
DATA ANALYTICS

USING DEEP LEARNING

GT 8803 // FALL 2019 // JOY ARULRAJ

L E C T U R E # 1 1 : D E E P L E A R N I N G H A R D W A R E &

S O F T W A R E

GT 8803 // Fall 2019

a d m i n i s t r i v i a

• Reminders
– Proposal presentations on Monday

2

GT 8803 // Fall 2019

C O L L A B O R A T I O N P O L I C Y

• Copying code from other people/sources such as Github is
considered as an honor code violation

• Study groups are allowed but we expect students to
understand and complete their own assignments and to

hand in one assignment per student.

• There are a number of solutions to assignments that have
been posted online.

• We are aware of this, and expect that all work submitted by
students will be their own.

3

GT 8803 // Fall 2018

W h e r e w e a r e n o w . . .

x

W

hinge

loss

R

+ L
s (scores)

Computational graphs

*

4

GT 8803 // Fall 2018

W h e r e w e a r e n o w . . .

Linear score function:

2-layer Neural Network

x hW1 sW2

3072 100 10

5

GT 8803 // Fall 2018

W h e r e w e a r e n o w . . .

Illustration of LeCun et al. 1998 from CS231n 2017 Lecture 1

Convolutional Neural Networks

6

GT 8803 // Fall 2018

W h e r e w e a r e n o w . . .

Convolutional Layer

32

32

3

32x32x3 image

5x5x3 filter

convolve (slide) over all spatial

locations

activation map

1

28

28

7

GT 8803 // Fall 2018

W h e r e w e a r e n o w . . .

Convolution Layer

activation maps

6

28

28

Convolutional Layer

32

32

3

For example, if we had 6 5x5 filters,

we’ll get 6 separate activation maps

8

GT 8803 // Fall 2018

W h e r e w e a r e n o w . . .

Learning network parameters through optimization

9

GT 8803 // Fall 2018

W h e r e w e a r e n o w . . .

Mini-Batch Stochastic Gradient Descent (SGD)

Loop
1. Sample a batch of data

2. Forward prop it through the computational graph
(network), get loss

3. Backprop to get the gradients
4. Update the parameters using the gradient

10

GT 8803 // Fall 2019

T O D A Y ’ s A G E N D A

• Deep learning hardware
– CPU, GPU, TPU

• Deep learning software
– PyTorch

– TensorFlow
– Static vs Dynamic Computation Graphs

11

GT 8803 // Fall 2018

DEEP LEARNING

HARDWARE

12

GT 8803 // Fall 2018

Inside a computer

13

GT 8803 // Fall 2018

Spot the CPU!
(central processing unit)

14

GT 8803 // Fall 2018

Spot the GPUs!
(graphics processing unit)

This image is in the public domain

15

GT 8803 // Fall 2018

NVIDIA AMDvs

16

GT 8803 // Fall 2018

NVIDIA AMDvs

17

GT 8803 // Fall 2018

CPU vs GPU CPU: Fewer

cores, but each
core is much

faster and much

more capable;

great at

sequential tasks

GPU: More

cores, but each
core is much

slower and

“dumber”; great

for parallel tasks

Cores Clock

Speed

Memory Price Speed

CPU (Intel

Core i7-7700k)

4
(8 threads with
hyperthreading)

4.2

GHz

System

RAM

$385 ~540 GFLOPs

FP32

GPU (NVIDIA

RTX 2080 Ti)

3584 1.6

GHz

11 GB

GDDR6

$1200 ~13.4 TFLOPs

FP32

18

Example: Matrix Multiplication

A x B
B x C

A x C

=

19

GT 8803 // Fall 2019

G I G A F L O P S P E R D O L L A R

0

5

10

15

20

25

30

35

40

1/2004 10/ 2006 7/2009 4/2012 12/ 2014 9/2017
Time

CPU GPU

GeForce

GTX580
(AlexNet)

GTX 1080Ti

GeForce

8800GTX

Deep Learning Explosion
GigaFlops

Per

Dollar

20

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 6 - April 18, 2019

CPU vs GPU in practice

Data from https://github.com/jcjohnson/cnn-benchmarks

(CPU performance not well-optimized, a little unfair)

66x 67x 71x 64x 76x

21

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 6 - April 18, 2019

CPU vs GPU in practice

Data from https://github.com/jcjohnson/cnn-benchmarks

cuDNN much faster than “unoptimized” CUDA

2.8x 3.0x 3.1x 3.4x 2.8x

22

GT 8803 // Fall 2018

Cores Clock

Speed

Memory Price Speed

CPU (Intel

Core i7-7700k)

4
(8 threads with
hyperthreading)

4.2

GHz

System

RAM

$385 ~540 GFLOPs

FP32

GPU (NVIDIA

RTX 2080 Ti)

3584 1.6

GHz

11 GB

GDDR6

$1200 ~13.4 TFLOPs

FP32

TPU: NVIDIA

TITAN V

5120 CUDA,

640 Tensor

1.5

GHz
12GB

HBM2

$2999 ~14 TFLOPs FP32

~112 TFLOP FP16

TPU: Google

Cloud TPU

? ? 64 GB

HBM

$4.5/

hour

~180 TFLOP

CPU: Fewer

cores, but each
core is much

faster and much

more capable;

great at

sequential tasks

GPU: More

cores, but each
core is much

slower and

“dumber”; great

for parallel tasks

CPU vs GPU VS TPU

TPU: Specialized

hardware for
deep learning

23

GT 8803 // Fall 2019

G I G A F L O P S P E R D O L L A R

0

5

10

15

20

25

30

35

40

1/2004 10/ 2006 7/2009 4/2012 12/ 2014 9/2017
Time

CPU GPU TPU

GeForce

GTX580
(AlexNet)

GTX 1080Ti

GeForce

8800GTX

Deep Learning Explosion
GigaFlops

Per

Dollar

TITAN V

(Tensor Cores)

24

GT 8803 // Fall 2019

P r o g r a m m i n g G P U s

• CUDA (NVIDIA only)
– Write C-like code that runs directly on the GPU

– Optimized APIs: cuBLAS, cuFFT, cuDNN, etc

• OpenCL
– Similar to CUDA, but runs on anything
– Usually slower on NVIDIA hardware

• Udacity CS 344
– https://developer.nvidia.com/udacity-cs344-intro-parallel-

programming

25

GT 8803 // Fall 2018

CPU / GPU Communication

Model

is here

Data is here

26

GT 8803 // Fall 2018

CPU / GPU Communication

Model

is here

Data is here

If you aren’t careful,

training can bottleneck on
reading data and

transferring to GPU!

Solutions:

• Read all data into RAM
• Use SSD instead of HDD

• Use multiple CPU

threads to prefetch data

27

GT 8803 // Fall 2018

DEEP LEARNING

SOFTWARE

28

GT 8803 // Fall 2018

A zoo of frameworks!

Caffe
(UC Berkeley)

Torch
(NYU / Facebook)

Theano
(U Montreal)

TensorFlow
(Google)

Caffe2
(Facebook)

PyTorch
(Facebook)

CNTK
(Microsoft)

PaddlePaddle
(Baidu)

MXNet
(Amazon)
Developed by U Washington, CMU, MIT, Hong
Kong U, etc but main framework of choice at

AWS

And others...

Chainer

JAX
(Google)

29

GT 8803 // Fall 2018

A zoo of frameworks!

Caffe
(UC Berkeley)

Torch
(NYU / Facebook)

Theano
(U Montreal)

TensorFlow
(Google)

Caffe2
(Facebook)

PyTorch
(Facebook)

CNTK
(Microsoft)

PaddlePaddle
(Baidu)

MXNet
(Amazon)
Developed by U Washington, CMU, MIT, Hong
Kong U, etc but main framework of choice at

AWS

And others...

Chainer

JAX
(Google)

30

GT 8803 // Fall 2018

A zoo of frameworks!

Caffe
(UC Berkeley)

Torch
(NYU / Facebook)

Theano
(U Montreal)

TensorFlow
(Google)

Caffe2
(Facebook)

PyTorch
(Facebook)

CNTK
(Microsoft)

PaddlePaddle
(Baidu)

MXNet
(Amazon)
Developed by U Washington, CMU, MIT, Hong
Kong U, etc but main framework of choice at

AWS

And others...

Chainer

JAX
(Google)

We’ll focus on these

31

GT 8803 // Fall 2018

R E C A L L : C O M P U T A T I O N A L G R A P H S

x

W

hinge

loss

R

+ L
s (scores)

*

32

GT 8803 // Fall 2018

R E C A L L : C O M P U T A T I O N A L G R A P H S

input image

loss

weights

33

GT 8803 // Fall 2018

R E C A L L : C O M P U T A T I O N A L G R A P H S

input image

loss

34

GT 8803 // Fall 2019

T h e p o i n t o f d e e p l e a r n i n g f r a m e w o r k s

• Quick to develop and test new ideas
– Easily build big computational graphs

• Automatically compute gradients
– For learning the optimal model parameters

• Run it all efficiently on GPU
– Wrap around cuDNN, cuBLAS, etc.

35

GT 8803 // Fall 2018

Computational Graphs

x y z

*

a
+

b

Σ

c

Numpy

36

GT 8803 // Fall 2018

Computational Graphs

x y z

*

a
+

b

Σ

c

Numpy

37

GT 8803 // Fall 2018

Computational Graphs

x y z

*

a
+

b

Σ

c

Numpy

Bad:

- Have to compute
our own gradients

- Can’t run on GPU

Good:

Clean API, easy to
write numeric code

38

GT 8803 // Fall 2018

Computational Graphs

x y z

*

a
+

b

Σ

c

Numpy

Looks exactly like numpy!

PyTorch

39

GT 8803 // Fall 2018

Computational Graphs

x y z

*

a
+

b

Σ

c

Numpy PyTorch

PyTorch handles gradients for us!

40

GT 8803 // Fall 2018

Computational Graphs

x y z

*

a
+

b

Σ

c

Numpy PyTorch

Trivial to run on GPU - just construct

arrays on a different device!

41

GT 8803 // Fall 2018

PYTORCH

42

PyTorch: THREE LEVELS OF ABSTRACTION

1. Tensor: Like a numpy array, but can run on GPU

3. Module: A neural network layer; may store state or

learnable weights

2. Autograd: Package for building computational graphs

out of Tensors, and automatically computing gradients

43

PyTorch: VERSION

For this class we are using PyTorch version 1.0

(Released December 2018)

Be careful if you are looking at older PyTorch code!
In earlier versions (e.g. <0.4), Tensors had to be wrapped in Variable objects to be used in

autograd; however Variables have now been deprecated.

In addition v1.0 decouples the Tensor's datatype from a particular device, and uses numpy-style

factories for constructing Tensors rather than directly invoking Tensor constructors.

44

PyTorch: TENSORS

Running example:

Train a two-layer ReLU
network on random

data with L2 loss

45

PyTorch: TENSORS

PyTorch Tensors are just like numpy arrays,

but they can run on GPU.

PyTorch Tensor API looks almost exactly

like numpy!

Here we fit a two-layer net using PyTorch
Tensors:

46

PyTorch: TENSORS

Create random tensors for

data and weights

47

PyTorch: TENSORS

Forward pass: compute

predictions and loss

48

PyTorch: TENSORS

Backward pass: manually

compute gradients

49

PyTorch: TENSORS

Gradient descent

step on weights

50

PyTorch: TENSORS

To run on GPU, just use a

different device!

51

PyTorch: AUTOGRAD

Creating Tensors with

requires_grad=True enables autograd

Operations on Tensors with

requires_grad=True cause PyTorch to

build a computational graph

52

PyTorch: AUTOGRAD

We will not want gradients (of

loss) with respect to data

Do want gradients with

respect to weights

53

PyTorch: AUTOGRAD

Forward pass: looks exactly

the same as before, but we
don’t need to track

intermediate values - PyTorch

keeps track of them for us in

the graph

54

PyTorch: AUTOGRAD

Compute gradient of loss

with respect to w1 and w2

55

PyTorch: AUTOGRAD

Make gradient step on weights, then zero

them so that it does not accumulate the
gradients in subsequent backward passes.

Torch.no_grad means “don’t build a

computational graph for this part”

56

PyTorch: AUTOGRAD

PyTorch methods that end in underscore

modify the Tensor in-place; methods that
don’t return a new Tensor

57

PyTorch: NEW AUTOGRAD FUNCTIONS

Define your own autograd functions

by writing forward
and backward functions for Tensors

Use ctx object to “cache” values for

the backward pass, just like cache

objects from the assignment

58

PyTorch: NEW AUTOGRAD FUNCTIONS

Define your own autograd functions

by writing forward
and backward functions for Tensors

Use ctx object to “cache” values for

the backward pass, just like cache

objects from A2

Define a helper function to make it

easy to use the new function

59

PyTorch: NEW AUTOGRAD FUNCTIONS

Can use our new autograd

function in the forward pass

60

PyTorch: NEW AUTOGRAD FUNCTIONS

In practice you almost never need to

define new autograd functions! Only
do it when you need custom

backward. In this case we can just use

a normal Python function

61

PyTorch: NN

Higher-level wrapper for working

with neural nets

Use this! It will make your life

easier

62

PyTorch: NN

Define our model as a

sequence of layers; each
layer is an object that

holds learnable weights

63

PyTorch: NN

Forward pass: feed data to

model, and compute loss

64

PyTorch: NN

torch.nn.functional has useful

helpers like loss functions

Forward pass: feed data to

model, and compute loss

65

PyTorch: NN

Backward pass: compute

gradient with respect to all
model weights (they have

requires_grad=True)

66

PyTorch: NN

Make gradient step on

each model parameter
(with gradients disabled)

67

PyTorch: OPTIMIZER

Use an optimizer for

different update rules

68

PyTorch: OPTIMIZER

After computing gradients, use

optimizer to update params and
zero gradients

69

PyTorch: NN
Define new Modules

A PyTorch Module is a neural net layer;

it inputs and outputs Tensors

Modules can contain weights or other

modules

You can define your own Modules using
autograd!

70

PyTorch: NN
Define new Modules

Define our whole model

as a single Module

71

Initializer sets up two

children (Modules can
contain modules)

PyTorch: NN
Define new Modules

72

Define forward pass using

child modules

No need to define

backward - autograd will

handle it

PyTorch: NN
Define new Modules

73

Construct and train an

instance of our model

PyTorch: NN
Define new Modules

74

Very common to mix and match

custom Module subclasses and
Sequential containers

PyTorch: NN
Define new Modules

75

Define network component

as a Module subclass

PyTorch: NN
Define new Modules

76

Stack multiple instances of the

component in a sequential
container

PyTorch: NN
Define new Modules

77

PyTorch: DATA LOADERS

A DataLoader wraps a

Dataset and provides
mini-batching, shuffling,

multithreading, for you

When you need to load

custom data, just write your
own Dataset class

78

PyTorch: DATA LOADERS

Iterate over loader to form

minibatches

79

PyTorch: PRETRAINED MODELS

Super easy to use pretrained models with torchvision

https://github.com/pytorch/vision

80

PyTorch: VISDOM

This image is licensed under CC-BY 4.0; no changes were made to the image

Visualization tool: add

logging to your code, then
visualize in a browser

Can’t visualize

computational graph

structure (yet?)

https://github.com/facebookresearch/visdom

81

PyTorch: TENSORBOARDX

This image is licensed under CC-BY 4.0; no changes were made to the image

A python wrapper around

Tensorflow’s web-based
visualization tool.

pip install tensorboardx

https://github.com/lanpa/tensorboardX

82

PyTorch: DYNAMIC COMPUTATION GRAPHS

83

PyTorch: DYNAMIC COMPUTATION GRAPHS
x w1 w2 y

Create Tensor

objects

84

PyTorch: DYNAMIC COMPUTATION GRAPHS
x w1 w2 y

mm

clamp

mm

y_pred

Build graph data structure AND

perform computation

85

PyTorch: DYNAMIC COMPUTATION GRAPHS
x w1 w2 y

mm

clamp

mm

y_pred

-

pow sum loss

Build graph data structure AND

perform computation

86

PyTorch: DYNAMIC COMPUTATION GRAPHS
x w1 w2 y

mm

clamp

mm

y_pred

-

pow sum loss

Search for path between loss and

w1, w2 (for backprop) AND perform
computation

87

PyTorch: DYNAMIC COMPUTATION GRAPHS
x w1 w2 y

Throw away the graph, backprop

path, and rebuild it from scratch on
every iteration

88

PyTorch: DYNAMIC COMPUTATION GRAPHS
x w1 w2 y

mm

clamp

mm

y_pred

Build graph data structure AND

perform computation

89

PyTorch: DYNAMIC COMPUTATION GRAPHS
x w1 w2 y

mm

clamp

mm

y_pred

-

pow sum loss

Build graph data structure AND

perform computation

90

PyTorch: DYNAMIC COMPUTATION GRAPHS
x w1 w2 y

mm

clamp

mm

y_pred

-

pow sum loss

Search for path between loss and

w1, w2 (for backprop) AND perform
computation

91

PyTorch: DYNAMIC COMPUTATION GRAPHS

Building the graph and computing

the graph happen at the same time.

Seems inefficient, especially if we

are building the same graph over

and over again...

92

STATIC COMPUTATION GRAPHS

Step 1: Build computational graph

describing our computation once
(including finding paths for backprop)

Step 2: Reuse the same graph on

every iteration

93

GT 8803 // Fall 2018

TENSORFLOW

94

TENSORFLOW: VERSIONS

Default static graph,

optionally dynamic
graph (eager mode).

Pre-2.0 (1.13 latest) 2.0 Alpha (March 2019)

Default dynamic graph,

optionally static graph.

We use 2.0 in this class.

95

TensorFlow:

Neural Net (Pre-2.0)

(Assume imports at the

top of each snippet)

96

TensorFlow:

Neural Net (Pre-2.0)

First define

computational graph

Then run the static graph

many times

97

TensorFlow: 2.0 vs. pre-2.0

Tensorflow 2.0:

“Eager” Mode by default
assert(tf.executing_eagerly())

Tensorflow 1.13

98

TensorFlow: 2.0 vs. pre-2.0

Tensorflow 1.13

Tensorflow 2.0:

“Eager” Mode by default

TensorFlow: 2.0 vs. pre-2.0

Tensorflow 1.13

Tensorflow 2.0:

“Eager” Mode by default

TensorFlow: NEURAL NET

Convert input numpy

arrays to TF tensors.
Create weights as

tf.Variable

101

TensorFlow: NEURAL NET

Use tf.GradientTape()

context to build
dynamic computation

graph.

102

TensorFlow: NEURAL NET

All forward-pass

operations in the

contexts (including

function calls) gets

traced for computing

gradient later.

103

TensorFlow: NEURAL NET

Forward pass

104

TensorFlow: NEURAL NET

tape.gradient() uses the

traced computation graph

to compute gradient for

the weights

105

TensorFlow: NEURAL NET

Backward pass

106

TensorFlow: NEURAL NET

Train the network:

Run the training step over
and over, use gradient to

update weights

107

Train the network:

Run the graph over and over
in a loop, use gradient to

update weights

108

TensorFlow: NEURAL NET

TensorFlow: OPTIMIZER

Can use an optimizer to

compute gradients and
update weights

109

TensorFlow: LOSS

Use predefined

common losses

110

Keras: High-Level Wrapper

Keras is a layer on top of
TensorFlow, makes common
things easy to do

(Used to be third-party, now
merged into TensorFlow)

111

Keras: High-Level Wrapper

Define model as a

sequence of layers

Get output by

calling the model

Apply gradient to all

trainable variables
(weights) in the

model

112

Keras: High-Level Wrapper

Keras can handle the

training loop for you!

113

Keras (https://keras.io/)

tf.keras (https://www.tensorflow.org/api_docs/python/tf/keras)

tf.estimator (https://www.tensorflow.org/api_docs/python/tf/estimator)

Sonnet (https://github.com/deepmind/sonnet)

TFLearn (http://tflearn.org/)

TensorLayer (http://tensorlayer.readthedocs.io/en/latest/)

TENSORFLOW: High-Level WrapperS

114

@tf.function:

compile static graph

tf.function decorator

(implicitly) compiles
python functions to

static graph for better

performance

115

@tf.function:

compile static graph

Here we compare the

forward-pass time of
the same model under

dynamic graph mode

and static graph mode

116

@tf.function:

compile static graph

Static graph is in general

faster than dynamic graph,
but the performance gain

depends on the type of

model / layer.

117

@tf.function:

compile static graph

There are some caveats in

defining control loops (for, if)
with @tf.function.

118

Eager mode: (https://www.tensorflow.org/guide/eager)

tf.function: (https://www.tensorflow.org/alpha/tutorials/eager/tf_function)

TENSORFLOW: MORE ON EAGER MODE

119

tf.keras: (https://www.tensorflow.org/api_docs/python/tf/keras/applications)

TF-Slim: (https://github.com/tensorflow/models/tree/master/research/slim)

TENSORFLOW: PRETRAINED MODELS

Add logging to code to record loss, stats, etc
Run server and get pretty graphs!

121

TENSORFLOW: TENSORBOARD

https://www.tensorflow.org/deploy/distribut

ed

Split one graph

over multiple
machines!

122

TENSORFLOW: DISTRIBUTED VERSION

Google Cloud TPU [2018]

= 180 TFLOPs of compute!

123

TENSORFLOW: TENSOR PROCESSING UNITS

Google Cloud TPU [2018]

= 180 TFLOPs of compute!

124

TENSORFLOW: TENSOR PROCESSING UNITS

NVIDIA Tesla V100 [2017]

= 125 TFLOPs of compute

Google Cloud TPU [2018]

= 180 TFLOPs of compute!

125

TENSORFLOW: TENSOR PROCESSING UNITS

NVIDIA Tesla V100 [2017]

= 125 TFLOPs of compute

NVIDIA Tesla P100 [2016] = 11 TFLOPs of compute

GTX 580 [2010] = 0.2 TFLOPs

Google Cloud TPU [2018]

= 180 TFLOPs of compute!

126

TENSORFLOW: TENSOR PROCESSING UNITS

Google Cloud TPU Pod [2019]

= 64 Cloud TPUs
= 11.5 PFLOPs of compute!

https://www.tensorflow.org/versions/master/programmers_guide/using_tpu

127

TENSORFLOW: TENSOR PROCESSING UNITS

https://cloud.google.com/edge-tpu/

Edge TPU [2019] = 64 GFLOPs (16 bit)

GT 8803 // Fall 2018

STATIC VS

DYNAMIC

GRAPHS

128

STATIC VS DYNAMIC GRAPHS

TensorFlow (tf.function): Build graph

once, then run many times (static)
PyTorch: Each forward pass

defines a new graph (dynamic)

Compile python

code into
static graph

Run each

iteration
New graph each iteration

129

GT 8803 // Fall 2019

S T A T I C V S D Y N A M I C G R A P H S : T R A D E O F F S

1. Graph optimization

2. Serialization
3. Conditional

4. Loops

130

GT 8803 // Fall 2019

1 : G R A P H O P T I M I Z A T I O N

• Graph optimization
– Static graph: Framework

can optimize the graph
for you before it runs

– Dynamic graph:
Not possible

– Example: Fuse two layers

Conv

ReLU

Conv

ReLU

Conv

ReLU

The graph you wrote

Conv+ReLU

Equivalent graph with

fused operations

Conv+ReLU

Conv+ReLU

131

GT 8803 // Fall 2019

2 : S E R I A L I Z A T I O N

• Serialization
– Static graph: once graph is built, can serialize it

and run it without the code that built the graph.
Easier to deploy.

– Dynamic graph: graph building and execution are
intertwined. So, always need to keep code around.

132

GT 8803 // Fall 2019

3 : C O N D I T I O N A L

133

GT 8803 // Fall 2019

3 : C O N D I T I O N A L

• Conditional Graphs
– Let’s say we want to use different weight matrices

depending on the value of a variable
– Static graph: need an explicit control flow

operator and must construct all possible control
flow graphs in advance.

– Dynamic graph: Code is cleaner and similar to

normal Python control flow.

134

GT 8803 // Fall 2019

4 : L O O P S

135

GT 8803 // Fall 2019

4 : L O O P S

136

GT 8803 // Fall 2019

4 : L O O P S

• Loops
– Recurrent relationships in the network. We might

have a different sized sequence of data.
– Static graph: need to construct all possible

looping constructs in advance.
– Dynamic graph: can use a normal for loop.

137

Dynamic Graph Applications

Karpathy and Fei-Fei, “Deep Visual-Semantic Alignments for Generating

Image Descriptions”, CVPR 2015

Figure copyright IEEE, 2015. Reproduced for educational purposes.

• Recurrent networks

138

Dynamic Graph Applications

The cat ate a big rat

• Recurrent networks

• Recursive networks

139

Dynamic Graph Applications

• Recurrent networks

• Recursive networks
• Modular Networks

Andreas et al, “Neural Module Networks”, CVPR 2016

Andreas et al, “Learning to Compose Neural Networks for Question Answering”, NAACL 2016

Johnson et al, “Inferring and Executing Programs for Visual Reasoning”, ICCV 2017

Figure copyright Justin Johnson, 2017. Reproduced with permission.

140

Dynamic Graph Applications

• Recurrent networks

• Recursive networks
• Modular Networks

• (Your creative idea here)

141

PyTorch vs TensorFlow, Static vs Dynamic

PyTorch

Dynamic Graphs

TensorFlow

2.0+: Default

Dynamic Graph

Pre-2.0: Default

Static Graph

142

Static PyTorch: Caffe2 https://caffe2.ai/

● Deep learning framework developed by Facebook

● Static graphs, somewhat similar to TensorFlow
● Core written in C++

● Nice Python interface
● Can train model in Python, then serialize and deploy

without Python

● Works on iOS / Android, etc

143

Static PyTorch: ONNX Support

ONNX is an open-source standard for neural network models

Goal: Make it easy to train a network in one framework, then run it in

another framework

Supported by PyTorch, Caffe2, Microsoft CNTK, Apache MXNet

https://github.com/onnx/onnx

144

Static PyTorch: ONNX Support

You can export a PyTorch model to ONNX

Run the graph on a dummy input, and save

the graph to a file

Will only work if your model doesn’t

actually make use of dynamic graph - must
build same graph on every forward pass, no

loops / conditionals

145

Static PyTorch: ONNX Support

graph(%0 : Float(64, 1000)

%1 : Float(100, 1000)

%2 : Float(100)

%3 : Float(10, 100)

%4 : Float(10)) {

%5 : Float(64, 100) =

onnx::Gemm[alpha=1, beta=1, broadcast=1,

transB=1](%0, %1, %2), scope:

Sequential/Linear[0]

%6 : Float(64, 100) = onnx::Relu(%5),

scope: Sequential/ReLU[1]

%7 : Float(64, 10) = onnx::Gemm[alpha=1,

beta=1, broadcast=1, transB=1](%6, %3,

%4), scope: Sequential/Linear[2]

return (%7);

}

After exporting to ONNX, can run

the PyTorch model in Caffe2

146

Static PyTorch

147

PyTorch vs TensorFlow, Static vs Dynamic

PyTorch

Dynamic Graphs
Static: ONNX, Caffe2

TensorFlow
Dynamic: Eager

Static: @tf.function

148

OUR Advice

PyTorch is our personal favorite. Clean API, native dynamic graphs make

it very easy to develop and debug. Can build model in PyTorch then

export to Caffe2 with ONNX for production / mobile

TensorFlow is a safe bet for most projects. Syntax became a lot more

intuitive after 2.0. Not perfect but has huge community and wide usage.

Can use same framework for research and production. Probably use a

high-level framework. Only choice if you want to run on TPUs.

149

GT 8803 // Fall 2019

N E X T L E C T U R E

• Training Neural Networks (Part I)
– Activation Functions

– Data Preprocessing

– Weight Initialization

– Batch Normalization

• Training Neural Networks (Part II)
– Parameter update schemes

– Learning rate schedules

– Gradient checking

– Regularization (Dropout etc.)…

150

