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ADMINISTRIVIA

* Project ideas
— List shared on Piazza
— Start looking for team-mates!
— Sign up for discussion slots during office hours
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LAST CLASS

* History of DBMSs

— In a way though, it really was a history of data
models

* Data Models
— Hierarchical data model (tree) (IMS)
— Network data model (graph) (CODASYL)
— Relational data model (tables) (System R, INGRES)

* Overarching theme about all these systems
— They were all disk-based DBMSs
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TODAY'S AGENDA

* Disk-centric DBMSs
* In-Memory DBMSs
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DISK-CENTRIC
DBMSs

Georgia

Tech GT 8803 // FALL 2018



ANATOMY OF A DATABASE SYSTEM

Connection Manager + Admission Control Process Manager

Query Parser

Query Optimizer Query Processor

Query Executor

Query Lock Manager (Concurrency Control)
Access Methods (or Indexes) Transactional
Buffer Pool Manager StOng & Manag €r
Log Manager
Memory Manager + Disk Manager Shared Utilities
+ Networking Manager
Ge%;?!ﬁ @J s el 0 Source: Anatomy of a Database System
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ANATOMY OF A DATABASE SYSTEM

* Process Manager
— Manages client connections

Query Processor
— Parse, plan and execute queries on top of storage manager

* Transactional Storage Manager
— Knits together buffer management, concurrency control,
logging and recovery

Shared Utilities
— Manage hardware resources across threads
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TOPICS

* Implications of availability of large DRAM

chips for database systems
— Buffer Management
— Query Processing
— Concurrency Control
— Logging and Recovery
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BACKGROUND

* Much of the history of DBMSs is about dealing
with the limitations of hardware.

 Hardware was much different when the

original DBMSs were designed:
— Uniprocessor (single-core CPU)
— RAM was severely limited (few MB).
— The database had to be stored on disk.

— Disk is slow. No seriously, | mean really slow.
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BACKGROUND

* But now DRAM capacities are large enough

that most databases can fit in memory.
— Structured data sets are smaller (e.g., tables with
numeric data).
— Unstructured data sets are larger (e.qg., videos).

* So why not just use a "traditional" disk-
oriented DBMS with a really large cache?
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DISK-ORIENTED DBMS OVERHEAD

Measured CPU Instructions

=== OLTP THROUGH THE LOOKING GLASS,
~~ AND WHAT WE FOUND THERE
= SIGMOD, pp. 981-992, 2008,
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BUFFER MANAGEMENT

* The primary storage location of the database

is on non-volatile storage (e.g., SSD).
— The database is stored in a file as a collection of
fixed-length blocks called slotted pages on disk.

* The system uses an volatile in-memory buffer

pool to cache blocks fetched from disk.
— Its job is to manage the movement of those blocks
back and forth between disk and memory.
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BUFFER MANAGEMENT

* When a query accesses a page, the DBMS
checks to see if that page is already in

memory in a buffer pool

— Ifit's not, then the DBMS has to retrieve it from disk
and copy it into a free frame in the buffer pool.

— If there are no free frames, then find a page to evict
guided by the page replacement policy.

— If the page being evicted is dirty, then the DBMS has

to write it back to disk to ensure the durability
(ACID) of data.
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BUFFER MANAGEMENT

* Page replacement policy is a differentiating

factor between open-source and commercial

DBMSs.
— What kind of data does it contain?
— Is the page dirty?
— How likely is the page to be accessed in the near

future?
— Examples: LRU, LFU, CLOCK, ARC
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BUFFER MANAGEMENT

* Once the page is in memory, the DBMS
translates any on-disk addresses to their in-
memory addresses.

(Page Identifier) (Page Pointer)
[#100] [0x5050]
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BUFFER MANAGEMENT

Index Buffer Pool Database (On-Disk)
I ! pageé pagel
— —— page’Z pagel
Page Table paged pagez
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BUFFER MANAGEMENT

Index Buffer Pool Database (On-Disk)
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BUFFER MANAGEMENT
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BUFFER MANAGEMENT
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BUFFER MANAGEMENT

Index Buffer Pool Database (On-Disk)
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BUFFER MANAGEMENT

Index Buffer Pool Database (On-Disk)
; | pageoéb pagel
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BUFFER MANAGEMENT
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BUFFER MANAGEMENT

Index Buffer Pool Database (On-Disk)
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BUFFER MANAGEMENT

* Every tuple access has to go through the
buffer pool manager regardless of whether

that data will always be in memory.
— Always have to translate a tuple’s record id to its
memory location.
— Worker thread has to pin pages that it needs to
make sure that they are not swapped to disk.
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BUFFER MANAGEMENT
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BUFFER MANAGEMENT

* Q: What do we gain by managing an in-
memory buffer?

— A: Accelerate query processing by storing
frequently-accessed pages in fast memory

* Q: Can we “learn” an optimal page

replacement policy?
— A: Recent paper from Google on learning memory
accesses based on LSTM models.
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QUERY PROCESSING

SELECT A.id, B.value
FROM A, B

WHERE A.id = B.id
AND B.value > 100

Tuple-at-a-time
— Each operator calls next on their child to

get the next tuple to process.

Operator-at-a-time
— Each operator materializes their entire
output for their parent operator.

Vector-at-a-time
— Each operator calls next on their child to
get the next chunk of data to process.
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QUERY PROCESSING

* The best strategy for executing a query plan

in a disk-centric DBMS

— Sequential scans over a table are much faster than
random accesses

* The traditional tuple-at-a-time iterator

model works well
— Because output of an operator will not fit in limited
memory
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CONCURRENCY CONTROL

* In a disk-oriented DBMS, the systems assumes
that a txn could stall at any time when it tries
to access data that is not in memory.
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CONCURRENCY CONTROL

 Execute other txns at the same time so that if

one txn stalls then others can keep running.
— This is not because the DBMS is trying to use all
cores in the CPU (still focusing on single-core CPUs)
— We do this to let system make forward progress by
executing another txn while the current txn is
waiting for data to be fetched from disk
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CONCURRENCY CONTROL

* Concurrency control policy

— Responsible for deciding how to interleave
operations of concurrent transactions in such a way
that it appears as if they are running serially

— This property is referred to as serializability of
transactions
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CONCURRENCY CONTROL

* Concurrency control policy

— DBMS has to set locks and latches to ensure the
highest level of isolation (ACID) between
transactions

— Locks are stored in a separate data structure (lock
table) to avoid being swapped to disk.
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LOGGING & RECOVERY

 This protocol helps ensure the atomicity and

durability properties (ACID)

— Durability: Changes made by committed
transactions must be present in the database after
recovering from a power failure.

— Atomicity: Changes made by uncommitted (in-
progress/aborted) transactions must not be present
in the database after recovering from a power
failure.
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LOGGING & RECOVERY

 DBMSs use STEAL and NO-FORCE buffer pool

management policies.

— STEAL: DBMS can flush pages dirtied by
uncommitted transactions to disk.

— NO-FORCE: DBMS is not required to flush all pages
dirtied by committed transactions to disk.

— So all page modifications have to be flushed to the
write-ahead log (WAL) before a txn can commit
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LOGGING & RECOVERY

* Each log entry contains the before and after

images of modified tuples.

— STEAL: Modifications made by uncommitted
transactions that are flushed to disk have to rolled
back.

— NO-FORCE: Modifications made by committed
transactions might not have been flushed to disk.

Georgia |

Tozh | 6T 8803 // FALL 2019



LOGGING & RECOVERY

* Each log entry contains the before and after

images of modified tuples.
— Recording the before and after images in the log is
critical to ensuring atomicity and durability

— Lots of work to keep track of log sequence numbers
(LSNs) all throughout the DBMS.
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LOGGING & RECOVERY
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LOGGING & RECOVERY

* Q: What would happen if we use a NO-STEAL
policy?
— A: Cannot support large transactions that make
changes larger than the buffer pool

* Q: What would happen if we use a FORCE
policy?
— A: Performance would drop by orders of

magnitude since need to randomly write to disk all
the time.
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TAKEAWAYS

e Disk-oriented DBMSs do a lot of extra stuff

because they are predicated on the
assumption that data has to reside on disk

* In-memory DBMSs maximize performance by
optimizing these protocols and algorithms
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IN-MEMORY DBMSS

* Assume that the primary storage location of
the database is permanently in memory.

 Early ideas proposed in the 1980s but it is
now feasible because DRAM prices are low
and capacities are high.
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BOTTLENECKS

* If1/Ois no longer the slowest resource, much
of the DBMS’s architecture will have to

change account for other bottlenecks:
— Locking/latching
— Cache misses
— Predicate evaluations
— Data movement & copying
— Networking (between application & DBMS)
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STORAGE ACGESS LATENGIES

L3 DRAM SSD HDD
Read Latency ~20ns 60 ns 25,000 ns 10,000,000 ns
Write Latency ~20 ns 60 ns 300,000 ns 10,000,000 ns

——  LET'S TALK ABOUT STORAGE & RECOVERY METHODS FOR
~ NON-VOLATILE MEMORY DATABASE SYSTEMS
2| SIGMOD, pp. 707-722, 2015,
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STORAGE ACGESS LATENGIES

Jim Gray’s analogy:

—Reading from L3 cache: Reading a book on a table
—Reading from HDD: Flying to Pluto to read that book

Because everything fits in DRAM, we can do
more sophisticated things in software.

GT 8803 // FALL 2018
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BUFFER MANAGEMENT

* Anin-memory DBMS does not need to store
the database in slotted pages but it will still

organize tuples in blocks:

— Direct memory pointers vs. tuple identifiers

— Separate pools for fixed-length (e.g., numeric data)
and variable-length data (e.g., images)

— Use checksums to detect software errors from
trashing the database.
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BUFFER MANAGEMENT

Index Fixed-Length Variable-Length
Data Blocks Data Blocks
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BUFFER MANAGEMENT

Index Fixed-Length Variable-Length
Data Blocks Data Blocks
; }
" "
Memory
Address
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BUFFER MANAGEMENT

Index Fixed-Length Variable-Length
Data Blocks Data Blocks
; }

" " 11 —

| I T
Memory ) : \\
Address L T
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BUFFER MANAGEMENT

e DRAM is fast, but data is not accessed with

the same frequency and in the same manner.
— Hot Data: OLTP Operations (Tweets posted
yesterday)
— Cold Data: OLAP Queries (Tweets posted last year)

* We will study techniques for how to bring
back disk-resident data without slowing
down the entire system.
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QUERY PROCESSING

SELECT A.id, B.value
FROM A, B

WHERE A.id = B.id
AND B.value > 100
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QUERY PROCESSING

SELECT A.id, B.value
FROM A, B

WHERE A.id = B.id
AND B.value > 100

Tuple-at-a-time
— Each operator calls next on their child to

get the next tuple to process.

Operator-at-a-time
— Each operator materializes their entire
output for their parent operator.

Vector-at-a-time
— Each operator calls next on their child to
get the next chunk of data to process.
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QUERY PROCESSING

* The best strategy for executing a query plan
in a DBMS changes when all of the data is

already in memory.

— Sequential scans are no longer significantly faster
than random access.

* The traditional tuple-at-a-time iterator

model is too slow because of function calls.
— This problem is more significant in OLAP DBMSs.

Georgia |

Tozh | 6T 8803 // FALL 2019



QUERY PROCESSING
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QUERY PROCESSING

* Q: Query processing in in-memory systems:

sequential scans or random accesses?
— A: Sequential scans are no longer significantly
faster than random access.

* Q: Will the traditional tuple-at-a-time iterator

work well now?
— A: No, too slow because of function calls (virtual
table lookups).
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CONCURRENCY CONTROL

Observation: The cost of a txn acquiring a lock

Is the same as accessing data (since the lock
data is also in memory).

* In-memory DBMS may want to detect
conflicts at a different granularity.

— Fine-grained locking allows for better concurrency
but requires more locks.

— Coarse-grained locking requires fewer locks but
limits the amount of concurrency.

GT 8803 // FALL 2019
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CONCURRENCY CONTROL

* The DBMS can store locking information

about each tuple together with its data.
— This helps with CPU cache locality.
— Mutexes are too slow. Need to use CAS instructions.
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CONCURRENCY CONTROL

e Disk-oriented DBMSs
— Stalling during disk I/0O

* Memory-oriented DBMSs
— New bottleneck is contention caused from txns

executing on multiple cores trying to access data
at the same time.
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LOGGING & RECOVERY

e The DBMS still needs a WAL on disk since the

system could halt at anytime.

— Use group commit to batch log entries and flush
them together to amortize fsync cost.

— May be possible to use more lightweight logging
schemes (e.g., only store redo information, NO-
STEAL).

— But since there are no "dirty" pages, there is no
need to maintain LSNs all throughout the system.
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LOGGING & RECOVERY

* The system also still takes checkpoints to
speed up recovery time.

 Different methods for check-pointing:

— Old idea: Maintain a second copy of the database in
memory that is updated by replaying the WAL.

— Switch to a special “copy-on-write” mode and then
write a dump of the database to disk.

— Fork DBMS process and then have the child process
write its contents to disk (using virtual memory).

Georgia |

Tozh | 6T 8803 // FALL 2019



SUMMARY

* Disk-oriented DBMSs are a relic of the past.
— Most structured databases fit entirely in DRAM on a
single machine.

* The world has finally become comfortable
with in-memory data storage and processing.
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ANATOMY OF A DATABASE SYSTEM

Connection Manager + Admission Control Process Manager

Query Parser

Query Optimizer Query Processor

Query Executor

Query Lock Manager (Concurrency Control)
Access Methods (or Indexes) Transactional
Buffer Pool Manager StOng & Manag €r
Log Manager
Memory Manager + Disk Manager Shared Utilities
+ Networking Manager
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NEXT LECTURE

* Data Storage
* Assigned Reading

— Blazelt: Fast Exploratory Video Queries using
Neural Networks
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