

DATA ANALYTICS USING DEEP LEARNING GT 8803 // Fall 2019 // Joy Arulraj

LECTURE #07: STORAGE MODELS & COMPRESSION

CREATING THE NEXT®

ADMINISTRIVIA

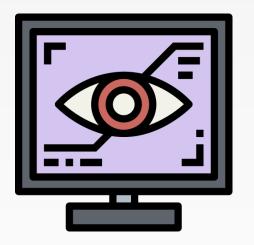
- Reminder
 - Assignment 1 due on next Wednesday
 - Sign up for discussion slots on next Thursday

LAST CLASS

- Disk-centric & in-memory DBMSs
 - Buffer management (ACID)
 - Query processing
 - Concurrency control (ACID)
 - Logging and recovery (ACID)

TODAY'S AGENDA

- Storage Models
- Compression
- Visual Storage Engine



STORAGE MODELS

GT 8803 // FALL 2018

ANATOMY OF A DATABASE SYSTEM

Connection Manager + Admission Control

Query Parser

Query Optimizer

Query Executor

Lock Manager (Concurrency Control)

Access Methods (or Indexes)

Buffer Pool Manager

Log Manager

Memory Manager + Disk Manager

Networking Manager

Process Manager

Query Processor

Transactional Storage Manager

Shared Utilities

Source: Anatomy of a Database System

Ouerv

GT 8803 // FALL 2019

DATA ORGANIZATION

- One can think of an in-memory database as just a large array of bytes.
- The schema tells the DBMS how to convert the bytes into the appropriate type (e.g., INTEGER, DATE).
- Each tuple is prefixed with a header that contains meta-data (e.g., last modified time-stamp).

TABLE STORAGE FORMAT

- Storage Models
 - *N*-ary Storage Model (NSM) / Row-Store
 - Decomposition Storage Model (DSM) / Column-Store
 - Flexible or Hybrid Storage Model

N-ARY STORAGE MODEL (NSM)

- The DBMS stores all of the attributes for a single tuple contiguously.
- Ideal for OLTP workloads where txns tend to operate only on an individual entity and insert-heavy workloads.
- Use the tuple-at-a-time iterator model.

N-ARY STORAGE MODEL (NSM)

ID	University	Enrollment	City
1	Georgia Tech	15000	Atlanta
2	Wisconsin	30000	Madison
3	Carnegie Mellon	6000	Pittsburgh
4	UC Berkeley	30000	Berkeley

NSM PHYSICAL STORAGE

- Choice #1: Heap-Organized Tables
- Tuples are stored in blocks called a heap.
- The heap does not necessarily define an order
- Choice #2: Index-Organized Tables
- Tuples are stored in the primary key **index** itself.
- Index does define an order based on the primary key

N-ARY STORAGE MODEL (NSM)

Advantages

- Fast inserts, updates, and deletes.
- Good for queries that need the entire tuple.
- Can use index-oriented physical storage.

Disadvantages

- Not good for scanning large portions of the table and/or a subset of the attributes.
- OLAP workloads & wide tables with lots of attributes

DECOMPOSITION STORAGE MODEL (DSM)

- The DBMS stores a single attribute for all tuples contiguously in a block of data.
- Sometimes also called **vertical partitioning**.
- Ideal for OLAP workloads where read-only queries perform large scans over a subset of the table's attributes.
- Use the vector-at-a-time iterator model.

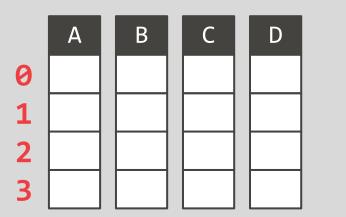
DECOMPOSITION STORAGE MODEL (DSM)

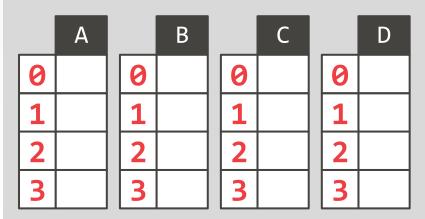
ID	University	Enrollment	City
1	Georgia Tech	15000	Atlanta
2	Wisconsin	30000	Madison
3	Carnegie Mellon	6000	Pittsburgh
4	UC Berkeley	30000	Berkeley

TUPLE IDENTIFICATION IN DSM

- Choice #1: Fixed-length Offsets
- Each value is the same length for an attribute.
- Choice #2: Embedded Tuple Ids

Each value is stored with its tuple id in a column.
 Offsets Embedded Ids





DECOMPOSITION STORAGE MODEL (DSM)

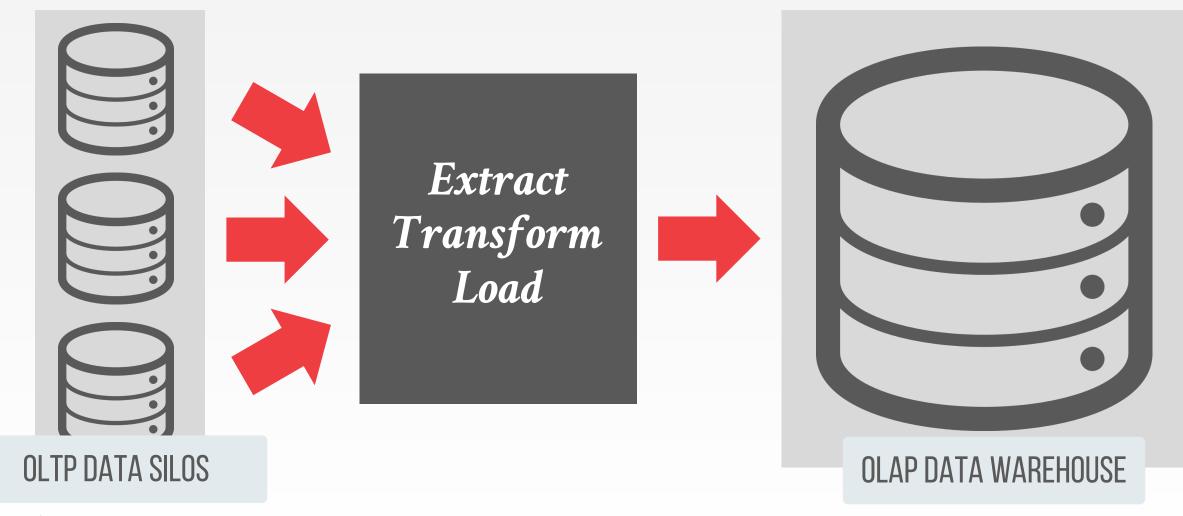
Advantages

- Reduces the amount wasted work because the DBMS only reads the data that it needs.
- Better compression.
- Disadvantages
- Slow for point queries, inserts, updates, and deletes because of tuple splitting/stitching (OLTP workloads).

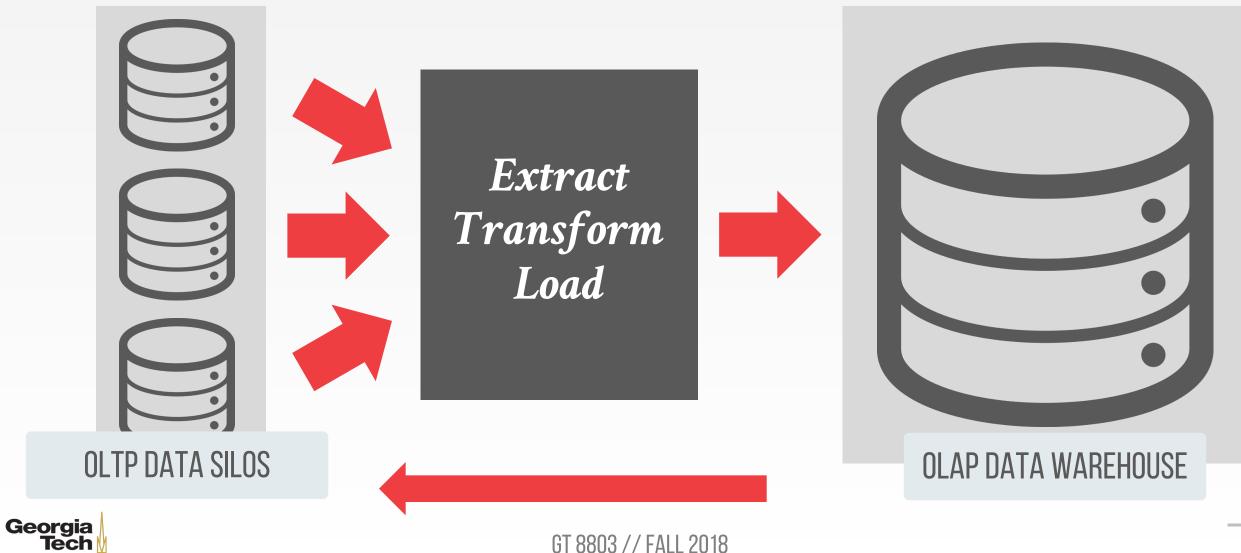
OBSERVATION

- Can we build a single system that supports both OLTP and OLAP workloads?
- Data is "hot" when first entered into database
- A newly inserted tuple is more likely to be updated again the near future.
- As a tuple ages, it is updated less frequently.
- At some point, a tuple is only accessed in read-only queries along with other tuples.

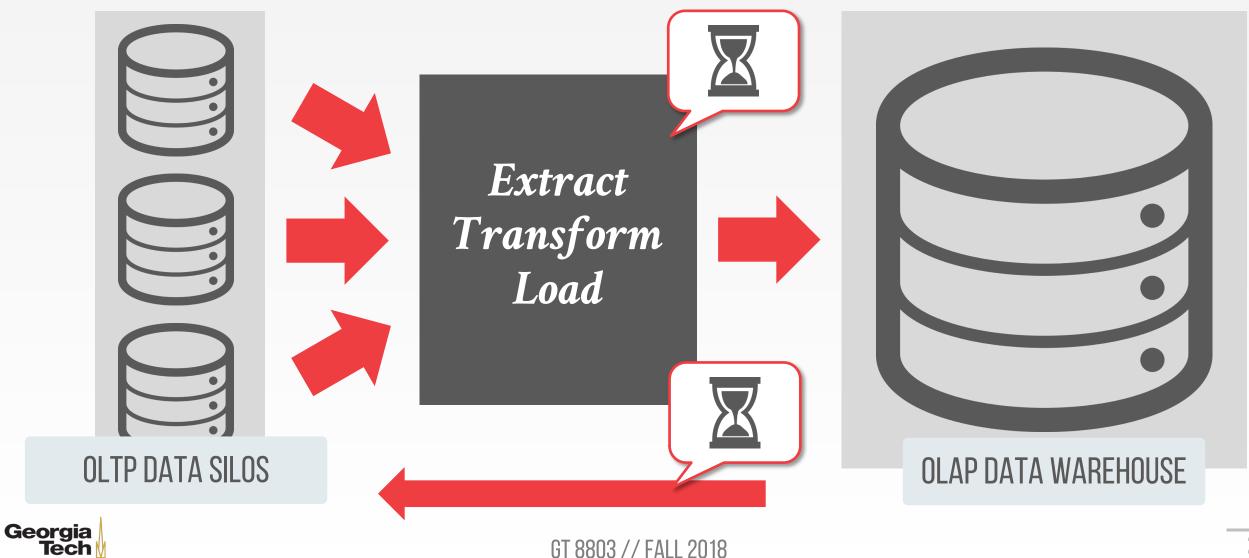
BIFURCATED ENVIRONMENT



BIFURCATED ENVIRONMENT



BIFURCATED ENVIRONMENT



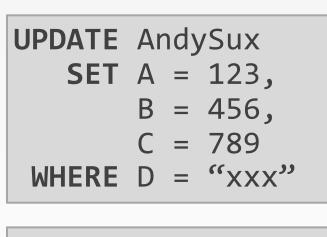
HYBRID STORAGE MODEL

- Single database instance that uses different storage models for hot and cold data.
- Store new data in NSM for fast OLTP Migrate data to DSM for more efficient OLAP

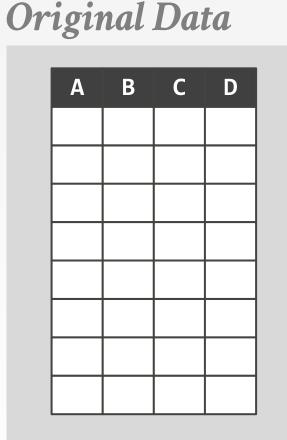
HYBRID STORAGE MODEL

ID	University	Enrollment	City
1	Georgia Tech	15000	Atlanta
2	Wisconsin	30000	Madison
3	Carnegie Mellon	6000	Pittsburgh
4	UC Berkeley	30000	Berkeley

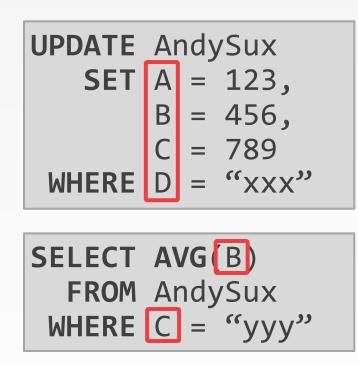
- Employ a single execution engine architecture that is able to operate on both NSM and DSM data.
- Don't need to store two copies of the database.
- Don't need to sync multiple database segments.
- Note that a DBMS can still use the delta-store approach with this single-engine architecture.



SELECT AVG(B)
FROM AndySux
WHERE C = "yyy"

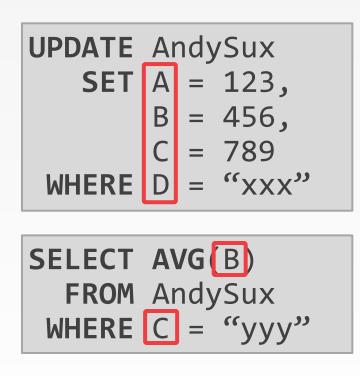


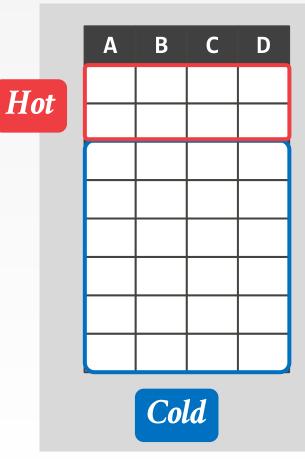
Original Data

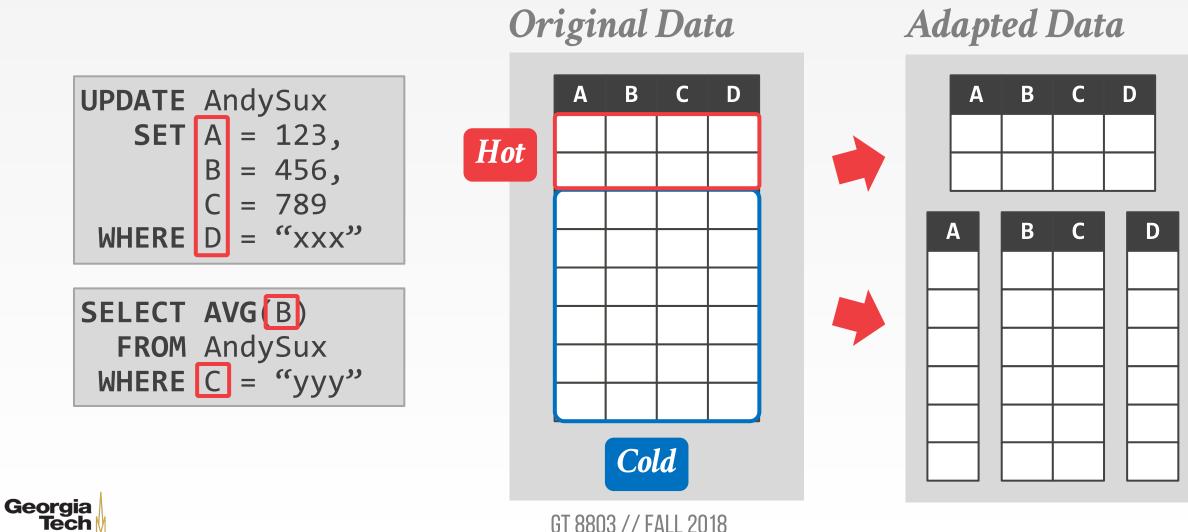


Α	В	С	D

GT 8803 // FALL 2018

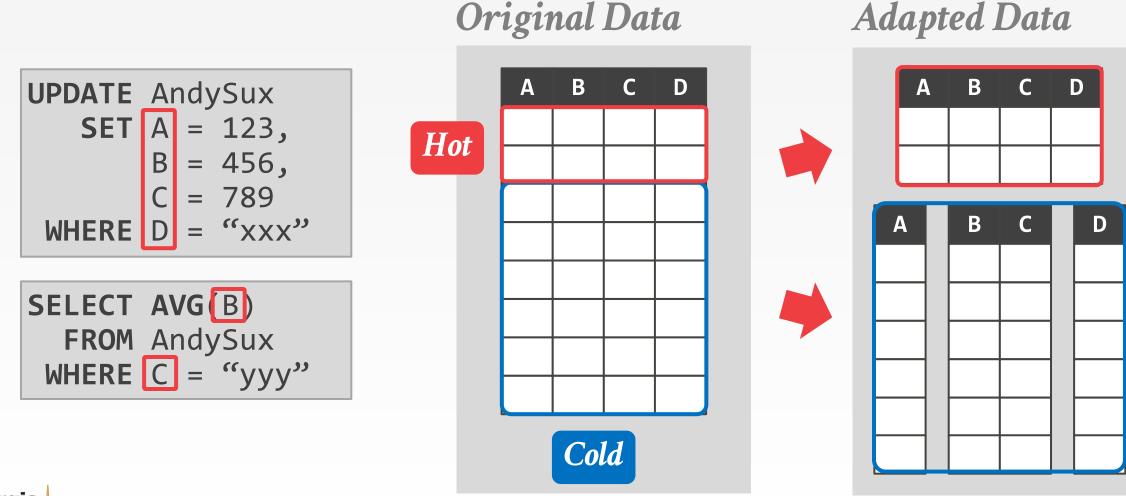






27

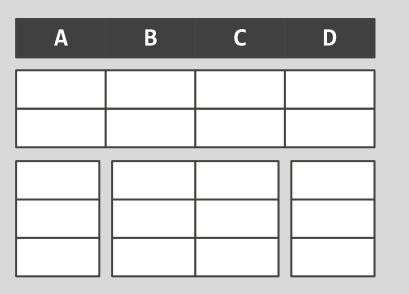
GT 8803 // FALL 2018

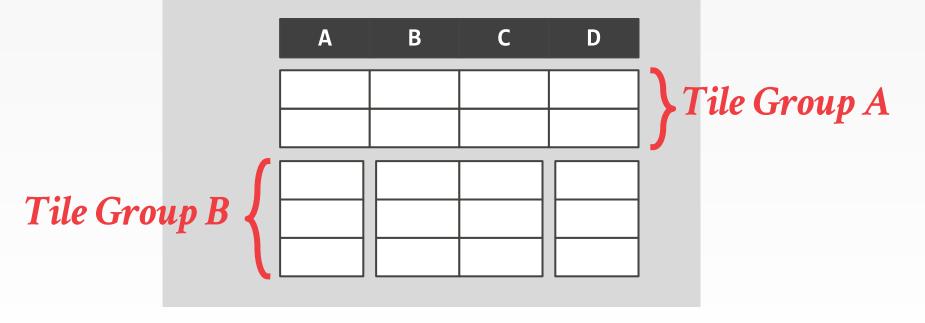


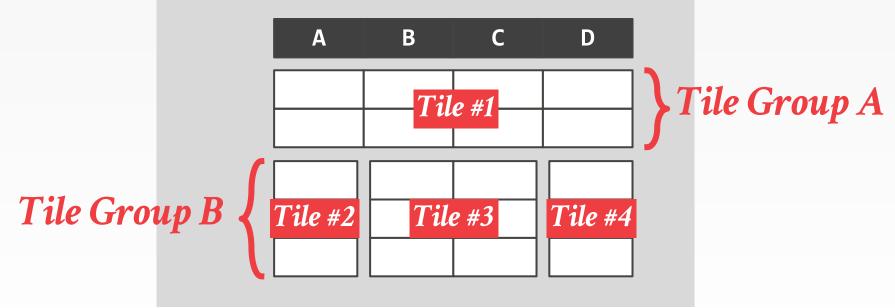
GT 8803 // FALL 2018

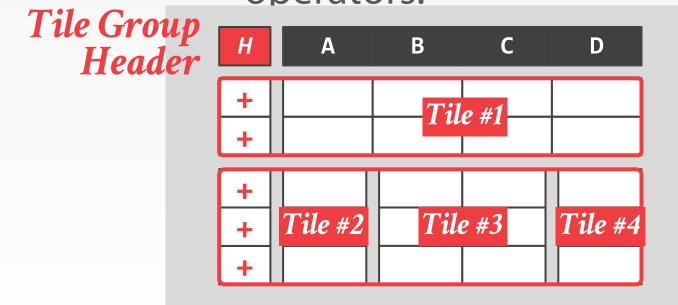
FLEXIBLE STORAGE MODEL

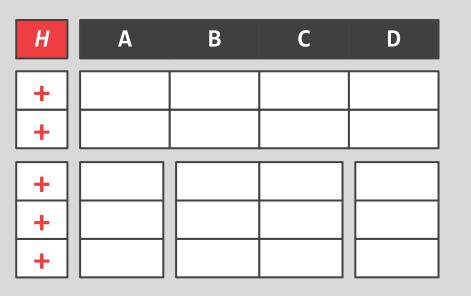
ID	University	Enrollment	City
1	Georgia Tech	15000	Atlanta
2	Wisconsin	30000	Madison
3	Carnegie Mellon	6000	Pittsburgh
4	UC Berkeley	30000	Berkeley



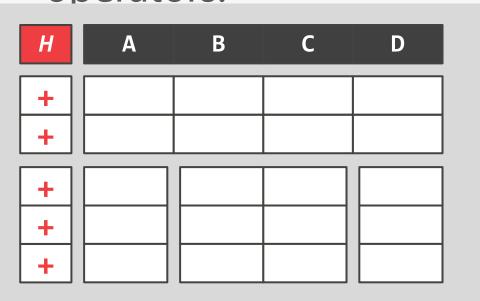




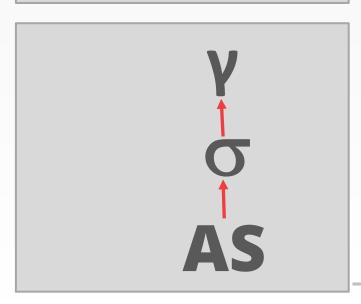




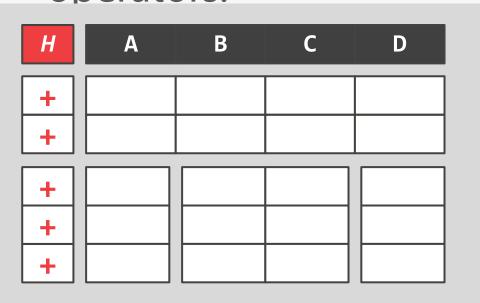
 Introduce an indirection layer that abstracts the true layout of tuples from query operators.



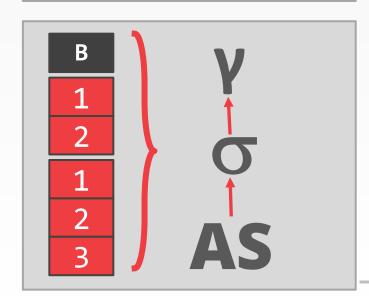
SELECT AVG(B)
FROM AndySux
WHERE C = "yyy"



 Introduce an indirection layer that abstracts the true layout of tuples from query operators.

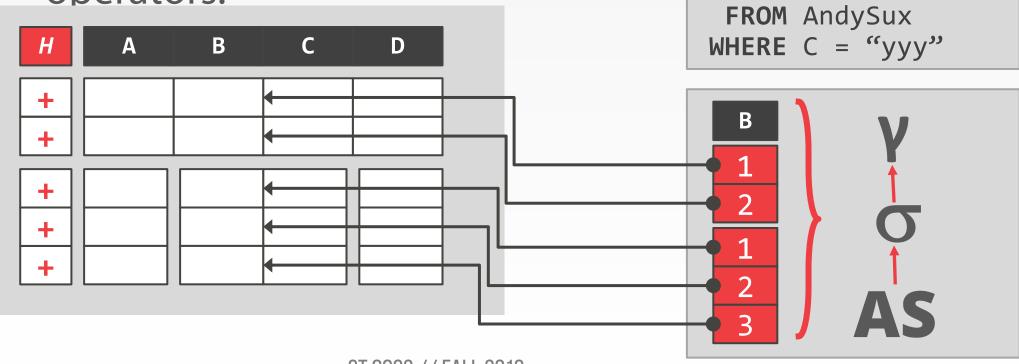


SELECT AVG(B)
FROM AndySux
WHERE C = "yyy"



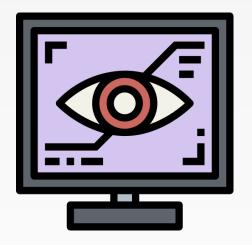
TILE ABSTRACTION

 Introduce an indirection layer that abstracts the true layout of tuples from query operators.



PARTING THOUGHTS

- A flexible architecture that supports a hybrid storage model is the next major trend in DBMSs
 - This will enable relational DBMSs to support both OLTP and OLAP database workloads.



COMPRESSION

GT 8803 // FALL 2018

OBSERVATION

- I/O is the main bottleneck if the DBMS has to fetch data from disk.
 - CPU cost for decompressing data <</p>
 - I/O cost for fetching un-compressed data.
- Compression always helps.

OBSERVATION

- In-memory DBMSs are more complicated
- Compressing the database reduces DRAM requirements and processing.
- Key trade-off is **speed** vs. **compression ratio**
- In-memory DBMSs (always?) choose speed.

REAL-WORLD DATA CHARACTERISTICS

- Data sets tend to have highly <u>skewed</u> distributions for attribute values.
- Example: Zipfian distribution of the **Brown Corpus**
- Words like "the", "a" occur very frequently in books

REAL-WORLD DATA CHARACTERISTICS

- Data sets tend to have high <u>correlation</u> between attributes of the same tuple.
 - Example: Order Date to Ship Date (few days)
 - (June 5, +5) instead of (June 5, June 10)

DATABASE COMPRESSION

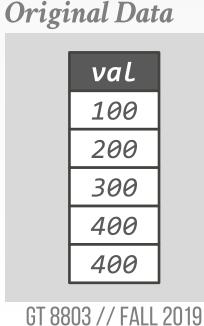
- **Goal #1:** Must produce fixed-length values. Allows us to efficiently access tuples.
- **Goal #2:** Allow the DBMS to postpone decompression as long as possible during query execution. Operate directly on compressed data.
- **Goal #3:** Must be a **lossless** scheme. No data should be lost during this transformation.

LOSSLESS VS. LOSSY COMPRESSION

- When DBMS uses compression, it is always **lossless** since people don't like losing data.
- Any kind of **lossy** compression is has to be performed at the application level.
 - Example: Sensor data. Readings are taken every second, but we may only store average per minute.
- New DBMSs support approximate queries
- Example: <u>BlinkDB</u>, <u>SnappyData</u>, <u>XDB</u>, <u>Oracle</u> (2017)

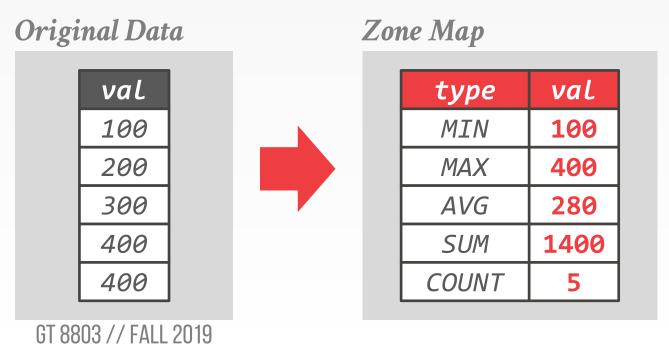
ZONE MAPS

- Pre-computed aggregates for blocks of data.
- DBMS can check the zone map first to decide whether it wants to access the block.



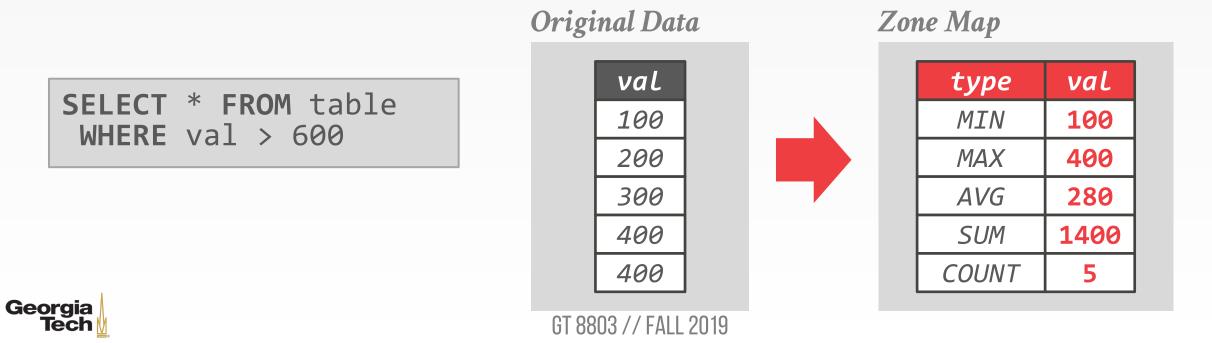
ZONE MAPS

- Pre-computed aggregates for blocks of data.
- DBMS can check the zone map first to decide whether it wants to access the block.



ZONE MAPS

- Pre-computed aggregates for blocks of data.
- DBMS can check the zone map first to decide whether it wants to access the block.



COLUMNAR COMPRESSION SCHEMES

- Compression Schemes
 - Run-length Encoding
 - Bitmap Encoding
 - Delta Encoding
 - Incremental Encoding
 - Mostly Encoding
 - Dictionary Encoding

DICTIONARY COMPRESSION

- Most pervasive compression scheme in DBMSs.
- Replace frequent patterns with smaller codes.
- Need to support fast encoding and decoding.

Georgia

DICTIONARY COMPRESSION

- A dictionary needs to support two operations:
- Encode: For a given uncompressed value, convert it into its compressed form.
- Decode: For a given compressed value, convert it back into its original form.
- We need two hash tables to support operations in both directions.

DICTIONARY COMPRESSION

- When to construct the dictionary?
- What is the scope of the dictionary?

DICTIONARY CONSTRUCTION

Choice #1: All At Once

- Compute the dictionary for all the tuples at a given point of time.
- New tuples must use a separate dictionary or the all tuples must be recomputed.

Choice #2: Incremental

- Merge new tuples in with an existing dictionary.
- Likely requires re-encoding of existing tuples.

DICTIONARY SCOPE

Choice #1: Block-level

- Only include a subset of tuples within a single table.
- Lower compression ratio, but can add tuples easily
- Impact of dictionary data corruption is localized
- Choice #2: Table-level
- Construct a dictionary for the entire table.
- Better compression ratio, but expensive to update.
- Choice #3: Multi-Table
- Sometimes helps with joins and set operations.

PARTING THOUGHTS

- Dictionary encoding is probably the most useful compression scheme because it does not require pre-sorting.
- The DBMS can combine different approaches for even better compression.
- It is important to wait as long as possible during query execution to decompress data.

VISUAL Storage Engine

GT 8803 // FALL 2018

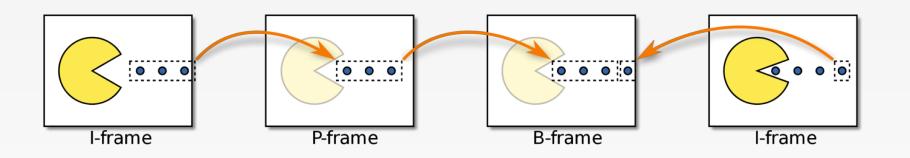
VIDEO ANALYTICS

- Components of a video analytics DBMS
 - Query parser
 - Query optimizer
 - Query execution engine
 - Storage engine

CHALLENGES: STORAGE ENGINE

- Loading frames from disk takes time
 - This slows down model training
 - Traditional video compression formats are optimized for human consumption
- Goals
 - Accelerate model training
 - Leverage the observation that the compression format need not be optimized for human consumption

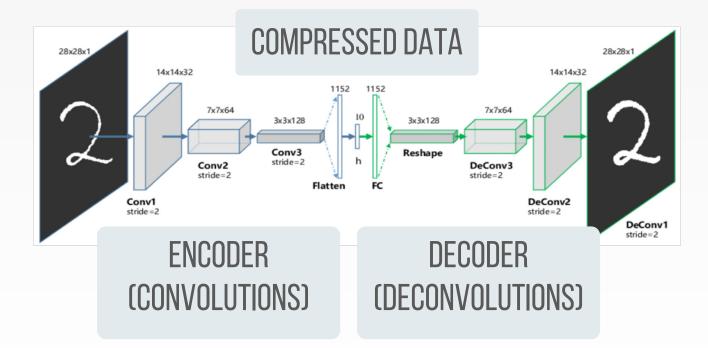
TRADITIONAL VIDEO COMPRESSION



- Three types of frame encoding
 - I-frame (intra-coded picture)
 - P-frame (predicted picture i.e. delta from I-frame)
 - B-frame (bi-directional predicted picture i.e. deltas from both the preceding and following frames)

CONVOLUTIONAL AUTO ENCODER

• An autoencoder is a neural network used to learn an efficient data coding.



GT 8803 // FALL 2019

COMPRESSION USING AUTO ENCODER

- Train the auto encoder using videos
 - Compress frames using the auto encoder
 - Store compressed frames in the storage engine
- Execute queries on compressed data
 - Reduce storage footprint by orders of magnitude
 - Accelerate query processing

PARTING THOUGHTS

- Convolutional auto-encoders are capable of efficiently encoding visual data sets.
- What can we do with them?

NEXT LECTURE

• Query Execution

