
DATA ANALYTICS

USING DEEP LEARNING

GT 8803 // FALL 2019 // JOY ARULRAJ

L E C T U R E # 0 7 : S T O R A G E M O D E L S & C O M P R E S S I O N

GT 8803 // Fall 2019

a d m i n i s t r i v i a

• Reminder
– Assignment 1 due on next Wednesday

– Sign up for discussion slots on next Thursday

2

GT 8803 // Fall 2019

L A S T C L A S S

• Disk-centric & in-memory DBMSs
– Buffer management (ACID)

– Query processing

– Concurrency control (ACID)

– Logging and recovery (ACID)

3

GT 8803 // Fall 2019

T O D A Y ’ s A G E N D A

• Storage Models

• Compression

• Visual Storage Engine

4

GT 8803 // Fall 2018

STORAGE

MODELS

5

GT 8803 // Fall 2019

A N A T O M Y O F A D A T A B A S E S Y S T E M

Connection Manager + Admission Control

Query Parser

Query Optimizer

Query Executor

Lock Manager (Concurrency Control)

Access Methods (or Indexes)

Buffer Pool Manager

Log Manager

Memory Manager + Disk Manager

Networking Manager

6

Query
Transactional

Storage Manager

Query Processor

Shared Utilities

Process Manager

Source: Anatomy of a Database System

GT 8803 // Fall 2019

D A T A O R G A N I Z A T I O N

• One can think of an in-memory database as

just a large array of bytes.
– The schema tells the DBMS how to convert the

bytes into the appropriate type (e.g., INTEGER, DATE).

– Each tuple is prefixed with a header that contains

meta-data (e.g., last modified time-stamp).

7

GT 8803 // Fall 2019

T A B L E S T O R A G E F O R M A T

• Storage Models
– N-ary Storage Model (NSM) / Row-Store

– Decomposition Storage Model (DSM) / Column-

Store

– Flexible or Hybrid Storage Model

8

GT 8803 // Fall 2019

N - A R Y S T O R A G E M O D E L (N S M)

• The DBMS stores all of the attributes for a

single tuple contiguously.

• Ideal for OLTP workloads where txns tend to

operate only on an individual entity and

insert-heavy workloads.

• Use the tuple-at-a-time iterator model.

9

GT 8803 // Fall 2019

N - A R Y S T O R A G E M O D E L (N S M)

10

1 Georgia Tech 15000 Atlanta

2 Wisconsin 30000 Madison

3 Carnegie Mellon 6000 Pittsburgh

ID University Enrollment City

4 UC Berkeley 30000 Berkeley

GT 8803 // Fall 2019

N S M P H Y S I C A L S T O R A G E

• Choice #1: Heap-Organized Tables
– Tuples are stored in blocks called a heap.

– The heap does not necessarily define an order

• Choice #2: Index-Organized Tables
– Tuples are stored in the primary key index itself.

– Index does define an order based on the primary

key

11

GT 8803 // Fall 2019

N - A R Y S T O R A G E M O D E L (N S M)

• Advantages
– Fast inserts, updates, and deletes.

– Good for queries that need the entire tuple.

– Can use index-oriented physical storage.

• Disadvantages
– Not good for scanning large portions of the table

and/or a subset of the attributes.
– OLAP workloads & wide tables with lots of

attributes

12

GT 8803 // Fall 2019

D E C O M P O S I T I O N S T O R A G E M O D E L (D S M)

• The DBMS stores a single attribute for all

tuples contiguously in a block of data.
– Sometimes also called vertical partitioning.

• Ideal for OLAP workloads where read-only

queries perform large scans over a subset of

the table’s attributes.

• Use the vector-at-a-time iterator model.

13

GT 8803 // Fall 2019 14

1

2

3

4

D E C O M P O S I T I O N S T O R A G E M O D E L (D S M)

Georgia Tech

Wisconsin

Carnegie Mellon

UC Berkeley

15000

30000

6000

30000

Atlanta

Madison

Pittsburgh

Berkeley

ID University Enrollment City

GT 8803 // Fall 2019

T U P L E I D E N T I F I C A T I O N I N D S M

• Choice #1: Fixed-length Offsets
– Each value is the same length for an attribute.

• Choice #2: Embedded Tuple Ids
– Each value is stored with its tuple id in a column.

15

Offsets

0

1

2

3

A B C D

Embedded Ids

A

0

1

2

3

B

0

1

2

3

C

0

1

2

3

D

0

1

2

3

GT 8803 // Fall 2019

D E C O M P O S I T I O N S T O R A G E M O D E L (D S M)

• Advantages
– Reduces the amount wasted work because the

DBMS only reads the data that it needs.

– Better compression.

• Disadvantages
– Slow for point queries, inserts, updates, and deletes

because of tuple splitting/stitching (OLTP
workloads).

16

GT 8803 // Fall 2019

O B S E R V A T I O N

• Can we build a single system that supports

both OLTP and OLAP workloads?

• Data is “hot” when first entered into database
– A newly inserted tuple is more likely to be updated

again the near future.

• As a tuple ages, it is updated less frequently.
– At some point, a tuple is only accessed in read-only

queries along with other tuples.

17

GT 8803 // Fall 2018

B I F U R C A T E D E N V I R O N M E N T

18

Extract
Transform

Load

OLTP DATA SILOS OLAP DATA WAREHOUSE

GT 8803 // Fall 2018

B I F U R C A T E D E N V I R O N M E N T

19

Extract
Transform

Load

OLTP DATA SILOS OLAP DATA WAREHOUSE

GT 8803 // Fall 2018

B I F U R C A T E D E N V I R O N M E N T

20

Extract
Transform

Load

OLTP DATA SILOS OLAP DATA WAREHOUSE

GT 8803 // Fall 2019

H Y B R I D S T O R A G E M O D E L

• Single database instance that uses different

storage models for hot and cold data.

• Store new data in NSM for fast OLTP

Migrate data to DSM for more efficient OLAP

21

GT 8803 // Fall 2019 22

1

2

3

4

H Y B R I D S T O R A G E M O D E L

Georgia Tech 15000

Wisconsin 30000

Carnegie Mellon 6000

UC Berkeley 30000

Atlanta

Madison

Pittsburgh

Berkeley

ID University Enrollment City

GT 8803 // Fall 2019

P E L O T O N A D A P T I V E S T O R A G E

• Employ a single execution engine

architecture that is able to operate on both

NSM and DSM data.
– Don’t need to store two copies of the database.

– Don’t need to sync multiple database segments.

• Note that a DBMS can still use the delta-store

approach with this single-engine architecture.

23

BRIDGING THE ARCHIPELAGO BETWEEN ROW-STORES

AND COLUMN-STORES FOR HYBRID WORKLOADS

SIGMOD 2016

GT 8803 // Fall 2018

P E L O T O N A D A P T I V E S T O R A G E

24

Original Data

SELECT AVG(B)
FROM AndySux

WHERE C = “yyy”

UPDATE AndySux
SET A = 123,

B = 456,
C = 789

WHERE D = “xxx”

A B C D

GT 8803 // Fall 2018

P E L O T O N A D A P T I V E S T O R A G E

25

Original Data

SELECT AVG(B)
FROM AndySux

WHERE C = “yyy”

UPDATE AndySux
SET A = 123,

B = 456,
C = 789

WHERE D = “xxx”

A B C D

GT 8803 // Fall 2018

P E L O T O N A D A P T I V E S T O R A G E

26

Original Data

SELECT AVG(B)
FROM AndySux

WHERE C = “yyy”

UPDATE AndySux
SET A = 123,

B = 456,
C = 789

WHERE D = “xxx”

A B C D

Cold

Hot

GT 8803 // Fall 2018

P E L O T O N A D A P T I V E S T O R A G E

27

Original Data Adapted Data

SELECT AVG(B)
FROM AndySux

WHERE C = “yyy”

UPDATE AndySux
SET A = 123,

B = 456,
C = 789

WHERE D = “xxx” A B C D

A B C D A B C D

Cold

Hot

GT 8803 // Fall 2018

P E L O T O N A D A P T I V E S T O R A G E

28

Original Data Adapted Data

SELECT AVG(B)
FROM AndySux

WHERE C = “yyy”

UPDATE AndySux
SET A = 123,

B = 456,
C = 789

WHERE D = “xxx” A B C D

A B C D A B C D

Cold

Hot

GT 8803 // Fall 2019 29

F L E X I B L E S T O R A G E M O D E L

1

2

Georgia Tech 15000

Wisconsin 30000

Atlanta

Madison

ID University Enrollment City

3 Carnegie Mellon

4 UC Berkeley

6000

30000

Pittsburgh

Berkeley

GT 8803 // Fall 2019

T I L E A B S T R A C T I O N

• Introduce an indirection layer that abstracts

the true layout of tuples from query

operators.

30

A B C D

GT 8803 // Fall 2019

T I L E A B S T R A C T I O N

• Introduce an indirection layer that abstracts

the true layout of tuples from query

operators.

31

Tile Group A

Tile Group B

A B C D

GT 8803 // Fall 2019

T I L E A B S T R A C T I O N

• Introduce an indirection layer that abstracts

the true layout of tuples from query

operators.

32

Tile Group A

Tile Group B

A B C D

Tile #1

Tile #2 Tile #3 Tile #4

GT 8803 // Fall 2019

T I L E A B S T R A C T I O N

• Introduce an indirection layer that abstracts

the true layout of tuples from query

operators.

33

A B C D

Tile #1

Tile #2 Tile #3 Tile #4

H

+

+

+

+

+

Tile Group
Header

GT 8803 // Fall 2019

T I L E A B S T R A C T I O N

• Introduce an indirection layer that abstracts

the true layout of tuples from query

operators.

34

A B C DH

+

+

+

+

+

GT 8803 // Fall 2019

AS

γ

s

T I L E A B S T R A C T I O N

• Introduce an indirection layer that abstracts

the true layout of tuples from query

operators.

35

A B C DH

+

+

+

+

+

SELECT AVG(B)
FROM AndySux

WHERE C = “yyy”

GT 8803 // Fall 2019

AS

γ

s

T I L E A B S T R A C T I O N

• Introduce an indirection layer that abstracts

the true layout of tuples from query

operators.

36

A B C DH

+

+

+

+

+

SELECT AVG(B)
FROM AndySux

WHERE C = “yyy”

1

2

B

1

2

3

GT 8803 // Fall 2019

AS

γ

s

T I L E A B S T R A C T I O N

• Introduce an indirection layer that abstracts

the true layout of tuples from query

operators.

37

A B C DH

+

+

+

+

+

SELECT AVG(B)
FROM AndySux

WHERE C = “yyy”

1

2

B

1

2

3

GT 8803 // Fall 2019

P A R T I N G T H O U G H T S

• A flexible architecture that supports a hybrid

storage model is the next major trend in

DBMSs
– This will enable relational DBMSs to support both

OLTP and OLAP database workloads.

38

GT 8803 // Fall 2018

COMPRESSION

39

GT 8803 // Fall 2019

O B S E R V A T I O N

• I/O is the main bottleneck if the DBMS has to

fetch data from disk.

– CPU cost for decompressing data <
– I/O cost for fetching un-compressed data.

• Compression always helps.

40

GT 8803 // Fall 2019

O B S E R V A T I O N

• In-memory DBMSs are more complicated
– Compressing the database reduces DRAM

requirements and processing.

• Key trade-off is speed vs. compression ratio
– In-memory DBMSs (always?) choose speed.

41

GT 8803 // Fall 2019

R E A L - W O R L D D A T A C H A R A C T E R I S T I C S

• Data sets tend to have highly skewed

distributions for attribute values.
– Example: Zipfian distribution of the Brown Corpus

– Words like “the”, “a” occur very frequently in books

42

GT 8803 // Fall 2019

R E A L - W O R L D D A T A C H A R A C T E R I S T I C S

• Data sets tend to have high correlation

between attributes of the same tuple.
– Example: Order Date to Ship Date (few days)

– (June 5, +5) instead of (June 5, June 10)

43

GT 8803 // Fall 2019

D A T A B A S E C O M P R E S S I O N

• Goal #1: Must produce fixed-length values.

Allows us to efficiently access tuples.

• Goal #2: Allow the DBMS to postpone

decompression as long as possible during

query execution. Operate directly on

compressed data.

• Goal #3: Must be a lossless scheme. No data

should be lost during this transformation.

44

GT 8803 // Fall 2019

L O S S L E S S V S . L O S S Y C O M P R E S S I O N

• When DBMS uses compression, it is always

lossless since people don’t like losing data.

• Any kind of lossy compression is has to be

performed at the application level.
– Example: Sensor data. Readings are taken every

second, but we may only store average per minute.

• New DBMSs support approximate queries
– Example: BlinkDB, SnappyData, XDB, Oracle (2017)

45

GT 8803 // Fall 2019

Z O N E M A P S

• Pre-computed aggregates for blocks of data.

• DBMS can check the zone map first to decide

whether it wants to access the block.

46

Original Data

val

100

200

300

400

400

GT 8803 // Fall 2019

Z O N E M A P S

• Pre-computed aggregates for blocks of data.

• DBMS can check the zone map first to decide

whether it wants to access the block.

47

Zone Map

val

100

400

280

1400

type

MIN

MAX

AVG

SUM

5COUNT

Original Data

val

100

200

300

400

400

GT 8803 // Fall 2019

Z O N E M A P S

• Pre-computed aggregates for blocks of data.

• DBMS can check the zone map first to decide

whether it wants to access the block.

48

Zone Map

val

100

400

280

1400

type

MIN

MAX

AVG

SUM

5COUNT

Original Data

val

100

200

300

400

400

SELECT * FROM table
WHERE val > 600

GT 8803 // Fall 2019

C O L U M N A R C O M P R E S S I O N S C H E M E S

• Compression Schemes
– Run-length Encoding

– Bitmap Encoding

– Delta Encoding

– Incremental Encoding

– Mostly Encoding

– Dictionary Encoding

49

GT 8803 // Fall 2019

D I C T I O N A R Y C O M P R E S S I O N

• Most pervasive compression scheme in

DBMSs.

• Replace frequent patterns with smaller codes.

• Need to support fast encoding and decoding.

50

DICTIONARY-BASED ORDER-PRESERVING STRING
COMPRESSION FOR MAIN MEMORY COLUMN STORES
SIGMOD 2009

GT 8803 // Fall 2019

D I C T I O N A R Y C O M P R E S S I O N

• A dictionary needs to support two operations:
– Encode: For a given uncompressed value, convert it

into its compressed form.

– Decode: For a given compressed value, convert it

back into its original form.

• We need two hash tables to support

operations in both directions.

51

GT 8803 // Fall 2019

D I C T I O N A R Y C O M P R E S S I O N

• When to construct the dictionary?

• What is the scope of the dictionary?

52

GT 8803 // Fall 2019

D I C T I O N A R Y C O N S T R U C T I O N

• Choice #1: All At Once
– Compute the dictionary for all the tuples at a given

point of time.

– New tuples must use a separate dictionary or the all

tuples must be recomputed.

• Choice #2: Incremental
– Merge new tuples in with an existing dictionary.
– Likely requires re-encoding of existing tuples.

53

GT 8803 // Fall 2019

D I C T I O N A R Y S C O P E

• Choice #1: Block-level
– Only include a subset of tuples within a single table.

– Lower compression ratio, but can add tuples easily

– Impact of dictionary data corruption is localized

• Choice #2: Table-level
– Construct a dictionary for the entire table.

– Better compression ratio, but expensive to update.

• Choice #3: Multi-Table
– Sometimes helps with joins and set operations.

54

GT 8803 // Fall 2019

P A R T I N G T H O U G H T S

• Dictionary encoding is probably the most

useful compression scheme because it does

not require pre-sorting.

• The DBMS can combine different approaches

for even better compression.

• It is important to wait as long as possible

during query execution to decompress data.

55

GT 8803 // Fall 2018

VISUAL

STORAGE

ENGINE

56

GT 8803 // Fall 2019

V I D E O A N A L Y T I C S

• Components of a video analytics DBMS
– Query parser

– Query optimizer

– Query execution engine

– Storage engine

57

GT 8803 // Fall 2019

C H A L L E N G E S : S T O R A G E E N G I N E

• Loading frames from disk takes time
– This slows down model training

– Traditional video compression formats are

optimized for human consumption

• Goals
– Accelerate model training

– Leverage the observation that the compression
format need not be optimized for human

consumption

58

GT 8803 // Fall 2019

T R A D I T I O N A L V I D E O C O M P R E S S I O N

• Three types of frame encoding
– I-frame (intra-coded picture)

– P-frame (predicted picture i.e. delta from I-frame)

– B-frame (bi-directional predicted picture i.e. deltas

from both the preceding and following frames)

59

GT 8803 // Fall 2019

C O N V O L U T I O N A L A U T O E N C O D E R

• An autoencoder is a neural network used to

learn an efficient data coding.

60

ENCODER

(CONVOLUTIONS)

DECODER

(DECONVOLUTIONS)

COMPRESSED DATA

GT 8803 // Fall 2019

C O M P R E S S I O N U S I N G A U T O E N C O D E R

• Train the auto encoder using videos
– Compress frames using the auto encoder

– Store compressed frames in the storage engine

• Execute queries on compressed data
– Reduce storage footprint by orders of magnitude

– Accelerate query processing

61

GT 8803 // Fall 2019

P A R T I N G T H O U G H T S

• Convolutional auto-encoders are capable of

efficiently encoding visual data sets.

• What can we do with them?

62

GT 8803 // Fall 2019

N E X T L E C T U R E

• Query Execution

63

