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a d m i n i s t r i v i a

• Reminder
– Assignment 1 due on next Wednesday

– Sign up for discussion slots on next Thursday
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L A S T  C L A S S

• Disk-centric & in-memory DBMSs
– Buffer management (ACID)

– Query processing

– Concurrency control (ACID)

– Logging and recovery (ACID)
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T O D A Y ’ s  A G E N D A

• Storage Models

• Compression

• Visual Storage Engine
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STORAGE

MODELS
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A N A T O M Y  O F  A  D A T A B A S E  S Y S T E M

Connection Manager + Admission Control

Query Parser

Query Optimizer

Query Executor

Lock Manager (Concurrency Control)

Access Methods (or Indexes)

Buffer Pool Manager

Log Manager

Memory Manager + Disk Manager

Networking Manager
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Query
Transactional 

Storage Manager

Query Processor

Shared Utilities

Process Manager

Source: Anatomy of a Database System 
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D A T A  O R G A N I Z A T I O N

• One can think of an in-memory database as 

just a large array of bytes.
– The schema tells the DBMS how to convert the 

bytes into the appropriate type (e.g., INTEGER, DATE).

– Each tuple is prefixed with a header that contains 

meta-data (e.g., last modified time-stamp).
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T A B L E  S T O R A G E  F O R M A T

• Storage Models
– N-ary Storage Model (NSM) / Row-Store 

– Decomposition Storage Model (DSM) / Column-

Store

– Flexible or Hybrid Storage Model
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N - A R Y  S T O R A G E  M O D E L  ( N S M )

• The DBMS stores all of the attributes for a 

single tuple contiguously.

• Ideal for OLTP workloads where txns tend to 

operate only on an individual entity and 

insert-heavy workloads.

• Use the tuple-at-a-time iterator model.
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N - A R Y  S T O R A G E  M O D E L  ( N S M )
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1 Georgia Tech 15000 Atlanta

2 Wisconsin 30000 Madison

3 Carnegie Mellon 6000 Pittsburgh

ID University Enrollment City

4 UC Berkeley 30000 Berkeley
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N S M  P H Y S I C A L  S T O R A G E

• Choice #1: Heap-Organized Tables
– Tuples are stored in blocks called a heap.

– The heap does not necessarily define an order

• Choice #2: Index-Organized Tables
– Tuples are stored in the primary key index itself.

– Index does define an order based on the primary 

key
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N - A R Y  S T O R A G E  M O D E L  ( N S M )

• Advantages
– Fast inserts, updates, and deletes.

– Good for queries that need the entire tuple.

– Can use index-oriented physical storage.

• Disadvantages
– Not good for scanning large portions of the table 

and/or a subset of the attributes.
– OLAP workloads & wide tables with lots of 

attributes
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D E C O M P O S I T I O N  S T O R A G E  M O D E L  ( D S M )

• The DBMS stores a single attribute for all 

tuples contiguously in a block of data.
– Sometimes also called vertical partitioning.

• Ideal for OLAP workloads where read-only 

queries perform large scans over a subset of 

the table’s attributes.

• Use the vector-at-a-time iterator model.
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1

2

3

4

D E C O M P O S I T I O N  S T O R A G E  M O D E L  ( D S M )

Georgia Tech

Wisconsin

Carnegie Mellon

UC Berkeley

15000

30000

6000

30000

Atlanta

Madison

Pittsburgh

Berkeley

ID University Enrollment City
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T U P L E  I D E N T I F I C A T I O N  I N  D S M

• Choice #1: Fixed-length Offsets
– Each value is the same length for an attribute.

• Choice #2: Embedded Tuple Ids
– Each value is stored with its tuple id in a column.
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D E C O M P O S I T I O N  S T O R A G E  M O D E L  ( D S M )

• Advantages
– Reduces the amount wasted work because the 

DBMS only reads the data that it needs.

– Better compression.

• Disadvantages
– Slow for point queries, inserts, updates, and deletes 

because of tuple splitting/stitching (OLTP 
workloads).
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O B S E R V A T I O N

• Can we build a single system that supports 

both OLTP and OLAP workloads?

• Data is “hot” when first entered into database
– A newly inserted tuple is more likely to be updated 

again the near future.

• As a tuple ages, it is updated less frequently.
– At some point, a tuple is only accessed in read-only 

queries along with other tuples.
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B I F U R C A T E D  E N V I R O N M E N T
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Extract
Transform

Load

OLTP DATA SILOS OLAP DATA WAREHOUSE
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B I F U R C A T E D  E N V I R O N M E N T
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Extract
Transform

Load

OLTP DATA SILOS OLAP DATA WAREHOUSE
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B I F U R C A T E D  E N V I R O N M E N T
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Extract
Transform

Load

OLTP DATA SILOS OLAP DATA WAREHOUSE
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H Y B R I D  S T O R A G E  M O D E L

• Single database instance that uses different 

storage models for hot and cold data.

• Store new data in NSM for fast OLTP

Migrate data to DSM for more efficient OLAP
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1

2

3

4

H Y B R I D  S T O R A G E  M O D E L

Georgia Tech 15000

Wisconsin 30000

Carnegie Mellon 6000

UC Berkeley 30000

Atlanta

Madison

Pittsburgh

Berkeley

ID University Enrollment City
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P E L O T O N  A D A P T I V E  S T O R A G E

• Employ a single execution engine 

architecture that is able to operate on both 

NSM and DSM data.
– Don’t need to store two copies of the database.

– Don’t need to sync multiple database segments.

• Note that a DBMS can still use the delta-store 

approach with this single-engine architecture.
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BRIDGING THE ARCHIPELAGO BETWEEN ROW-STORES 

AND COLUMN-STORES FOR HYBRID WORKLOADS

SIGMOD 2016
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P E L O T O N  A D A P T I V E  S T O R A G E

24

Original Data

SELECT AVG(B)
FROM AndySux

WHERE C = “yyy”

UPDATE AndySux
SET A = 123,

B = 456,
C = 789

WHERE D = “xxx”

A B C D
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P E L O T O N  A D A P T I V E  S T O R A G E
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Original Data

SELECT AVG(B)
FROM AndySux

WHERE C = “yyy”

UPDATE AndySux
SET A = 123,

B = 456,
C = 789

WHERE D = “xxx”
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P E L O T O N  A D A P T I V E  S T O R A G E
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Original Data

SELECT AVG(B)
FROM AndySux

WHERE C = “yyy”

UPDATE AndySux
SET A = 123,

B = 456,
C = 789

WHERE D = “xxx”

A B C D
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P E L O T O N  A D A P T I V E  S T O R A G E
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Original Data Adapted Data

SELECT AVG(B)
FROM AndySux

WHERE C = “yyy”

UPDATE AndySux
SET A = 123,

B = 456,
C = 789

WHERE D = “xxx” A B C D

A B C D A B C D
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P E L O T O N  A D A P T I V E  S T O R A G E
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Original Data Adapted Data

SELECT AVG(B)
FROM AndySux

WHERE C = “yyy”

UPDATE AndySux
SET A = 123,

B = 456,
C = 789

WHERE D = “xxx” A B C D

A B C D A B C D

Cold

Hot
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F L E X I B L E  S T O R A G E  M O D E L

1

2

Georgia Tech 15000

Wisconsin 30000

Atlanta

Madison

ID University Enrollment City

3 Carnegie Mellon

4 UC Berkeley

6000

30000

Pittsburgh

Berkeley
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T I L E  A B S T R A C T I O N

• Introduce an indirection layer that abstracts 

the true layout of tuples from query 

operators.

30

A B C D
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T I L E  A B S T R A C T I O N

• Introduce an indirection layer that abstracts 

the true layout of tuples from query 

operators.
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Tile Group A

Tile Group B

A B C D
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T I L E  A B S T R A C T I O N

• Introduce an indirection layer that abstracts 

the true layout of tuples from query 

operators.
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Tile Group A

Tile Group B

A B C D

Tile #1

Tile #2 Tile #3 Tile #4
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T I L E  A B S T R A C T I O N

• Introduce an indirection layer that abstracts 

the true layout of tuples from query 

operators.
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A B C D

Tile #1

Tile #2 Tile #3 Tile #4

H

+

+

+

+

+

Tile Group
Header
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T I L E  A B S T R A C T I O N

• Introduce an indirection layer that abstracts 

the true layout of tuples from query 

operators.
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A B C DH

+

+

+

+

+



GT 8803 // Fall 2019

AS

γ

s

T I L E  A B S T R A C T I O N

• Introduce an indirection layer that abstracts 

the true layout of tuples from query 

operators.
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SELECT AVG(B)
FROM AndySux

WHERE C = “yyy”
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AS

γ

s

T I L E  A B S T R A C T I O N

• Introduce an indirection layer that abstracts 

the true layout of tuples from query 

operators.
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AS

γ

s

T I L E  A B S T R A C T I O N

• Introduce an indirection layer that abstracts 

the true layout of tuples from query 

operators.
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P A R T I N G  T H O U G H T S

• A flexible architecture that supports a hybrid 

storage model is the next major trend in 

DBMSs
– This will enable relational DBMSs to support both 

OLTP and OLAP database workloads.
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COMPRESSION
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O B S E R V A T I O N

• I/O is the main bottleneck if the DBMS has to 

fetch data from disk.

– CPU cost for decompressing data <
– I/O cost for fetching un-compressed data.

• Compression always helps.
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O B S E R V A T I O N

• In-memory DBMSs are more complicated
– Compressing the database reduces DRAM 

requirements and processing.

• Key trade-off is speed vs. compression ratio
– In-memory DBMSs (always?) choose speed.
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R E A L - W O R L D  D A T A  C H A R A C T E R I S T I C S

• Data sets tend to have highly skewed

distributions for attribute values.
– Example: Zipfian distribution of the Brown Corpus

– Words like “the”, “a” occur very frequently in books
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R E A L - W O R L D  D A T A  C H A R A C T E R I S T I C S

• Data sets tend to have high correlation

between attributes of the same tuple.
– Example: Order Date to Ship Date (few days)

– (June 5, +5) instead of (June 5, June 10)
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D A T A B A S E  C O M P R E S S I O N

• Goal #1: Must produce fixed-length values. 

Allows us to efficiently access tuples.

• Goal #2: Allow the DBMS to postpone 

decompression as long as possible during 

query execution. Operate directly on 

compressed data.

• Goal #3: Must be a lossless scheme. No data 

should be lost during this transformation.
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L O S S L E S S  V S .  L O S S Y  C O M P R E S S I O N

• When DBMS uses compression, it is always 

lossless since people don’t like losing data.

• Any kind of lossy compression is has to be 

performed at the application level.
– Example: Sensor data. Readings are taken every 

second, but we may only store average per minute.

• New DBMSs support approximate queries
– Example: BlinkDB, SnappyData, XDB, Oracle (2017)
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Z O N E  M A P S

• Pre-computed aggregates for blocks of data.

• DBMS can check the zone map first to decide 

whether it wants to access the block.

46

Original Data

val
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Z O N E  M A P S

• Pre-computed aggregates for blocks of data.

• DBMS can check the zone map first to decide 

whether it wants to access the block.
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Zone Map
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type
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Z O N E  M A P S

• Pre-computed aggregates for blocks of data.

• DBMS can check the zone map first to decide 

whether it wants to access the block.
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Zone Map

val

100

400

280

1400

type

MIN

MAX

AVG

SUM

5COUNT

Original Data

val

100

200

300

400

400

SELECT * FROM table
WHERE val > 600
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C O L U M N A R  C O M P R E S S I O N  S C H E M E S

• Compression Schemes
– Run-length Encoding

– Bitmap Encoding

– Delta Encoding

– Incremental Encoding

– Mostly Encoding

– Dictionary Encoding
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D I C T I O N A R Y  C O M P R E S S I O N

• Most pervasive compression scheme in 

DBMSs.

• Replace frequent patterns with smaller codes.

• Need to support fast encoding and decoding.
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DICTIONARY-BASED ORDER-PRESERVING STRING 
COMPRESSION FOR MAIN MEMORY COLUMN STORES
SIGMOD 2009
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D I C T I O N A R Y  C O M P R E S S I O N

• A dictionary needs to support two operations:
– Encode: For a given uncompressed value, convert it 

into its compressed form.

– Decode: For a given compressed value, convert it 

back into its original form.

• We need two hash tables to support 

operations in both directions.
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D I C T I O N A R Y  C O M P R E S S I O N

• When to construct the dictionary?

• What is the scope of the dictionary?
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D I C T I O N A R Y  C O N S T R U C T I O N

• Choice #1: All At Once
– Compute the dictionary for all the tuples at a given 

point of time.

– New tuples must use a separate dictionary or the all 

tuples must be recomputed.

• Choice #2: Incremental
– Merge new tuples in with an existing dictionary.
– Likely requires re-encoding of existing tuples.
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D I C T I O N A R Y  S C O P E

• Choice #1: Block-level
– Only include a subset of tuples within a single table.

– Lower compression ratio, but can add tuples easily

– Impact of dictionary data corruption is localized

• Choice #2: Table-level
– Construct a dictionary for the entire table.

– Better compression ratio, but expensive to update.

• Choice #3: Multi-Table
– Sometimes helps with joins and set operations.
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P A R T I N G  T H O U G H T S

• Dictionary encoding is probably the most 

useful compression scheme because it does 

not require pre-sorting.

• The DBMS can combine different approaches 

for even better compression.

• It is important to wait as long as possible 

during query execution to decompress data.
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VISUAL

STORAGE

ENGINE
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V I D E O  A N A L Y T I C S

• Components of a video analytics DBMS
– Query parser

– Query optimizer

– Query execution engine

– Storage engine
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C H A L L E N G E S :  S T O R A G E  E N G I N E

• Loading frames from disk takes time
– This slows down model training

– Traditional video compression formats are 

optimized for human consumption

• Goals
– Accelerate model training

– Leverage the observation that the compression 
format need not be optimized for human 

consumption

58



GT 8803 // Fall 2019

T R A D I T I O N A L  V I D E O  C O M P R E S S I O N

• Three types of frame encoding
– I-frame (intra-coded picture)

– P-frame (predicted picture i.e. delta from I-frame)

– B-frame (bi-directional predicted picture i.e. deltas 

from both the preceding and following frames)
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C O N V O L U T I O N A L  A U T O  E N C O D E R

• An autoencoder is a neural network used to 

learn an efficient data coding.
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ENCODER

(CONVOLUTIONS)

DECODER

(DECONVOLUTIONS)

COMPRESSED DATA
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C O M P R E S S I O N  U S I N G  A U T O  E N C O D E R

• Train the auto encoder using videos
– Compress frames using the auto encoder

– Store compressed frames in the storage engine

• Execute queries on compressed data
– Reduce storage footprint by orders of magnitude

– Accelerate query processing
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P A R T I N G  T H O U G H T S

• Convolutional auto-encoders are capable of 

efficiently encoding visual data sets.

• What can we do with them?
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N E X T  L E C T U R E

• Query Execution
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