DATA ANALYTICS USING DEEP LEARNING
 GT 8803 // FALL 2019 // JOY ARULRAJ
 LECTURE \#09:QUERY OPTIMIZATION

ADMINISTRIVIA

- Reminders
- Assignment 1: postponed to next Monday
- Sign up for discussion slots on Thursday
- Proposal presentations on next Wednesday

LAST CLASS

- Query execution models
- Tuple-at-a-time
- Operator-at-a-time
- Vector-at-a-time

SELECT A.id, B.value FROM A, B
WHERE A.id = B.id
AND B.value > 100

LAST CLASS

- Access methods
- Sequential scan
- Index scan
- Multi-index scan

LAST CLASS

- Access methods
- Sequential scan
- Index scan
- Multi-index scan

Scan Direction

101	102	103	104

LAST CLASS

- Access methods
- Sequential scan
- Index scan
- Multi-index scan

Scan Direction

LAST CLASS

- Visual Query Execution Engine
- Filtering classifier, Sampling

TODAY'S AGENDA

- Relational Algebra Equivalences
- Plan Cost Estimation
- Plan Enumeration
- Visual Query Optimizer

RELATIONAL ALGEBRA EQUIVALENCES

ANATOMY OF A DATABASE SYSTEM

Query | Connection Manager + Admission Control |
| :---: |
| Query Parser |
| Query Optimizer |
| Query Executor |
| Lock Manager (Concurrency Control) |
| Access Methods (or Indexes) |
| Buffer Pool Manager |
| Log Manager |

Process Manager
Query Processor

Transactional Storage Manager

Shared Utilities

QUERY OPTIMIZATION

- Remember that SQL is declarative.
- User tells the DBMS what answer they want, not how to get the answer.
- There can be a big difference in performance based on plan is used:
- 1.3 hours vs. 0.45 seconds

IBM SYSTEM R

- First implementation of a query optimizer. People argued that the DBMS could never choose a query plan better than what a human could write.
- A lot of the concepts from System R's optimizer are still used today.

QUERY OPTIMIZATION

- Rule-based Optimizer
- Rewrite the query to remove inefficient things.
- Does not require a cost model.
- Cost-based Optimizer
- Use a cost model to evaluate multiple equivalent plans and pick the one with the lowest cost.

QUERY OPTIMIZATION: OVERVIEW

QUERY OPTIMIZATION: OVERVIEW

QUERY OPTIMIZATION: OVERVIEW

QUERY OPTIMIZATION: OVERVIEW

QUERY OPTIMIZATION: OVERVIEW

QUERY OPTIMIZATION: OVERVIEW

QUERY OPTIMIZATION: OVERVIEW

QUERY OPTIMIZATION: OVERVIEW

QUERY OPTIMIZATION: OVERVIEW

QUERY OPTIMIZATION IS NP-HARD

- This is the hardest part of building a DBMS.
- If you are good at this, you will get paid.
- People are starting to look at employing ML to improve the accuracy and efficacy of optimizers.

relational algebra Eauivalences

- Two relational algebra expressions are equivalent if they generate the same set of tuples.
- The DBMS can identify better query plans without a cost model.
- This is often called query rewriting.

PREDICATE PUSHDOWN

```
SELECT s.name, e.cid
    FROM student AS s, enrolled AS e
WHERE S.sid = e.sid
AND e.grade \(=\) ' A '
```


PREDICATE PUSHDOWN

$$
\begin{array}{|l}
\hline \text { SELECT s.name, e.cid } \\
\text { FROM student AS s, enrolled AS e } \\
\text { WHERE s.sid = e.sid } \\
\text { AND e.grade = 'A' }
\end{array}
$$

reLational algebra Eauivalences

$$
\begin{aligned}
& \text { SELECT s.name, e.cid } \\
& \text { FROM student AS s, enrolled AS e } \\
& \text { WHERE s.sid = e.sid } \\
& \text { AND e.grade = 'A' }
\end{aligned}
$$

$\Pi_{\text {name, cid }}\left(\sigma_{\text {grade='A' }}(\right.$ student \bowtie enrolled $\left.)\right)$

$$
\Pi_{\text {name, cid }}\left(\text { student } \bowtie\left(\boldsymbol{\sigma}_{\text {grade='A' }}(\text { enrolled })\right)\right)
$$

relational algebra eauivalences

- Selections:
- Perform filters as early as possible.
- Reorder predicates so that the DBMS applies the most selective one first.
- Break a complex predicate, and push down

$$
\boldsymbol{\sigma}_{\mathrm{p} 1 \wedge \mathrm{p} 2 \wedge \ldots \mathrm{p} n}(\mathbf{R})=\boldsymbol{\sigma}_{\mathrm{p} 1}\left(\boldsymbol{\sigma}_{\mathrm{p} 2}\left(\ldots \boldsymbol{\sigma}_{\mathrm{p} n}(\mathbf{R})\right)\right)
$$

- Simplify a complex predicate
- $(\mathrm{X}=\mathrm{Y}$ AND $\mathrm{Y}=3$) $\rightarrow \mathrm{X}=3$ AND $\mathrm{Y}=3$

relational algebra eauivalences

- Projections:
- Perform them early to create smaller tuples and reduce intermediate results (if duplicates are eliminated)
- Project out all attributes except the ones requested or required (e.g., joining keys)

PROJECTION PUSHDOWN

```
SELECT s.name, e.cid
    FROM student AS s, enrolled AS e
WHERE s.sid = e.sid
AND e.grade \(=\) ' A '
```


PROJECTION PUSHDOWN

$$
\begin{array}{|l}
\hline \text { SELECT s.name, e.cid } \\
\text { FROM student AS s, enrolled AS e } \\
\text { WHERE s.sid = e.sid } \\
\text { AND e.grade = 'A' }
\end{array}
$$

CREATE TABLE A (
 id INT PRIMARY KEY,
 val INT NOT NULL);
 MORE EXAMPLES

SELECT * FROM A WHERE 1 = 0;

CREATE TABLE A (
 id INT PRIMARY KEY, val INT NOT NULL);
 MORE EXAMPLES

SELECT * FROM A WHERE $1=9$;

CREATE TABLE A (
 id INT PRIMARY KEY,
 val INT NOT NULL);
 MORE EXAMPLES

SELECT * FROM A WHERE 1 = 0; X

CREATE TABLE A (
 id INT PRIMARY KEY, val INT NOT NULL);
 MORE EXAMPLES

SELECT * FROM A WHERE $1=0 ;$ X

SELECT * FROM A WHERE 1 = 1 ;

CREATE TABLE A (
 id INT PRIMARY KEY, val INT NOT NULL);
 MORE EXAMPLES

SELECT * FROM A WHERE $1=0 ;$;

SELECT * FROM A WHERE $1=1$;

CREATE TABLE A (
 id INT PRIMARY KEY, val INT NOT NULL);
 MORE EXAMPLES

SELECT * FROM A WHERE $1=0 ;$;

```
SELECT * FROM A;
```

```
CREATE TABLE A (
    id INT PRIMARY KEY,
    val INT NOT NULL );
```


MORE EXAMPLES

- Impossible / Unnecessary Predicates
SELECT * FROM A WHERE 1 = 9; X

```
SELECT * FROM A;
```

- Join Elimination

SELECT A1.*
FROM A AS A1 JOIN A AS A2
ON A1.id = A2.id;

```
CREATE TABLE A (
    id INT PRIMARY KEY,
    val INT NOT NULL );
```


MORE EXAMPLES

- Impossible / Unnecessary Predicates

SELECT * FROM A WHERE 1 = 9; X
SELECT * FROM A;

- Join Elimination

SELECT A1.*
FROM A AS A1 JOIN A AS A2 ON A1.id = A2.id;

```
CREATE TABLE A (
    id INT PRIMARY KEY,
    val INT NOT NULL );
```


MORE EXAMPLES

- Impossible / Unnecessary Predicates
SELECT * FROM A WHERE 1 = 9; X

```
SELECT * FROM A;
```

- Join Elimination

SELECT * FROM A;

MORE EXAMPLES

```
SELECT * FROM A AS A1
WHERE EXISTS(SELECT * FROM A AS A2
WHERE A1.id = A2.id);
```

```
CREATE TABLE A (
    id INT PRIMARY KEY,
    val INT NOT NULL );
```


MORE EXAMPLES

SELECT	* FROM A AS A1
WHERE	EXISTS(SELECT * FROM A AS A2 WHERE A1.id = A2.id)

CREATE TABLE A (
 id INT PRIMARY KEY, val INT NOT NULL);
 MORE EXAMPLES

SELECT * FROM A;

```
CREATE TABLE A (
    id INT PRIMARY KEY,
    val INT NOT NULL );
```


MORE EXAMPLES

- Ignoring Projections
SELECT * FROM A;
- Meraina Predicates

SELECT * FROM A
WHERE val BETWEEN 1 AND 100
OR val BETWEEN 50 AND 150;

```
CREATE TABLE A (
    id INT PRIMARY KEY,
    val INT NOT NULL );
```


MORE EXAMPLES

- Ignoring Projections
SELECT * FROM A;
- Meraina Predicates

SELECT * FROM A WHERE val BETWEEN 1 AND 100 OR val BETWEEN 50 AND 150;

```
CREATE TABLE A (
    id INT PRIMARY KEY,
    val INT NOT NULL );
```


MORE EXAMPLES

- Ignoring Projections

SELECT * FROM A;

- Meraina Predicates

SELECT * FROM A WHERE val BETWEEN 1 AND 150;

relational algebra Eauivalences

- Joins:
- Commutative, associative $R \bowtie S=S \bowtie R$
$(R \bowtie S) \bowtie T=R \bowtie(S \bowtie T)$
- How many different orderings are there for an n way join?

relational algebra Eauivalences

- How many different orderings are there for an n-way join?
- Catalan number $\approx 4^{n}$
- Exhaustive enumeration will be too slow.
- We'll see in a second how an optimizer limits the search space.

PLAN COST ESTIMATION

COST ESTIMATION

- How long will a query take?
- CPU: Small cost; tough to estimate
- Disk: \# of block transfers
- Memory: Amount of DRAM used
- How many tuples will be read/written?
- What statistics do we need to keep?

STATISTICS

- The DBMS stores internal statistics about tables, attributes, and indexes in its internal catalog.
- Different systems update them at different times.
- Manual invocations:
- Postgres/SQLite: ANALYZE
- SQL Server: UPDATE STATISTICS

STATISTICS

- For each relation R, the DBMS maintains the following information:
- N_{R} : Number of tuples in R.
- V(A,R): Number of distinct values for attribute A.

DERIVABLE STATISTICS

DERIVABLE STATISTICS

- The selection cardinality $\operatorname{SC}(A, R)$ is the average number of records with a value for an attribute A given $\mathrm{N}_{\mathrm{R}} / \mathrm{V}(\mathrm{A}, \mathrm{R})$
- Note that this assumes data uniformity.
- 10,000 students, 10 colleges - how many students in SCS?

SELECTION STATISTICS

SELECTION STATISTICS

SELECT * FROM people WHERE id = 123

SELECTION STATISTICS

- Equality predicates on unique keys are easy to estimate.

```
SELECT * FROM people
    WHERE id = 123
```

- What about more complex predicates? What is their selectivity?

```
SELECT * FROM people
    WHERE val > 1000
```

```
SELECT * FROM people
    WHERE age = 30
    AND status = 'Lit'
```


COMPLEX PREDICATES

- The selectivity (sel) of a predicate \mathbf{P} is the fraction of tuples that qualify.
- Formula depends on type of predicate:
- Equality
- Range
- Negation
- Conjunction
- Disjunction

COMPLEX PREDICATES

- The selectivity (sel) of a predicate \mathbf{P} is the fraction of tuples that qualify.
- Formula depends on type of predicate:
- Equality
- Range
- Negation
- Conjunction
- Disjunction

SELECTIONS - COMPLEX PREDICATES

$$
\begin{aligned}
& \text { SELECT } * \text { FROM people } \\
& \text { WHERE age }=2
\end{aligned}
$$

SELECTIONS - COMPLEX PREDICATES

- Assume that V(age,people) has five distinct values (0-4) and $\mathbf{N}_{\mathrm{R}}=5$
- Equality Predicate: $\mathrm{A}=$ constant

SELECT * FROM people WHERE age = 2

- sel(A=constant) = SC(P) / N N_{R}
- Example: sel(age=2) =

SELECTIONS - COMPLEX PREDICATES

- Assume that V (age,people) has five distinct values (0-4) and $\mathrm{N}_{\mathrm{R}}=5$
- Equality Predicate: $\mathrm{A}=$ constant

SELECT * FROM people WHERE age = 2

- sel(A=constant) = SC(P) / N $\mathbf{N}_{\text {R }}$
- Example: sel(age=2) =

SELECTIONS - COMPLEX PREDICATES

- Assume that V (age,people) has five distinct values (0-4) and $\mathrm{N}_{\mathrm{R}}=5$
- Equality Predicate: A=constant

SELECT * FROM people WHERE age = 2

- sel(A=constant) = SC(P) / NR
- Example: sel(age=2) =

SELECTIONS - COMPLEX PREDICATES

- Assume that V (age,people) has five distinct values ($0-4$) and $\mathrm{N}_{\mathrm{R}}=5$
- Equality Predicate: A=constant

SELECT * FROM people WHERE age $=2$

- sel(A=constant) = SC(P) / N \mathbf{N}_{R}
- Example: sel(age=2) =

SELECTIONS - COMPLEX PREDICATES

- Assume that V (age,people) has five distinct values ($0-4$) and $\mathrm{N}_{\mathrm{R}}=5$
- Equality Predicate: $\mathrm{A}=$ constant

SELECT * FROM people WHERE age $=2$
$-\operatorname{sel}(A=$ constant $)=S C(P) / N_{R}$

- Example: sel(age=2) = 1/5

SELECTIONS - COMPLEX PREDICATES

- Range Query:
$-\operatorname{sel}(A>=a)=\left(A_{\max }-a\right) /\left(A_{\max }-A_{\min }\right)$ SELECT * FROM people
- Example: sel(age >=2)

SELECTIONS - COMPLEX PREDICATES

- Range Query:
$-\operatorname{sel}(A>=a)=\left(A_{\max }-a\right) /\left(A_{\max }-A_{\text {min }}\right)$ SELECT * FROM people
- Example: sel(age >=2)

SELECTIONS - COMPLEX PREDICATES

- Range Query:
$-\operatorname{sel}(A>=a)=\left(A_{\max }-a\right) /\left(A_{\max }-A_{\min }\right)$ SELECT * FROM people
- Example: sel(age >=2)

SELECTIONS - COMPLEX PREDICATES

- Range Query:
$-\operatorname{sel}(A>=a)=\left(A_{\max }-a\right) /\left(A_{\max }-A_{\text {min }}\right)$ SELECT * FROM people
- Example: sel(age >=2) WHERE age >= 2

$$
\begin{aligned}
& =(4-2) /(4-0) \\
& =1 / 2
\end{aligned}
$$

SELECTIONS - COMPLEX PREDICATES

```
SELECT * FROM people
``` WHERE age != 2


\section*{SELECTIONS - COMPLEX PREDICATES}
```

SELECT * FROM people
WHERE age != 2

```


\section*{SELECTIONS - COMPLEX PREDICATES}
```

SELECT * FROM people

``` WHERE age != 2


\section*{SELECTIONS - COMPLEX PREDICATES}
\[
=1-(1 / 5)=4 / 5
\]
\begin{tabular}{l}
SELECT * FROM people \\
WHERE age != 2 \\
\hline
\end{tabular}

\section*{SELECTIONS - COMPLEX PREDICATES}
- Negation Query:
\(-\operatorname{sel}(\) not \(P)=1-\operatorname{sel}(P)\)
- Example: sel(age !=2) \(=1-(1 / 5)=4 / 5\)
```

SELECT * FROM people
WHERE age != 2

```
- Observation: Selectivity \(\approx\) Probability

\section*{SELECTIONS - COMPLEX PREDICATES}
- Conjunction:
\(-\operatorname{sel}(P 1 \wedge P 2)=\operatorname{sel}(P 1) \cdot \operatorname{sel}(P 2) \quad\) SELECT \(*\) FROM people
- sel(age=2 \(\wedge\) name LIKE 'A\%') WHERE age = 2

AND name LIKE 'A\%'
- This assumes that the predicates are independent.

\section*{SELECTIONS - COMPLEX PREDICATES}
- Conjunction:
\(-\operatorname{sel}(P 1 \wedge P 2)=\operatorname{sel}(P 1) \cdot \operatorname{sel}(P 2) \quad\) SELECT \(*\) FROM people
- sel(age=2 \(\wedge\) name LIKE 'A\%') WHERE age = 2

AND name LIKE 'A\%'
- This assumes that the predicates are independent.

\section*{SELECTIONS - COMPLEX PREDICATES}
- Conjunction:
\(-\operatorname{sel}(P 1 \wedge P 2)=\operatorname{sel}(P 1) \cdot \operatorname{sel}(P 2) \quad\) SELECT \(*\) FROM people
- sel(age=2 \(\wedge\) name LIKE 'A\%') WHERE age = 2

AND name LIKE 'A\%'
- This assumes that the predicates are independent.

\section*{SELECTIONS - COMPLEX PREDICATES}
- Disjunction:
- sel(P1 V P2)
\(=\operatorname{sel}(P 1)+\operatorname{sel}(P 2)-\operatorname{sel}(P 1\) VP2)
\(=\operatorname{sel}(P 1)+\operatorname{sel}(P 2)-\operatorname{sel}(P 1) \cdot s e l(P 2)\)
- sel(age=2 OR name LIKE 'A\%')
- This again assumes that the selectivities are independent.
```

SELECT * FROM people
WHERE age = 2
OR name LIKE 'A%'

```


\section*{SELECTIONS - COMPLEX PREDICATES}
- Disjunction:
- sel(P1 V P2)
\(=\operatorname{sel}(P 1)+\operatorname{sel}(P 2)-\operatorname{sel}(P 1\) VP2)
\(=\operatorname{sel}(P 1)+\operatorname{sel}(P 2)-\operatorname{sel}(P 1) \cdot s e l(P 2)\)
- sel(age=2 OR name LIKE 'A\%')
- This again assumes that the selectivities are independent.
```

SELECT * FROM people
WHERE age = 2
OR name LIKE 'A%'

```


\section*{result size estimation for joins}
- Given a join of R and S , what is the range of possible result sizes in \# of tuples?
- In other words, for a given tuple of R, how many tuples of \(S\) will it match?

\section*{RESULT SIZE ESTIMATION FOR JOINS}
- General case: \(R_{\text {cols }} \cap S_{\text {cols }}=\{A\}\) where \(A\) is not a key for either table.
- Match each R-tuple with S-tuples:
estSize \(\approx N_{R} \cdot N_{S} / V(A, S)\)
- Symmetrically, for S:
estSize \(\approx N_{R} \cdot N_{S} / V(A, R)\)
- Overall:
- estSize \(\approx N_{R} \cdot N_{S} / \max (\{V(A, S), V(A, R)\})\)

\section*{COST ESTIMATIONS}
- Our formulas are nice but we assume that data values are uniformly distributed.

Uniform Approximation

\section*{COST ESTIMATIONS}
- Our formulas are nice but we assume that data values are uniformly distributed.

Uniform Approximation

\section*{COST ESTIMATIONS}
- Our formulas are nice but we assume that data values are uniformly distributed.

Non-Uniform Approximation

\section*{COST ESTIMATIONS}
- Our formulas are nice but we assume that data values are uniformly distributed.

Non-Uniform Approximation

\section*{COST ESTIMATIONS}
- Our formulas are nice but we assume that data values are uniformly distributed.

Non-Uniform Approximation

\section*{HISTOGRAMS WITH QUANTILES}
- A histogram type wherein the "spread" of each bucket is same.

Equi-width Histogram (Quantiles)

\section*{HISTOGRAMS WITH QUANTILES}
- A histogram type wherein the "spread" of each bucket is same.

Equi-width Histogram (Quantiles)

\section*{HISTOGRAMS WITH QUANTILES}
- A histogram type wherein the "spread" of each bucket is same.

Equi-width Histogram (Quantiles)

\section*{HISTOGRAMS WITH QUANTILES}
- A histogram type wherein the "spread" of each bucket is same.

Equi-width Histogram (Quantiles)

\section*{SAMPLING}
- Modern DBMSs also collect samp tables to estimate selectivities.
```

SELECT AVG(age)
FROM people
WHERE age > 50

```
- Update samples when the underl changes significantly.
\begin{tabular}{|l|l|l|l|}
\hline id & name & \multicolumn{1}{l}{ age } & \multicolumn{1}{l}{ status } \\
\hline 1001 & Obama & 56 & Rested \\
\hline 1002 & Kanye & 40 & Weird \\
\hline 1003 & Tupac & 25 & Dead \\
\hline 1004 & Bieber & 23 & Crunk \\
\hline 1005 & Andy & 37 & Lit \\
\hline
\end{tabular}

1 billion tuples

\section*{SAMPLING}
- Modern DBMSs also collect samp tables to estimate selectivities.
```

SELECT AVG(age)
FROM people
WHERE age > 50

```
- Update samples when the under| changes significantly.
\begin{tabular}{|l|l|l|l|}
\hline id & name & \multicolumn{1}{l}{ age } & \multicolumn{1}{l}{ status } \\
\hline 1001 & Obama & 56 & Rested \\
\hline 1002 & Kanye & 40 & Weird \\
\hline 1003 & Tupac & 25 & Dead \\
\hline 1004 & Bieber & 23 & Crunk \\
\hline 1005 & Andy & 37 & Lit \\
\hline
\end{tabular}

1 billion tuples

\section*{SAMPLING}
\begin{tabular}{l|l}
- Modern DBMSs also collect samp & SELECT AVG(age) \\
FROM people \\
tables to estimate selectivities. & WHERE age \(>50\)
\end{tabular}
- Update samples when the underl changes significantly.

\author{
Table Sample
}
\begin{tabular}{|l|l|l|l|}
\hline 1001 & Obama & 56 & Rested \\
\hline 1003 & Tupac & 25 & Dead \\
\hline 1005 & Andy & 37 & Lit \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|}
\hline id & name & \multicolumn{1}{l}{ age } & \multicolumn{1}{l}{ status } \\
\hline 1001 & Obama & 56 & Rested \\
\hline 1002 & Kanye & 40 & Weird \\
\hline 1003 & Tupac & 25 & Dead \\
\hline 1004 & Bieber & 23 & Crunk \\
\hline 1005 & Andy & 37 & Lit \\
\hline
\end{tabular}

1 billion tuples

\section*{SAMPLING}

- Update samples when the underl changes significantly.
sel(age>50) =

\author{
Table Sample
}
\begin{tabular}{|l|l|l|l|}
\hline 1001 & Obama & 56 & Rested \\
\hline 1003 & Tupac & 25 & Dead \\
\hline 1005 & Andy & 37 & Lit \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|}
\hline id & name & \multicolumn{1}{l}{ age } & \multicolumn{1}{l}{ status } \\
\hline 1001 & Obama & 56 & Rested \\
\hline 1002 & Kanye & 40 & Weird \\
\hline 1003 & Tupac & 25 & Dead \\
\hline 1004 & Bieber & 23 & Crunk \\
\hline 1005 & Andy & 37 & Lit \\
\hline
\end{tabular}

\author{
GT 8803 // FALL 2019
}

\section*{SAMPLING}

- Update samples when the underl changes significantly.
sel(age>50) =

\author{
Table Sample
}
\begin{tabular}{|l|l|l|l|}
\hline id & name & age & \multicolumn{1}{l}{ status } \\
\hline 1001 & Obama & 56 & Rested \\
\hline 1002 & Kanye & 40 & Weird \\
\hline 1003 & Tupac & 25 & Dead \\
\hline 1004 & Bieber & 23 & Crunk \\
\hline 1005 & Andy & 37 & Lit \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|}
\hline 1001 & Obama & 56 & Rested \\
\hline 1003 & Tupac & 25 & Dead \\
\hline 1005 & Andy & 37 & Lit \\
\hline
\end{tabular}

\author{
GT 8803 // FALL 2019
}

\section*{SAMPLING}
\begin{tabular}{l|l}
- Modern DBMSs also collect samp & SELECT AVG(age) \\
FROM people \\
tables to estimate selectivities. & WHERE age \(>50\)
\end{tabular}
- Update samples when the under| changes significantly.

\author{
Table Sample
}
\[
\text { sel(age>50) = } 1 / 3
\]
\begin{tabular}{|l|l|l|l|}
\hline 1001 & Obama & 56 & Rested \\
\hline 1003 & Tupac & 25 & Dead \\
\hline 1005 & Andy & 37 & Lit \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|}
\hline id & name & \multicolumn{1}{l}{ age } & \multicolumn{1}{l}{ status } \\
\hline 1001 & Obama & 56 & Rested \\
\hline 1002 & Kanye & 40 & Weird \\
\hline 1003 & Tupac & 25 & Dead \\
\hline 1004 & Bieber & 23 & Crunk \\
\hline 1005 & Andy & 37 & Lit \\
\hline
\end{tabular}

1 billion tuples

\section*{OBSERVATION}
- Now that we can (roughly) estimate the selectivity of predicates, what can we actually do with them?

\section*{PLAN ENUMERATION}

\section*{QUERY OPTIMIZATION}
- After performing rule-based rewriting, the DBMS will enumerate different plans for the query and estimate their costs.
- Single table.
- Multiple tables.
- It chooses the best plan it has seen for the query after exhausting all plans or some timeout.

\section*{SINGLE-TABLE QUERY PLANNING}
- Pick the best access method.
- Sequential Scan
- Binary Search (clustered indexes)
- Index Scan
- Simple heuristics are often good enough for this.
- OLTP queries are especially easy.

\section*{OLTP QUERY PLANNING}
- Query planning for OLTP queries is easy because they are sargable.
- Search Argument Able
- It is usually just picking the best index.
- Joins are almost always on foreign key relationships with a small cardinality.
- Can be implemented with simple heuristics.

\section*{MULTI-TABLE QUERY PLANNING}
- As number of joins increases, number of alternative plans grows rapidly
- We need to restrict search space.
- Fundamental decision in System R: only leftdeep join trees are considered.
- Modern DBMSs do not always make this assumption anymore.

\section*{MULTI-TABLE QUERY PLANNING}
- Fundamental decision in System R: Only consider left-deep join trees.

\section*{MULTI-TABLE QUERY PLANNING}
- Fundamental decision in System R: Only consider left-deep join trees.

\section*{MULTI-TABLE QUERY PLANNING}
- Fundamental decision in System R: Only consider left-deep join trees.
- Allows for fully pipelined plans where intermediate results are not written to temp files.
- Not all left-deep trees are fully pipelined.

\section*{MULTI-TABLE QUERY PLANNING}

\section*{MULTI-TABLE QUERY PLANNING}
- Enumerate the orderings
- Example: Left-deep tree \#1, Left-deep tree \#2...
- Enumerate the plans for each operator
- Example: Hash, Sort-Merge, Nested Loop...
- Enumerate the access paths for each table
- Example: Index \#1, Index \#2, Seq Scan...
- Use dynamic programming to reduce the number of cost estimations.

\section*{DYNAMIC PROGRAMMING}

```

SELECT * FROM R, S, T
WHERE R.a = S.a
AND S.b = T.b

```
 \(R \bowtie S \bowtie T\)

\section*{DYNAMIC PROGRAMMING}

Hash Join

SELECT * FROM R, S, T WHERE R.a = S.a

AND S.b \(=\) T.b

\section*{\(R \bowtie S \bowtie T\)}

\section*{DYNAMIC PROGRAMMING}

Hash Join

SELECT * FROM R, S, T WHERE R.a = S.a

AND S.b = T.b

\section*{\(R \bowtie S \bowtie T\)}

SortMerge Join
T.b=S.b Cost:

280
\(T \bowtie S\)
Hash Join
T.b=S.b

\section*{DYNAMIC PROGRAMMING}

Hash Join

SELECT * FROM R, S, T WHERE R.a = S.a

AND S.b = T. b

\section*{\(R \bowtie S \bowtie T\)}

\section*{DYNAMIC PROGRAMMING}

Hash Join

\section*{DYNAMIC PROGRAMMING}

Hash Join

\section*{DYNAMIC PROGRAMMING}

```

SELECT * FROM R, S, T
WHERE R.a = S.a
AND S.b = T.b

```


\section*{CANDIDATE PLAN EXAMPLE}
- How to generate plans for search algorithm:
```

SELECT * FROM R, S, T
WHERE R.a = S.a
AND S.b = T.b

```
- Enumerate relation orderings
- Enumerate join algorithm choices
- Enumerate access method choices
- No real DBMSs does it this way. It's actually more messy...

\section*{CANDIDATE PLANS}
- Step \#1: Enumerate table orderings

\section*{CANDIDATE PLANS}
- Step \#2: Enumerate join algorithm choices

\section*{CANDIDATE PLANS}
- Step \#2: Enumerate join algorithm choices

\section*{CANDIDATE PLANS}
- Step \#2: Enumerate join algorithm choices

\section*{CANDIDATE PLANS}
- Step \#2: Enumerate join algorithm choices

\section*{CANDIDATE PLANS}
- Step \#3: Enumerate access method choices

\section*{CANDIDATE PLANS}
- Step \#3: Enumerate access method choices

\section*{CANDIDATE PLANS}
- Step \#3: Enumerate access method choices

\section*{POSTGRES QUERY OPTIMIZER}
- Examines all types of join trees
- Left-deep, Right-deep, bushy
- Two optimizer implementations:
- Traditional Dynamic Programming Approach
- Genetic Query Optimizer (GEQO)
- Postgres uses the traditional algorithm when \# of tables in query is less than 12 and switches to GEQO when there are 12 or more.

\section*{POSTGRES QUERY OPTIMIZER}

\section*{1st Generation}

\section*{POSTGRES QUERY OPTIMIZER}

\section*{1st Generation}

\section*{POSTGRES QUERY OPTIMIZER}

\section*{1st Generation}

\section*{POSTGRES QUERY OPTIMIZER}

\section*{1st Generation}

\section*{POSTGRES QUERY OPTIMIZER}

\section*{1st Generation}

\section*{POSTGRES QUERY OPTIMIZER}

Best:100

\section*{1st Generation 2nd Generation}

\section*{POSTGRES QUERY OPTIMIZER}

Best:100

\section*{1st Generation \\ 2nd Generation}

\section*{POSTGRES QUERY OPTIMIZER}

\section*{1st Generation}

\section*{2nd Generation}

\section*{POSTGRES QUERY OPTIMIZER}

\section*{1st Generation}

\section*{2nd Generation}

\section*{POSTGRES QUERY OPTIMIZER}

137

1st Generation

\(\left\lvert\, \begin{array}{cc}\text { Cost:2 } \\ 00 & \vdots\end{array}\right.\)

Cost 200

Cost: 120

\section*{VISUAL QUERY OPTIMIZER}

\section*{VISUAL QUERY OPTIMIZATION}
- Queries only contain a complex predicate
```

SELECT frameID, vehType, vehColor
FROM PROCESS(inputVideo)
WHERE vehType=SUV ^ vehColor=red;

```
- Optimization techniques
- Blazelt (Stanford): Rule-based optimization
- PP (Microsoft Research): Cost-based optimization

\section*{VISUAL QUERY OPTIMIZATION}
- Queries only contain a complex predicate

SELECT frameID, vehType, vehColor FROM PROCESS(inputVideo)
WHERE vehType=SUV \(\wedge\) vehColor=red;
- Optimization techniques
- Blazelt (Stanford): Rule-based optimization
- PP (Microsoft Research): Cost-based optimization

\section*{BLAZEIT: RULE-BASED OPTIMIZER}
- Example: Content-based selection for red buses.
- Train a specialized NN to filter frames with buses
- But the NN may not be accurate on every frame
- Call the object detection model on uncertain frames
- To account for this error rate, it uses held-out set of frames to estimate the selectivity and error rate.
- Given an error budget, the optimizer selects between the filters and uses rule-based optimization to select the fastest query plan

\section*{BLAZEIT: RULE-BASED OPTIMIZER}
- Example: Choosing a filter
- Consider two possible filters for redness:
- \(F_{1}\) : A filter which returns true if the over \(80 \%\) of the pixels have a red-channel value of at least 200
\(-F_{2}\) : A filter that returns the average of the redchannel values

\section*{BLAZEIT: RULE-BASED OPTIMIZER}
- In estimating thresholds at the frame-level based on frames from the held-out set, it learns that:
\(-\operatorname{sel}\left(F_{1}\right)=0.9\) and \(\operatorname{sel}\left(F_{2}\right)=0.3\)
- Which filter should it pick?
- More selective filter (\(\mathrm{F}_{2}\))

\section*{PP: COST-BASED OPTIMIZER}
- Decompose a complex predicate to expressions over simple predicates
- Old:<vehType=SUV AND vehColor=red>
- New: <vehType=SUV〉 ^ <vehColor=red>
- Rewrite rules (logical equivalences):
\(-\mathrm{p} \wedge\left(\mathrm{P}_{\text {rest }}\right) \Rightarrow\) Filter \(_{\mathrm{p}}\)
- Filter \(_{p \wedge q} \Rightarrow\) Filter \(_{p} \wedge\) Filter \(_{q}\)
- Filter \(_{\mathrm{pvq}} \Rightarrow\) Filter \(_{\mathrm{p}} \vee\) Filter \(_{\mathrm{q}}\)

\section*{PP: COST-BASED OPTIMIZER}
- Sort the list of available filters based on:
- Filter evaluation cost (C)
- Data reduction ratio (R[Accuracy])
- Efficacy of filter = C / R[1]
- A smaller ratio of cost to data reduction indicates better performance

\section*{PP: COST-BASED OPTIMIZER}
- Example: \((p \vee q) \wedge \neg r \wedge P_{\text {rest }}\)
- \(\Rightarrow p \vee q \Rightarrow F_{p \vee q} \Rightarrow F_{p} \vee F_{q}\)
- \(\Rightarrow \neg r \Rightarrow F_{\neg r}\)
- \(\Rightarrow F_{(p \vee q) \wedge \neg r} \Rightarrow\left(F_{p} \vee F_{q}\right) \wedge F_{\neg r}\)
- \(\Rightarrow F_{(p \wedge \neg r) \vee(q \wedge \neg r)} \Rightarrow F_{p \wedge \neg r} \vee F_{q \wedge \neg r}\) \(\Rightarrow\left(F_{p} \wedge F_{\neg r}\right) \vee\left(F_{q} \wedge F_{\neg r}\right)\)

\section*{PP: COST-BASED OPTIMIZER}
- Pruning search space
- Limit the number of different filters to be a small constant (k)
- Example:
- Available filters: \(\left\{F_{p \vee q}, F_{p}, F_{p \wedge \neg r}, F_{q \wedge \neg r}, F_{q}, F_{q r}\right\}\)
- Query requirements: \(\left\{\mathrm{F}_{\mathrm{pvq}}, \mathrm{F}_{\mathrm{p}} \vee \mathrm{F}_{\mathrm{q}^{\prime}} \mathrm{F}_{\mathrm{qr}^{\prime}}\left(\mathrm{F}_{\mathrm{p}} \vee \mathrm{F}_{\mathrm{q}}\right) \wedge \mathrm{F}_{\urcorner \mathrm{r}}\right.\), \(\left.\mathrm{F}_{\mathrm{p} \wedge \neg \mathrm{r}} \vee \mathrm{F}_{\mathrm{q} \wedge \neg \mathrm{r}}\right\}\)
\(-\mathrm{k}=\mathbf{2}\)
- Candidate plans: \(\left\{\mathrm{F}_{\mathrm{p} v \mathrm{q}^{\prime}} \mathrm{F}_{\urcorner r}, \mathrm{~F}_{\mathrm{p} \wedge \neg \mathrm{r}} \vee \mathrm{F}_{\mathrm{q} \wedge \neg \mathrm{r}}\right\}\)

\section*{PP: COST-BASED OPTIMIZER}
- Plan Enumeration
- First, explore different allocations of the query's accuracy budget to individual filters.
- Next, explore different orderings of filters within a conjunction or disjunction.
- Cost Estimation
- Finally, after fixing both the accuracy thresholds and the order of filters, compute the cost and reduction rate of the resulting plan.

\section*{PARTING THOUGHTS}
- Filter as early as possible.
- Filter selectivity estimations
- Uniformity, Independence, Histograms
- Dynamic programming for join orderings
- Again, query optimization is super important.

\section*{NEXT LECTURE}
- Convolutional neural networks

\section*{- Popular neural network architecture}
```

