
DATA ANALYTICS

USING DEEP LEARNING

GT 8803 // FALL 2019 // JOY ARULRAJ

L E C T U R E # 1 2 : T R A I N I N G N E U R A L N E T W O R K S (P T 1)

GT 8803 // Fall 2019

a d m i n i s t r i v i a

• Reminders
– Integration with Eva

– Code reviews

– Each team must send Pull Requests to Eva

2

GT 8803 // Fall 2018

W h e r e w e a r e n o w . . .

3

Hardware + Software

PyTorch

TensorFlow

GT 8803 // Fall 2019

O V E R V I E W

• One time setup
– Activation Functions, Preprocessing, Weight

Initialization, Regularization, Gradient Checking

• Training dynamics
– Babysitting the Learning Process, Parameter

updates, Hyperparameter Optimization

• Evaluation
– Model ensembles, Test-time augmentation

4

GT 8803 // Fall 2019

T O D A Y ’ s A G E N D A

• Training Neural Networks
– Activation Functions

– Data Preprocessing

– Weight Initialization

– Batch Normalization

5

GT 8803 // Fall 2018

ACTIVATION

FUNCTIONS

6

GT 8803 // Fall 2018 7

Activation Functions

GT 8803 // Fall 2018 8

Sigmoid

tanh

ReLU

Leaky ReLU

Maxout

ELU

Activation Functions

GT 8803 // Fall 2018 9

Activation Functions

Sigmoid

• Squashes numbers to range [0,1]

• Historically popular since they have

nice interpretation as a saturating

“firing rate” of a neuron

GT 8803 // Fall 2018 10

Sigmoid

• Squashes numbers to range [0,1]

• Historically popular since they have

nice interpretation as a saturating

“firing rate” of a neuron

3 problems:

1. Saturated neurons “kill” the

gradients

Activation Functions

GT 8803 // Fall 2018 11

sigmoid

gate

x

What happens when x = -10?

What happens when x = 0?

What happens when x = 10?

GT 8803 // Fall 2018 12

Sigmoid

• Squashes numbers to range [0,1]

• Historically popular since they have

nice interpretation as a saturating

“firing rate” of a neuron

3 problems:

1. Saturated neurons “kill” the

gradients

2. Sigmoid outputs are not zero-

centered

Activation Functions

GT 8803 // Fall 2018 13

Consider what happens when the input to a neuron is always

positive...

What can we say about the gradients on w?

GT 8803 // Fall 2018 14

Consider what happens when the input to a neuron is always

positive...

What can we say about the gradients on w?

Always all positive or all negative :(

hypothetical

optimal w
vector

zig zag path

allowed

gradient
update

directions

allowed

gradient
update

directions

GT 8803 // Fall 2018 15

Consider what happens when the input to a neuron is always

positive...

What can we say about the gradients on w?

Always all positive or all negative :(

(For a single element! Minibatches help)

hypothetical

optimal w
vector

zig zag path

allowed

gradient
update

directions

allowed

gradient
update

directions

GT 8803 // Fall 2018 16

Activation Functions

Sigmoid

• Squashes numbers to range [0,1]

• Historically popular since they have

nice interpretation as a saturating

“firing rate” of a neuron

3 problems:

1. Saturated neurons “kill” the

gradients

2. Sigmoid outputs are not zero-

centered

3. exp() is a bit compute expensive

GT 8803 // Fall 2018 17

Activation Functions

tanh(x)

• Squashes numbers to range [-1,1]

• zero centered (nice)

• still kills gradients when saturated :(

[LeCun et al., 1991]

GT 8803 // Fall 2018 18

Activation Functions

ReLU

(Rectified Linear Unit)

• Computes f(x) = max(0,x)

• Does not saturate (in +region)

• Very computationally efficient

• Converges much faster than

sigmoid/tanh in practice (e.g. 6x)

[Krizhevsky et al., 2012]

GT 8803 // Fall 2018 19

Activation Functions

ReLU

(Rectified Linear Unit)

• Computes f(x) = max(0,x)

• Does not saturate (in +region)

• Very computationally efficient

• Converges much faster than

sigmoid/tanh in practice (e.g. 6x)

• Not zero-centered output

[Krizhevsky et al., 2012]

GT 8803 // Fall 2018 20

Activation Functions

ReLU

(Rectified Linear Unit)

• Computes f(x) = max(0,x)

• Does not saturate (in +region)

• Very computationally efficient

• Converges much faster than

sigmoid/tanh in practice (e.g. 6x)

• Not zero-centered output

[Krizhevsky et al., 2012]

GT 8803 // Fall 2018 21

Activation Functions

ReLU

(Rectified Linear Unit)

• Computes f(x) = max(0,x)

• Does not saturate (in +region)

• Very computationally efficient

• Converges much faster than

sigmoid/tanh in practice (e.g. 6x)

• Not zero-centered output

- An annoyance:

hint: what is the gradient when x < 0?

GT 8803 // Fall 2018 22

ReLU

gate

x

What happens when x = -10?

What happens when x = 0?

What happens when x = 10?

GT 8803 // Fall 2018 23

DATA CLOUD
active ReLU

dead ReLU

will never activate

=> never update

GT 8803 // Fall 2018 24

DATA CLOUD
active ReLU

dead ReLU

will never activate

=> never update

=> people like to initialize

ReLU neurons with slightly

positive biases (e.g. 0.01)

GT 8803 // Fall 2018 25

Activation Functions

Leaky ReLU

• Does not saturate

• Computationally efficient

• Converges much faster than

sigmoid/tanh in practice! (e.g. 6x)

• will not “die”.

[Mass et al., 2013]

[He et al., 2015]

GT 8803 // Fall 2018 26

Activation Functions

Leaky ReLU

• Does not saturate

• Computationally efficient

• Converges much faster than

sigmoid/tanh in practice! (e.g. 6x)

• will not “die”.

Parametric Rectifier (PReLU)

backprop into \alpha (parameter)

[Mass et al., 2013]

[He et al., 2015]

GT 8803 // Fall 2018 27

Activation Functions

Exponential Linear Units (ELU)

• All benefits of ReLU

• Closer to zero mean outputs

• Negative saturation regime

compared with Leaky ReLU adds

some robustness to noise

• Computation requires exp()

[Clevert et al., 2015]

GT 8803 // Fall 2018 28

Maxout “Neuron”

• Does not have the basic form of dot product ->

nonlinearity

• Generalizes ReLU and Leaky ReLU

• Linear Regime! Does not saturate! Does not die!

Problem: doubles the number of parameters/neuron :(

[Goodfellow et al., 2013]

GT 8803 // Fall 2018 29

TLDR: In practice:

• Use ReLU. Be careful with your learning rates

• Try out Leaky ReLU / Maxout / ELU

• Try out tanh but don’t expect much

• Don’t use sigmoid

GT 8803 // Fall 2018

DATA

PREPROCESSING

30

GT 8803 // Fall 2018 31

DATA PREPROCESSING

(Assume X [NxD] is data matrix, each example in a row)

GT 8803 // Fall 2018 32

Remember: Consider what happens when

the input to a neuron is always positive...

What can we say about the gradients on w?

Always all positive or all negative :(

(this is also why you want zero-mean data!)

hypothetical

optimal w
vector

zig zag path

allowed

gradient
update

directions

allowed

gradient
update

directions

GT 8803 // Fall 2018 33

DATA PREPROCESSING

(Assume X [NxD] is data matrix, each example in a row)

GT 8803 // Fall 2018 34

DATA PREPROCESSING

(data has diagonal

covariance matrix)

(covariance matrix is

the identity matrix)

In practice, you may also see PCA and Whitening of the data

GT 8803 // Fall 2018 35

DATA PREPROCESSING

Before normalization:

classification loss very sensitive to
changes in weight matrix; hard to

optimize

After normalization: less sensitive

to small changes in weights; easier
to optimize

GT 8803 // Fall 2018 36

TLDR: In practice for Images: center only

• Subtract the mean image (e.g. AlexNet)

(mean image = [32,32,3] array)

• Subtract per-channel mean (e.g. VGGNet)

(mean along each channel = 3 numbers)

• Subtract per-channel mean and

Divide by per-channel std (e.g. ResNet)

(mean along each channel = 3 numbers)

e.g. consider CIFAR-10 example with [32,32,3] images

Not common to do

PCA or whitening

GT 8803 // Fall 2018

WEIGHT

INITIALIZATION

37

GT 8803 // Fall 2018 38

Q: what happens when W=constant init is used?

GT 8803 // Fall 2018 39

First idea: Small random numbers

(gaussian with zero mean and 1e-2 standard deviation)

GT 8803 // Fall 2018 40

First idea: Small random numbers

(gaussian with zero mean and 1e-2 standard deviation)

Works ~okay for small networks, but problems with

deeper networks.

GT 8803 // Fall 2018 41

Weight Initialization: Activation statistics
Forward pass for a 6-layer

net with hidden size 4096

GT 8803 // Fall 2018 42

Weight Initialization: Activation statistics

All activations tend to zero

for deeper network layers

Q: What do the gradients

dL/dW look like?

Forward pass for a 6-layer

net with hidden size 4096

GT 8803 // Fall 2018 43

Weight Initialization: Activation statistics

All activations tend to zero

for deeper network layers

Q: What do the gradients

dL/dW look like?

A: All zero, no learning =(

Forward pass for a 6-layer

net with hidden size 4096

GT 8803 // Fall 2018 44

Weight Initialization: Activation statistics

Increase std of initial weights

from 0.01 to 0.05

GT 8803 // Fall 2018 45

Weight Initialization: Activation statistics

All activations saturate

Q: What do the gradients

look like?

Increase std of initial weights

from 0.01 to 0.05

GT 8803 // Fall 2018 46

Weight Initialization: Activation statistics

All activations saturate

Q: What do the gradients

look like?

A: Local gradients all zero, no

learning =(

Increase std of initial weights

from 0.01 to 0.05

GT 8803 // Fall 2018 47

Weight Initialization: “XAVIER” Initialization

“Xavier” initialization:

std = 1/sqrt(Din)

GT 8803 // Fall 2018 48

Weight Initialization: “XAVIER” Initialization

“Xavier” initialization:

std = 1/sqrt(Din)

Glorot and Bengio, “Understanding the difficulty of training deep feedforward neural networks”, AISTAT 2010

“Just right”: Activations are

nicely scaled for all layers!

GT 8803 // Fall 2018 49

Weight Initialization: “XAVIER” Initialization

“Xavier” initialization:

std = 1/sqrt(Din)

Glorot and Bengio, “Understanding the difficulty of training deep feedforward neural networks”, AISTAT 2010

“Just right”: Activations are

nicely scaled for all layers!

For conv layers, Din is
kernel_size2 * input_channels

GT 8803 // Fall 2018 50

Weight Initialization: “XAVIER” Initialization

“Xavier” initialization:

std = 1/sqrt(Din)
“Just right”: Activations are

nicely scaled for all layers!

For conv layers, Din is
kernel_size2 * input_channels

y = Wx

h = f(y)

Var(yi) = Din * Var(xiwi) [Assume x, w are iid]

= Din * (E[xi
2]E[wi

2] - E[xi]
2 E[wi]

2) [Assume x, w independant]
= Din * Var(xi) * Var(wi) [Assume x, w are zero-mean]

If Var(wi) = 1/Din then Var(yi) = Var(xi)

Derivation:

GT 8803 // Fall 2018 51

Weight Initialization: WHAT ABOUT RELU?

Change from tanh to ReLU

GT 8803 // Fall 2018 52

Weight Initialization: WHAT ABOUT RELU?

Change from tanh to ReLU Xavier assumes zero centered

activation function

Activations collapse to zero

again, no learning =(

GT 8803 // Fall 2018 53

Weight Initialization: KAIMING/MSRA INITIALIZATION

ReLU correction: std = sqrt(2 / Din) “Just right”: Activations are

nicely scaled for all layers!

He et al, “Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification”, ICCV 2015

GT 8803 // Fall 2018 54

PROPER INITIALIZATION IS AN ACTIVE AREA OF RESEARCH…

• Understanding the difficulty of training deep feedforward neural networks by

Glorot and Bengio, 2010

• Exact solutions to the nonlinear dynamics of learning in deep linear neural
networks by Saxe et al, 2013

• Random walk initialization for training very deep feedforward networks by

Sussillo and Abbott, 2014

• Delving deep into rectifiers: Surpassing human-level performance on ImageNet
classification by He et al., 2015

• Data-dependent Initializations of Convolutional Neural Networks by

Krähenbühl et al., 2015

• All you need is a good init, Mishkin and Matas, 2015

• Fixup Initialization: Residual Learning Without Normalization, Zhang et al, 2019
• The Lottery Ticket Hypothesis: Finding Sparse, Trainable Neural Networks,

Frankle and Carbin, 2019

GT 8803 // Fall 2018

BATCH

NORMALIZATION

55

GT 8803 // Fall 2018 56

BATCH NORMALIZATION

“you want zero-mean unit-variance activations? just make them so.”

consider a batch of activations at some layer. To make each

dimension zero-mean unit-variance, apply:

this is a vanilla

differentiable function...

[Ioffe and Szegedy, 2015]

GT 8803 // Fall 2018 57

Input: Per-channel mean,

shape is D

Per-channel var,

shape is D

Normalized x,

Shape is N x D

XN

BATCH NORMALIZATION

D

[Ioffe and Szegedy, 2015]

GT 8803 // Fall 2018 58

Input: Per-channel mean,

shape is D

Per-channel var,

shape is D

Normalized x,

Shape is N x D

XN

BATCH NORMALIZATION

D Problem: What if zero-mean, unit variance is

too hard of a constraint?

[Ioffe and Szegedy, 2015]

GT 8803 // Fall 2018 59

Per-channel mean,

shape is D

Per-channel var,

shape is D

Normalized x,

Shape is N x D

BATCH NORMALIZATION
[Ioffe and Szegedy, 2015]

Output,

Shape is N x D

Input:

Learnable scale and

shift parameters:

Learning = ,

= will recover the

identity function!

GT 8803 // Fall 2018 60

Per-channel mean,

shape is D

Per-channel var,

shape is D

Normalized x,

Shape is N x D

BATCH NORMALIZATION: TEST TIME

Output,

Shape is N x D

Input:

Learnable scale and

shift parameters:

Learning = ,

= will recover the

identity function!

Estimates depend on minibatch;

can’t do this at test-time!

GT 8803 // Fall 2018 61

Per-channel mean,

shape is D

Per-channel var,

shape is D

Normalized x,

Shape is N x D

BATCH NORMALIZATION: TEST TIME

Output,

Shape is N x D

Input:

Learnable scale and

shift parameters:

During testing batchnorm

becomes a linear operator!
Can be fused with the previous

fully-connected or conv layer

(Running) average of

values seen during
training

(Running) average of

values seen during
training

GT 8803 // Fall 2018 62

BATCH NORMALIZATION FOR CONVNETS

x: N × D

𝞵,𝝈: 1 × D

ɣ,β: 1 × D

y = ɣ(x-𝞵)/𝝈+β

x: N×C×H×W

𝞵,𝝈: 1×C×1×1

ɣ,β: 1×C×1×1

y = ɣ(x-𝞵)/𝝈+β

Normalize Normalize

Batch Normalization for fully-

connected networks

Batch Normalization for

convolutional networks

(Spatial Batchnorm, BatchNorm2D)

GT 8803 // Fall 2018 63

BATCH NORMALIZATION

FC

BN

tanh

FC

BN

tanh

...

Usually inserted after Fully Connected

or Convolutional layers, and before

nonlinearity.

[Ioffe and Szegedy, 2015]

GT 8803 // Fall 2018 64

BATCH NORMALIZATION

FC

BN

tanh

FC

BN

tanh

...

[Ioffe and Szegedy, 2015]

• Makes deep networks much easier to train!

• Improves gradient flow

• Allows higher learning rates, faster convergence

• Networks become more robust to initialization

• Acts as regularization during training

• Zero overhead at test-time: can be fused with conv!

• Behaves differently during training and testing: this is a

very common source of bugs!

GT 8803 // Fall 2018 65

LAYER NORMALIZATION

x: N × D

𝞵,𝝈: 1 × D

ɣ,β: 1 × D

y = ɣ(x-𝞵)/𝝈+β

x: N × D

𝞵,𝝈: N × 1

ɣ,β: 1 × D

y = ɣ(x-𝞵)/𝝈+β

Normalize Normalize

Layer Normalization for fully-connected

networks

Same behavior at train and test!

Can be used in recurrent networks

Batch Normalization for

fully-connected networks

Ba, Kiros, and Hinton, “Layer Normalization”, arXiv 2016

GT 8803 // Fall 2018 66

INSTANCE NORMALIZATION

x: N×C×H×W

𝞵,𝝈: 1×C×1×1

ɣ,β: 1×C×1×1

y = ɣ(x-𝞵)/𝝈+β

x: N×C×H×W

𝞵,𝝈: N×C×1×1

ɣ,β: 1×C×1×1

y = ɣ(x-𝞵)/𝝈+β

Normalize Normalize

Instance Normalization for

convolutional networks

Same behavior at train / test!

Batch Normalization for

convolutional networks

Ulyanov et al, Improved Texture Networks: Maximizing Quality and Diversity in Feed-forward Stylization and Texture Synthesis, CVPR 2017

GT 8803 // Fall 2018 67

COMPARISON OF NORMALIZATION LAYERS

Wu and He, “Group Normalization”, ECCV 2018

GT 8803 // Fall 2018 68

GROUP NORMALIZATION

Wu and He, “Group Normalization”, ECCV 2018

SUMMARY

We looked in detail at:

• Activation Functions (use ReLU)

• Data Preprocessing (images: subtract mean)

• Weight Initialization (use Xavier/He init)

• Batch Normalization (use)

69

TLDRs

GT 8803 // Fall 2019

N E X T L E C T U R E

• Training Neural Networks (Part II)
– Parameter update schemes

– Learning rate schedules

– Gradient checking

– Regularization (Dropout etc.)

– Babysitting learning

– Hyperparameter search

– Evaluation (Ensembles etc.)

– Transfer learning / fine-tuning

70

