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a d m i n i s t r i v i a

• Reminders
– Proposal presentations on Monday
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C O L L A B O R A T I O N  P O L I C Y

• Copying code from other people/sources such as Github is 
considered as an honor code violation

• Study groups are allowed but we expect students to 
understand and complete their own assignments and to 

hand in one assignment per student. 

• There are a number of solutions to assignments that have 
been posted online. 

• We are aware of this, and expect that all work submitted by 
students will be their own. 
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W h e r e  w e  a r e  n o w . . .

x

W

hinge 

loss

R

+ L
s (scores)

Computational graphs

*
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W h e r e  w e  a r e  n o w . . .

Linear score function:

2-layer Neural Network

x hW1 sW2

3072 100 10
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W h e r e  w e  a r e  n o w . . .

Illustration of LeCun et al. 1998 from CS231n 2017 Lecture 1

Convolutional Neural Networks

6



GT 8803 // Fall 2018

W h e r e  w e  a r e  n o w . . .

Convolutional Layer

32

32

3

32x32x3 image

5x5x3 filter

convolve (slide) over all spatial 

locations

activation map

1

28

28
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W h e r e  w e  a r e  n o w . . .

Convolution Layer

activation maps

6

28

28

Convolutional Layer

32

32

3

For example, if we had 6 5x5 filters, 

we’ll get 6 separate activation maps
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W h e r e  w e  a r e  n o w . . .

Learning network parameters through optimization
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W h e r e  w e  a r e  n o w . . .

Mini-Batch Stochastic Gradient Descent (SGD)

Loop
1. Sample a batch of data

2. Forward prop it through the computational graph 
(network), get loss

3. Backprop to get the gradients
4. Update the parameters using the gradient
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T O D A Y ’ s  A G E N D A

• Deep learning hardware
– CPU, GPU, TPU

• Deep learning software
– PyTorch

– TensorFlow
– Static vs Dynamic Computation Graphs
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DEEP LEARNING

HARDWARE
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Inside a computer
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Spot the CPU!
(central processing unit)

14



GT 8803 // Fall 2018

Spot the GPUs!
(graphics processing unit)

This image is in the public domain
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NVIDIA AMDvs
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NVIDIA AMDvs
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CPU vs GPU CPU: Fewer 

cores, but each 
core is much 

faster and much 

more capable; 

great at 

sequential tasks

GPU: More 

cores, but each 
core is much 

slower and 

“dumber”; great 

for parallel tasks

Cores Clock 

Speed

Memory Price Speed

CPU (Intel 

Core i7-7700k)

4
(8 threads with 
hyperthreading)

4.2 

GHz

System 

RAM

$385 ~540 GFLOPs 

FP32

GPU (NVIDIA

RTX 2080 Ti)

3584 1.6 

GHz

11 GB 

GDDR6

$1200 ~13.4 TFLOPs 

FP32
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Example: Matrix Multiplication

A x B
B x C

A x C

=
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G I G A F L O P S  P E R  D O L L A R
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Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 6 - April 18, 2019

CPU vs GPU in practice

Data from https://github.com/jcjohnson/cnn-benchmarks

(CPU performance not well-optimized, a little unfair)

66x 67x 71x 64x 76x

21



Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 6 - April 18, 2019

CPU vs GPU in practice

Data from https://github.com/jcjohnson/cnn-benchmarks

cuDNN much faster than “unoptimized” CUDA

2.8x 3.0x 3.1x 3.4x 2.8x
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Cores Clock 

Speed

Memory Price Speed

CPU (Intel 

Core i7-7700k)

4
(8 threads with 
hyperthreading)

4.2 

GHz

System 

RAM

$385 ~540 GFLOPs 

FP32

GPU (NVIDIA

RTX 2080 Ti)

3584 1.6 

GHz

11 GB 

GDDR6

$1200 ~13.4 TFLOPs 

FP32

TPU: NVIDIA 

TITAN V

5120 CUDA,

640 Tensor

1.5 

GHz
12GB 

HBM2

$2999 ~14 TFLOPs FP32

~112 TFLOP FP16

TPU: Google 

Cloud TPU

? ? 64 GB 

HBM

$4.5/ 

hour

~180 TFLOP

CPU: Fewer 

cores, but each 
core is much 

faster and much 

more capable; 

great at 

sequential tasks

GPU: More 

cores, but each 
core is much 

slower and 

“dumber”; great 

for parallel tasks

CPU vs GPU VS TPU

TPU: Specialized 

hardware for 
deep learning
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G I G A F L O P S  P E R  D O L L A R

0

5

10

15

20

25

30

35

40

1/2004 10/ 2006 7/2009 4/2012 12/ 2014 9/2017
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GeForce  
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(AlexNet)

GTX 1080Ti

GeForce  

8800GTX

Deep Learning Explosion
GigaFlops

Per

Dollar

TITAN V

(Tensor Cores)
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P r o g r a m m i n g  G P U s

• CUDA (NVIDIA only)
– Write C-like code that runs directly on the GPU

– Optimized APIs: cuBLAS, cuFFT, cuDNN, etc

• OpenCL
– Similar to CUDA, but runs on anything
– Usually slower on NVIDIA hardware

• Udacity CS 344
– https://developer.nvidia.com/udacity-cs344-intro-parallel-

programming
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CPU / GPU Communication

Model 

is here

Data is here

26
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CPU / GPU Communication

Model 

is here

Data is here

If you aren’t careful, 

training can bottleneck on 
reading data and 

transferring to GPU!

Solutions:

• Read all data into RAM
• Use SSD instead of HDD

• Use multiple CPU 

threads to prefetch data

27
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DEEP LEARNING

SOFTWARE
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A zoo of frameworks!

Caffe 
(UC Berkeley)

Torch 
(NYU / Facebook)

Theano 
(U Montreal)

TensorFlow 
(Google)

Caffe2 
(Facebook)

PyTorch 
(Facebook)

CNTK 
(Microsoft)

PaddlePaddle
(Baidu)

MXNet 
(Amazon)
Developed by U Washington, CMU, MIT, Hong 
Kong U, etc but main framework of choice at 

AWS

And others...

Chainer 

JAX
(Google)
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A zoo of frameworks!

Caffe 
(UC Berkeley)

Torch 
(NYU / Facebook)

Theano 
(U Montreal)

TensorFlow 
(Google)

Caffe2 
(Facebook)

PyTorch 
(Facebook)

CNTK 
(Microsoft)

PaddlePaddle
(Baidu)

MXNet 
(Amazon)
Developed by U Washington, CMU, MIT, Hong 
Kong U, etc but main framework of choice at 

AWS

And others...

Chainer 

JAX
(Google)
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A zoo of frameworks!

Caffe 
(UC Berkeley)

Torch 
(NYU / Facebook)

Theano 
(U Montreal)

TensorFlow 
(Google)

Caffe2 
(Facebook)

PyTorch 
(Facebook)

CNTK 
(Microsoft)

PaddlePaddle
(Baidu)

MXNet 
(Amazon)
Developed by U Washington, CMU, MIT, Hong 
Kong U, etc but main framework of choice at 

AWS

And others...

Chainer 

JAX
(Google)

We’ll focus on these
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R E C A L L :  C O M P U T A T I O N A L  G R A P H S

x

W

hinge 

loss

R

+ L
s (scores)

*
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R E C A L L :  C O M P U T A T I O N A L  G R A P H S

input image

loss

weights

33
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R E C A L L :  C O M P U T A T I O N A L  G R A P H S

input image

loss

34
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T h e  p o i n t  o f  d e e p  l e a r n i n g  f r a m e w o r k s

• Quick to develop and test new ideas
– Easily build big computational graphs

• Automatically compute gradients
– For learning the optimal model parameters

• Run it all efficiently on GPU
– Wrap around cuDNN, cuBLAS, etc.

35
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Computational Graphs

x y z

*

a
+

b

Σ

c

Numpy
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Computational Graphs

x y z

*

a
+

b

Σ

c

Numpy
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Computational Graphs

x y z

*

a
+

b

Σ

c

Numpy

Bad: 

- Have to compute 
our own gradients

- Can’t run on GPU

Good: 

Clean API, easy to 
write numeric code
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Computational Graphs

x y z

*

a
+

b

Σ

c

Numpy

Looks exactly like numpy!

PyTorch
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Computational Graphs

x y z

*

a
+

b

Σ

c

Numpy PyTorch

PyTorch handles gradients for us!
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Computational Graphs

x y z

*

a
+

b

Σ

c

Numpy PyTorch

Trivial to run on GPU - just construct 

arrays on a different device!

41
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PYTORCH

42



PyTorch: THREE LEVELS OF ABSTRACTION

1. Tensor: Like a numpy array, but can run on GPU

3. Module: A neural network layer; may store state or 

learnable weights

2. Autograd: Package for building computational graphs 

out of Tensors, and automatically computing gradients
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PyTorch: VERSION

For this class we are using PyTorch version 1.0 

(Released December 2018)

Be careful if you are looking at older PyTorch code!
In earlier versions (e.g. <0.4), Tensors had to be wrapped in Variable objects to be used in 

autograd; however Variables have now been deprecated. 

In addition v1.0 decouples the Tensor's datatype from a particular device, and uses numpy-style 

factories for constructing Tensors rather than directly invoking Tensor constructors.
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PyTorch: TENSORS

Running example: 

Train a two-layer ReLU
network on random 

data with L2 loss
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PyTorch: TENSORS

PyTorch Tensors are just like numpy arrays, 

but they can run on GPU.

PyTorch Tensor API looks almost exactly 

like numpy!

Here we fit a two-layer net using PyTorch
Tensors:
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PyTorch: TENSORS

Create random tensors for 

data and weights
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PyTorch: TENSORS

Forward pass: compute 

predictions and loss
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PyTorch: TENSORS

Backward pass: manually 

compute gradients

49



PyTorch: TENSORS

Gradient descent 

step on weights
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PyTorch: TENSORS

To run on GPU, just use a 

different device!
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PyTorch: AUTOGRAD

Creating Tensors with 

requires_grad=True enables autograd

Operations on Tensors with 

requires_grad=True cause PyTorch to 

build a computational graph
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PyTorch: AUTOGRAD

We will not want gradients (of 

loss) with respect to data

Do want gradients with 

respect to weights 
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PyTorch: AUTOGRAD

Forward pass: looks exactly 

the same as before, but we 
don’t need to track 

intermediate values - PyTorch

keeps track of them for us in 

the graph
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PyTorch: AUTOGRAD

Compute gradient of loss 

with respect to w1 and w2
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PyTorch: AUTOGRAD

Make gradient step on weights, then zero 

them so that it does not accumulate the 
gradients in subsequent backward passes. 

Torch.no_grad means “don’t build a 

computational graph for this part”
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PyTorch: AUTOGRAD

PyTorch methods that end in underscore 

modify the Tensor in-place; methods that 
don’t return a new Tensor
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PyTorch: NEW AUTOGRAD FUNCTIONS

Define your own autograd functions 

by writing forward 
and backward functions for Tensors

Use ctx object to “cache” values for 

the backward pass, just like cache 

objects from the assignment

58



PyTorch: NEW AUTOGRAD FUNCTIONS

Define your own autograd functions 

by writing forward 
and backward functions for Tensors

Use ctx object to “cache” values for 

the backward pass, just like cache 

objects from A2

Define a helper function to make it 

easy to use the new function
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PyTorch: NEW AUTOGRAD FUNCTIONS

Can use our new autograd

function in the forward pass
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PyTorch: NEW AUTOGRAD FUNCTIONS

In practice you almost never need to 

define new autograd functions! Only 
do it when you need custom 

backward. In this case we can just use 

a normal Python function
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PyTorch: NN

Higher-level wrapper for working 

with neural nets

Use this! It will make your life 

easier
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PyTorch: NN

Define our model as a 

sequence of layers; each 
layer is an object that 

holds learnable weights
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PyTorch: NN

Forward pass: feed data to 

model, and compute loss
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PyTorch: NN

torch.nn.functional has useful 

helpers like loss functions

Forward pass: feed data to 

model, and compute loss
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PyTorch: NN

Backward pass: compute 

gradient with respect to all 
model weights (they have 

requires_grad=True)
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PyTorch: NN

Make gradient step on 

each model parameter
(with gradients disabled)
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PyTorch: OPTIMIZER

Use an optimizer for 

different update rules
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PyTorch: OPTIMIZER

After computing gradients, use 

optimizer to update params and 
zero gradients
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PyTorch: NN
Define new Modules

A PyTorch Module is a neural net layer; 

it inputs and outputs Tensors

Modules can contain weights or other 

modules

You can define your own Modules using 
autograd!
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PyTorch: NN
Define new Modules

Define our whole model 

as a single Module

71



Initializer sets up two 

children (Modules can 
contain modules)

PyTorch: NN
Define new Modules
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Define forward pass using 

child modules

No need to define 

backward - autograd will 

handle it

PyTorch: NN
Define new Modules
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Construct and train an 

instance of our model

PyTorch: NN
Define new Modules
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Very common to mix and match 

custom Module subclasses and 
Sequential containers

PyTorch: NN
Define new Modules
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Define network component 

as a Module subclass

PyTorch: NN
Define new Modules
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Stack multiple instances of the 

component in a sequential 
container

PyTorch: NN
Define new Modules
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PyTorch: DATA LOADERS

A DataLoader wraps a 

Dataset and provides      
mini-batching, shuffling, 

multithreading, for you

When you need to load 

custom data, just write your 
own Dataset class
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PyTorch: DATA LOADERS

Iterate over loader to form 

minibatches
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PyTorch: PRETRAINED MODELS

Super easy to use pretrained models with torchvision 

https://github.com/pytorch/vision
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PyTorch: VISDOM

This image is licensed under CC-BY 4.0; no changes were made to the image

Visualization tool: add 

logging to your code, then 
visualize in a browser

Can’t visualize 

computational graph 

structure (yet?)

https://github.com/facebookresearch/visdom
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PyTorch: TENSORBOARDX

This image is licensed under CC-BY 4.0; no changes were made to the image

A python wrapper around 

Tensorflow’s web-based 
visualization tool.

pip install tensorboardx

https://github.com/lanpa/tensorboardX
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PyTorch: DYNAMIC COMPUTATION GRAPHS

83



PyTorch: DYNAMIC COMPUTATION GRAPHS
x w1 w2 y

Create Tensor 

objects
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PyTorch: DYNAMIC COMPUTATION GRAPHS
x w1 w2 y

mm

clamp

mm

y_pred

Build graph data structure AND 

perform computation

85



PyTorch: DYNAMIC COMPUTATION GRAPHS
x w1 w2 y

mm

clamp

mm

y_pred

-

pow sum loss

Build graph data structure AND 

perform computation
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PyTorch: DYNAMIC COMPUTATION GRAPHS
x w1 w2 y

mm

clamp

mm

y_pred

-

pow sum loss

Search for path between loss and 

w1, w2 (for backprop) AND perform 
computation
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PyTorch: DYNAMIC COMPUTATION GRAPHS
x w1 w2 y

Throw away the graph, backprop 

path, and rebuild it from scratch on 
every iteration
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PyTorch: DYNAMIC COMPUTATION GRAPHS
x w1 w2 y

mm

clamp

mm

y_pred

Build graph data structure AND 

perform computation
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PyTorch: DYNAMIC COMPUTATION GRAPHS
x w1 w2 y

mm

clamp

mm

y_pred

-

pow sum loss

Build graph data structure AND 

perform computation
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PyTorch: DYNAMIC COMPUTATION GRAPHS
x w1 w2 y

mm

clamp

mm

y_pred

-

pow sum loss

Search for path between loss and 

w1, w2 (for backprop) AND perform 
computation
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PyTorch: DYNAMIC COMPUTATION GRAPHS

Building the graph and computing

the graph happen at the same time.

Seems inefficient, especially if we 

are building the same graph over 

and over again...
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STATIC COMPUTATION GRAPHS

Step 1: Build computational graph 

describing our computation once 
(including finding paths for backprop)

Step 2: Reuse the same graph on 

every iteration

93
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TENSORFLOW

94



TENSORFLOW: VERSIONS

Default static graph, 

optionally dynamic 
graph (eager mode).

Pre-2.0 (1.13 latest) 2.0 Alpha (March 2019)

Default dynamic graph, 

optionally static graph.

We use 2.0 in this class.
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TensorFlow: 

Neural Net (Pre-2.0)

(Assume imports at the 

top of each snippet)
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TensorFlow: 

Neural Net (Pre-2.0)

First define

computational graph

Then run the static graph 

many times
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TensorFlow: 2.0 vs. pre-2.0

Tensorflow 2.0:

“Eager” Mode by default
assert(tf.executing_eagerly())

Tensorflow 1.13
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TensorFlow: 2.0 vs. pre-2.0

Tensorflow 1.13

Tensorflow 2.0:

“Eager” Mode by default



TensorFlow: 2.0 vs. pre-2.0

Tensorflow 1.13

Tensorflow 2.0:

“Eager” Mode by default



TensorFlow: NEURAL NET

Convert input numpy

arrays to TF tensors.
Create weights as 

tf.Variable
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TensorFlow: NEURAL NET

Use tf.GradientTape() 

context to build 
dynamic computation 

graph.
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TensorFlow: NEURAL NET

All forward-pass 

operations in the 

contexts (including 

function calls) gets 

traced for computing 

gradient later.
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TensorFlow: NEURAL NET

Forward pass
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TensorFlow: NEURAL NET

tape.gradient() uses the 

traced computation graph 

to compute gradient for 

the weights
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TensorFlow: NEURAL NET

Backward pass
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TensorFlow: NEURAL NET

Train the network: 

Run the training step over 
and over, use gradient to 

update weights
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Train the network: 

Run the graph over and over 
in a loop, use gradient to 

update weights

108

TensorFlow: NEURAL NET



TensorFlow: OPTIMIZER

Can use an optimizer to 

compute gradients and 
update weights
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TensorFlow: LOSS

Use predefined 

common losses

110



Keras: High-Level Wrapper

Keras is a layer on top of 
TensorFlow, makes common 
things easy to do

(Used to be third-party, now 
merged into TensorFlow)
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Keras: High-Level Wrapper

Define model as a 

sequence of layers

Get output by 

calling the model

Apply gradient to all 

trainable variables 
(weights) in the 

model
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Keras: High-Level Wrapper

Keras can handle the 

training loop for you!
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Keras (https://keras.io/) 

tf.keras (https://www.tensorflow.org/api_docs/python/tf/keras) 

tf.estimator (https://www.tensorflow.org/api_docs/python/tf/estimator)

Sonnet (https://github.com/deepmind/sonnet) 

TFLearn (http://tflearn.org/) 

TensorLayer (http://tensorlayer.readthedocs.io/en/latest/) 

TENSORFLOW: High-Level WrapperS
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@tf.function: 

compile static graph

tf.function decorator 

(implicitly) compiles 
python functions to 

static graph for better 

performance

115



@tf.function: 

compile static graph

Here we compare the 

forward-pass time of 
the same model under 

dynamic graph mode 

and static graph mode 

116



@tf.function: 

compile static graph

Static graph is in general 

faster than dynamic graph, 
but the performance gain 

depends on the type of 

model / layer.
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@tf.function: 

compile static graph

There are some caveats in 

defining control loops (for, if) 
with @tf.function.
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Eager mode: (https://www.tensorflow.org/guide/eager)

tf.function: (https://www.tensorflow.org/alpha/tutorials/eager/tf_function)

TENSORFLOW: MORE ON EAGER MODE
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tf.keras: (https://www.tensorflow.org/api_docs/python/tf/keras/applications)

TF-Slim: (https://github.com/tensorflow/models/tree/master/research/slim)

TENSORFLOW: PRETRAINED MODELS



Add logging to code to record loss, stats, etc
Run server and get pretty graphs!

121

TENSORFLOW: TENSORBOARD



https://www.tensorflow.org/deploy/distribut

ed

Split one graph 

over multiple 
machines!
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TENSORFLOW: DISTRIBUTED VERSION



Google Cloud TPU [2018]

= 180 TFLOPs of compute!

123

TENSORFLOW: TENSOR PROCESSING UNITS



Google Cloud TPU [2018]

= 180 TFLOPs of compute!

124

TENSORFLOW: TENSOR PROCESSING UNITS

NVIDIA Tesla V100 [2017]

= 125 TFLOPs of compute



Google Cloud TPU [2018]

= 180 TFLOPs of compute!
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TENSORFLOW: TENSOR PROCESSING UNITS

NVIDIA Tesla V100 [2017]

= 125 TFLOPs of compute

NVIDIA Tesla P100 [2016] = 11 TFLOPs of compute

GTX 580 [2010] = 0.2 TFLOPs



Google Cloud TPU [2018]

= 180 TFLOPs of compute!

126

TENSORFLOW: TENSOR PROCESSING UNITS

Google Cloud TPU Pod [2019]

= 64 Cloud TPUs
= 11.5 PFLOPs of compute!

https://www.tensorflow.org/versions/master/programmers_guide/using_tpu
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TENSORFLOW: TENSOR PROCESSING UNITS

https://cloud.google.com/edge-tpu/

Edge TPU [2019] = 64 GFLOPs (16 bit)
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STATIC VS

DYNAMIC 

GRAPHS

128



STATIC VS DYNAMIC GRAPHS

TensorFlow (tf.function): Build graph 

once, then run many times (static)
PyTorch: Each forward pass 

defines a new graph (dynamic)

Compile python 

code into  
static graph

Run each 

iteration
New graph each iteration
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S T A T I C  V S  D Y N A M I C  G R A P H S :  T R A D E O F F S

1. Graph optimization

2. Serialization
3. Conditional

4. Loops

130
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# 1 :  G R A P H  O P T I M I Z A T I O N

• Graph optimization
– Static graph: Framework 

can optimize the graph 
for you before it runs

– Dynamic graph: 
Not possible

– Example: Fuse two layers

Conv

ReLU

Conv

ReLU

Conv

ReLU

The graph you wrote

Conv+ReLU

Equivalent graph with 

fused operations

Conv+ReLU

Conv+ReLU
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# 2 :  S E R I A L I Z A T I O N

• Serialization
– Static graph: once graph is built, can serialize it 

and run it without the code that built the graph. 
Easier to deploy.

– Dynamic graph: graph building and execution are 
intertwined. So, always need to keep code around.
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# 3 :  C O N D I T I O N A L

133
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# 3 :  C O N D I T I O N A L

• Conditional Graphs
– Let’s say we want to use different weight matrices 

depending on the value of a variable
– Static graph: need an explicit control flow  

operator and must construct all possible control 
flow graphs in advance.

– Dynamic graph: Code is cleaner and similar to 

normal Python control flow.
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# 4 :  L O O P S

135



GT 8803 // Fall 2019

# 4 :  L O O P S

136
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# 4 :  L O O P S

• Loops
– Recurrent relationships in the network. We might 

have a different sized sequence of data.
– Static graph: need to construct all possible 

looping constructs in advance.
– Dynamic graph: can use a normal for loop.
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Dynamic Graph Applications

Karpathy and Fei-Fei, “Deep Visual-Semantic Alignments for Generating 

Image Descriptions”, CVPR 2015

Figure copyright IEEE, 2015. Reproduced for educational purposes. 

• Recurrent networks
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Dynamic Graph Applications

The cat ate a big rat

• Recurrent networks

• Recursive networks 
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Dynamic Graph Applications

• Recurrent networks

• Recursive networks
• Modular Networks

Andreas et al, “Neural Module Networks”, CVPR 2016

Andreas et al, “Learning to Compose Neural Networks for Question Answering”, NAACL 2016

Johnson et al, “Inferring and Executing Programs for Visual Reasoning”, ICCV 2017

Figure copyright Justin Johnson, 2017. Reproduced with permission.
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Dynamic Graph Applications

• Recurrent networks

• Recursive networks
• Modular Networks

• (Your creative idea here)
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PyTorch vs TensorFlow, Static vs Dynamic

PyTorch

Dynamic Graphs

TensorFlow

2.0+: Default 

Dynamic Graph

Pre-2.0: Default 

Static Graph
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Static PyTorch: Caffe2 https://caffe2.ai/

● Deep learning framework developed by Facebook

● Static graphs, somewhat similar to TensorFlow
● Core written in C++

● Nice Python interface
● Can train model in Python, then serialize and deploy 

without Python

● Works on iOS / Android, etc
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Static PyTorch: ONNX Support

ONNX is an open-source standard for neural network models 

Goal: Make it easy to train a network in one framework, then run it in 

another framework

Supported by PyTorch, Caffe2, Microsoft CNTK, Apache MXNet

https://github.com/onnx/onnx
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Static PyTorch: ONNX Support

You can export a PyTorch model to ONNX

Run the graph on a dummy input, and save 

the graph to a file

Will only work if your model doesn’t 

actually make use of dynamic graph - must 
build same graph on every forward pass, no 

loops / conditionals
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Static PyTorch: ONNX Support

graph(%0 : Float(64, 1000)

%1 : Float(100, 1000)

%2 : Float(100)

%3 : Float(10, 100)

%4 : Float(10)) {

%5 : Float(64, 100) = 

onnx::Gemm[alpha=1, beta=1, broadcast=1, 

transB=1](%0, %1, %2), scope: 

Sequential/Linear[0]

%6 : Float(64, 100) = onnx::Relu(%5), 

scope: Sequential/ReLU[1]

%7 : Float(64, 10) = onnx::Gemm[alpha=1, 

beta=1, broadcast=1, transB=1](%6, %3, 

%4), scope: Sequential/Linear[2]

return (%7);

}

After exporting to ONNX, can run 

the PyTorch model in Caffe2
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Static PyTorch
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PyTorch vs TensorFlow, Static vs Dynamic

PyTorch

Dynamic Graphs
Static: ONNX, Caffe2

TensorFlow
Dynamic: Eager

Static: @tf.function
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OUR Advice

PyTorch is our personal favorite. Clean API, native dynamic graphs make 

it very easy to develop and debug. Can build model in PyTorch then 

export to Caffe2 with ONNX for production / mobile

TensorFlow is a safe bet for most projects. Syntax became a lot more 

intuitive after 2.0. Not perfect but has huge community and wide usage. 

Can use same framework for research and production. Probably use a 

high-level framework. Only choice if you want to run on TPUs.
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N E X T  L E C T U R E

• Training Neural Networks (Part I)
– Activation Functions 

– Data Preprocessing

– Weight Initialization

– Batch Normalization

• Training Neural Networks (Part II)
– Parameter update schemes

– Learning rate schedules

– Gradient checking

– Regularization (Dropout etc.)…
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