster 

than random access.

• The traditional tuple-at-a-time iterator 

model is too slow because of function calls.
– This problem is more significant in OLAP DBMSs.
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Q U E R Y  P R O C E S S I N G
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Q U E R Y  P R O C E S S I N G

• Q: Query processing in in-memory systems: 

sequential scans or random accesses?
– A: Sequential scans are no longer significantly 

faster than random access.

• Q:  Will the traditional tuple-at-a-time iterator 

work well now?
– A: No, too slow because of function calls (virtual 

table lookups).
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Q U E R Y  P R O C E S S I N G
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Q U E R Y  P R O C E S S I N G
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C O N C U R R E N C Y  C O N T R O L

• Observation: The cost of a txn acquiring a lock 

is the same as accessing data (since the lock 

data is also in memory).

• In-memory DBMS may want to detect 

conflicts at a different granularity.
– Fine-grained locking allows for better concurrency 

but requires more locks.

– Coarse-grained locking requires fewer locks but 
limits the amount of concurrency.
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C O N C U R R E N C Y  C O N T R O L

• The DBMS can store locking information 

about each tuple together with its data.
– This helps with CPU cache locality.

– Mutexes are too slow. Need to use CAS instructions.
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C O N C U R R E N C Y  C O N T R O L

• Disk-oriented DBMSs
– Stalling during disk I/O

• Memory-oriented DBMSs
– New bottleneck is contention caused from txns

executing on multiple cores trying to access data 

at the same time.
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L O G G I N G  &  R E C O V E R Y

• The DBMS still needs a WAL on disk since the 

system could halt at anytime.
– Use group commit to batch log entries and flush 

them together to amortize fsync cost.

– May be possible to use more lightweight logging 

schemes (e.g., only store redo information, NO-

STEAL).

– But since there are no "dirty" pages, there is no 

need to maintain LSNs all throughout the system.

76



GT 8803 // Fall 2019

L O G G I N G  &  R E C O V E R Y

• The system also still takes checkpoints to 

speed up recovery time.

• Different methods for check-pointing:
– Old idea: Maintain a second copy of the database in 

memory that is updated by replaying the WAL.

– Switch to a special “copy-on-write” mode and then 

write a dump of the database to disk.

– Fork DBMS process and then have the child process 

write its contents to disk (using virtual memory).
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S U M M A R Y

• Disk-oriented DBMSs are a relic of the past.
– Most structured databases fit entirely in DRAM on a 

single machine.

• The world has finally become comfortable 

with in-memory data storage and processing.
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A N A T O M Y  O F  A  D A T A B A S E  S Y S T E M

Connection Manager + Admission Control

Query Parser

Query Optimizer

Query Executor

Lock Manager (Concurrency Control)

Access Methods (or Indexes)

Buffer Pool Manager

Log Manager

Memory Manager + Disk Manager

Networking Manager

79

Query
Transactional 

Storage Manager

Query Processor

Shared Utilities

Process Manager

Source: Anatomy of a Database System 
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N E X T  L E C T U R E

• Data Storage

• Assigned Reading
– BlazeIt: Fast Exploratory Video Queries using 

Neural Networks

80


