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a d m i n i s t r i v i a

• Reminders
– Assignment 1 grades released

– Project progress reports due in two weeks

– Assignment 2 due in three weeks
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L A S T  T I M E :  A C T I V A T I O N  F U N C T I O N S
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Sigmoid

tanh

ReLU

Leaky ReLU

Maxout

ELU
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L A S T  T I M E :  A C T I V A T I O N  F U N C T I O N S
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Sigmoid

tanh

ReLU

Leaky ReLU

Maxout

ELU

Good default choice
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L A S T  T I M E :  W E I G H T  I N I T I A L I Z A T I O N

5

Initialization too small:

Activations go to zero, gradients also zero,

No learning =(

Initialization too big:

Activations saturate (for tanh),

Gradients zero, no learning =(

Initialization just right:

Nice distribution of activations at all layers,

Learning proceeds nicely
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L A S T  T I M E :  D A T A  P R E P R O C E S S I N G
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L A S T  T I M E :  B A T C H  N O R M A L I Z A T I O N
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Per-channel mean, 

shape is D

Per-channel var, 

shape is D

Normalized x,

Shape is N x D

[Ioffe and Szegedy, 2015]

Output,

Shape is N x D

Input:

Learnable scale and 

shift parameters:

Learning     =    ,

=      will recover the 

identity function!
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T O D A Y ’ s  A G E N D A

• Improve your training error:
– Optimizers

– Learning rate schedules

• Improve your test error
– Regularization

– Choosing hyperparameters

8
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OPTIMIZATION
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Optimization: SGD

W_1

W_2
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Optimization: PROBLEMS WITH SGD

What if loss changes quickly in one direction and slowly in another?

What does gradient descent do?

Loss function has high condition number: ratio of largest to smallest singular 

value of the Hessian matrix is large
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Optimization: PROBLEMS WITH SGD

What if loss changes quickly in one direction and slowly in another?

What does gradient descent do?
Very slow progress along shallow dimension, jitter along steep direction

Loss function has high condition number: ratio of largest to smallest singular 

value of the Hessian matrix is large
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Optimization: PROBLEMS WITH SGD

What if the loss 

function has a local 

minima or saddle 

point?
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Optimization: PROBLEMS WITH SGD

What if the loss function 

has a local minima or 

saddle point?

Zero gradient, gradient 

descent gets stuck
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Optimization: PROBLEMS WITH SGD

What if the loss function 

has a local minima or 

saddle point?

Saddle points much more 

common than local 

minima in high dimension

Dauphin et al, “Identifying and attacking the saddle point problem in high-dimensional non-convex optimization”, NIPS 2014
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Optimization: PROBLEMS WITH SGD

Our gradients come from 

minibatches so they can be noisy!
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SGD + MOMENTUM

SGD

• Build up “velocity” as a running mean of gradients

• Rho gives “friction”; typically rho=0.9 or 0.99

Sutskever et al, “On the importance of initialization and momentum in deep learning”, ICML 2013

SGD+Momentum
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SGD + MOMENTUM

SGD+Momentum SGD+Momentum

You may see SGD+Momentum formulated different ways, but 

they are equivalent - given same sequence of x

Sutskever et al, “On the importance of initialization and momentum in deep learning”, ICML 2013
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SGD + MOMENTUM

Local Minima Saddle points

Poor Conditioning

Gradient Noise

SGD SGD+

Momentum



GT 8803 // Fall 2018 20

SGD + MOMENTUM

Gradient

Velocity

actual step

Momentum update:

Combine gradient at current point 

with velocity to get step used to 
update weights

Nesterov, “A method of solving a convex programming problem with convergence rate O(1/k^2)”, 1983

Nesterov, “Introductory lectures on convex optimization: a basic course”, 2004

Sutskever et al, “On the importance of initialization and momentum in deep learning”, ICML 2013
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NESTEROV MOMENTUM

Gradient

Velocity

actual step

Momentum update:

Combine gradient at current point 

with velocity to get step used to 
update weights

Nesterov, “A method of solving a convex programming problem with convergence rate O(1/k^2)”, 1983

Nesterov, “Introductory lectures on convex optimization: a basic course”, 2004

Sutskever et al, “On the importance of initialization and momentum in deep learning”, ICML 2013

Gradient
Velocity

actual step

Nesterov Momentum

“Look ahead” to the point where updating 

using velocity would take us; compute 
gradient there and mix it with velocity to 

get actual update direction
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NESTEROV MOMENTUM

Gradient
Velocity

actual step

“Look ahead” to the point where updating 

using velocity would take us; compute 
gradient there and mix it with velocity to 

get actual update direction
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NESTEROV MOMENTUM

Gradient
Velocity

actual step

“Look ahead” to the point where updating 

using velocity would take us; compute 
gradient there and mix it with velocity to 

get actual update direction

Annoying, usually we want 

update in terms of
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NESTEROV MOMENTUM

Gradient
Velocity

actual step

“Look ahead” to the point where updating 

using velocity would take us; compute 
gradient there and mix it with velocity to 

get actual update direction

Annoying, usually we want 

update in terms of

Change of variables                                            and rearrange: 
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NESTEROV MOMENTUM

Annoying, usually we want 

update in terms of

Change of variables                                            and rearrange: 
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NESTEROV MOMENTUM

SGD

SGD+Momentum

Nesterov
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ADAGRAD

Added element-wise scaling of the gradient based on 

the historical sum of squares in each dimension

“Per-parameter learning rates” 

or “adaptive learning rates”

Duchi et al, “Adaptive subgradient methods for online learning and stochastic optimization”, JMLR 2011
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ADAGRAD

Q: What happens with AdaGrad?
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ADAGRAD

Q: What happens with AdaGrad?
Progress along “steep” directions is 

damped; progress along “flat” 
directions is accelerated
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ADAGRAD

Q2: What happens to the step size over long time?
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RMSPROP: “LEAKY ADAGRAD”

AdaGrad

RMSProp

Tieleman and Hinton, 2012
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RMSPROP

SGD

SGD+Momentum

RMSProp
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ADAM (ALMOST)

Kingma and Ba, “Adam: A method for stochastic optimization”, ICLR 2015



GT 8803 // Fall 2018 34

ADAM (ALMOST)

Kingma and Ba, “Adam: A method for stochastic optimization”, ICLR 2015

Momentum

AdaGrad / RMSProp

Sort of like RMSProp with momentum

Q: What happens at first timestep?
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ADAM (FULL FORM)

Kingma and Ba, “Adam: A method for stochastic optimization”, ICLR 2015

Momentum

AdaGrad / RMSProp

Bias correction

Bias correction for the fact that 

first and second moment 

estimates start at zero
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ADAM (FULL FORM)

Kingma and Ba, “Adam: A method for stochastic optimization”, ICLR 2015

Momentum

AdaGrad / RMSProp

Bias correction

Bias correction for the fact that 

first and second moment 

estimates start at zero

Adam with beta1 = 0.9, 

beta2 = 0.999, and learning_rate = 1e-3 or 5e-4

is a great starting point for many models! 
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ADAM

SGD

SGD+Momentum

RMSProp

Adam
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LEARNING

RATE

SCHEDULES

38
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SGD, SGD+Momentum, Adagrad, RMSProp, Adam all have 

learning rate as a hyperparameter.

Q: Which one of these learning rates 

is best to use?
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SGD, SGD+Momentum, Adagrad, RMSProp, Adam all have 

learning rate as a hyperparameter.

Q: Which one of these learning rates 

is best to use?

A: All of them! Start with large 

learning rate and decay over time
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Reduce learning rate

Step: Reduce learning rate at a few fixed points. 

E.g. for ResNets, multiply LR by 0.1 after epochs 
30, 60, and 90.

LEARNING RATE DECAY
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LEARNING RATE DECAY

: Initial learning rate

: Learning rate at epoch t

: Total number of epochs

Loshchilov and Hutter, “SGDR: Stochastic Gradient Descent with Warm Restarts”, ICLR 2017

Radford et al, “Improving Language Understanding by Generative Pre-Training”, 2018

Feichtenhofer et al, “SlowFast Networks for Video Recognition”, arXiv 2018

Child at al, “Generating Long Sequences with Sparse Transformers”, arXiv 2019

Step: Reduce learning rate at a few fixed points. 

E.g. for ResNets, multiply LR by 0.1 after epochs 
30, 60, and 90.

Cosine:
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LEARNING RATE DECAY

: Initial learning rate

: Learning rate at epoch t

: Total number of epochs

Loshchilov and Hutter, “SGDR: Stochastic Gradient Descent with Warm Restarts”, ICLR 2017

Radford et al, “Improving Language Understanding by Generative Pre-Training”, 2018

Feichtenhofer et al, “SlowFast Networks for Video Recognition”, arXiv 2018

Child at al, “Generating Long Sequences with Sparse Transformers”, arXiv 2019

Step: Reduce learning rate at a few fixed points. 

E.g. for ResNets, multiply LR by 0.1 after epochs 
30, 60, and 90.

Cosine:
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LEARNING RATE DECAY

Devlin et al, “BERT: Pre-training of Deep Bidirectional Transformers for

Language Understanding”, 2018

Step: Reduce learning rate at a few fixed points. 

E.g. for ResNets, multiply LR by 0.1 after epochs 
30, 60, and 90.

Cosine:

Linear:

: Initial learning rate

: Learning rate at epoch t

: Total number of epochs
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LEARNING RATE DECAY

Step: Reduce learning rate at a few fixed points. 

E.g. for ResNets, multiply LR by 0.1 after epochs 
30, 60, and 90.

Cosine:

Linear:

Inverse sqrt: 

: Initial learning rate

: Learning rate at epoch t

: Total number of epochs
Vaswani et al, “Attention is all you need”, NIPS 2017
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LEARNING RATE DECAY: LINEAR WARMUP

High initial learning rates can make loss 

explode; linearly increasing learning rate from 
0 over the first ~5000 iterations can prevent 

this

Empirical rule of thumb: If you increase the 

batch size by N, also scale the initial learning 
rate by N

Goyal et al, “Accurate, Large Minibatch SGD: Training ImageNet in 1 Hour”, arXiv 2017
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FIRST-ORDER OPTIMIZATION

Loss

w1
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FIRST-ORDER OPTIMIZATION

Loss

w1

(1) Use gradient form linear approximation

(2) Step to minimize the approximation
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SECOND-ORDER OPTIMIZATION

Loss

w1

(1) Use gradient and Hessian to form quadratic approximation

(2) Step to the minima of the approximation
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SECOND-ORDER OPTIMIZATION

second-order Taylor expansion:

Solving for the critical point we obtain the Newton parameter update:

Q: Why is this bad for deep learning?
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SECOND-ORDER OPTIMIZATION

second-order Taylor expansion:

Solving for the critical point we obtain the Newton parameter update:

Q: Why is this bad for deep learning?

Hessian has O(N^2) elements

Inverting takes O(N^3)
N = (Tens or Hundreds of) Millions
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SECOND-ORDER OPTIMIZATION

Quasi-Newton methods (BGFS most popular):

instead of inverting the Hessian (O(n^3)), approximate inverse 

Hessian with rank 1 updates over time (O(n^2) each).

L-BFGS (Limited memory BFGS): 

Does not form/store the full inverse Hessian.
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L-BFGS

Usually works very well in full batch, deterministic mode 

i.e. if you have a single, deterministic f(x) then L-BFGS will 

probably work very nicely

Does not transfer very well to mini-batch setting. Gives bad 

results. Adapting second-order methods to large-scale, 

stochastic setting is an active area of research.

Le et al, “On optimization methods for deep learning, ICML 2011”

Ba et al, “Distributed second-order optimization using Kronecker-factored approximations”, ICLR 2017
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In PRACTICE

• Adam is a good default choice in many cases; it often works 

ok even with constant learning rate

• SGD+Momentum can outperform Adam but may require 

more tuning of LR and schedule

Try cosine schedule, very few hyperparameters!

• If you can afford to do full batch updates then try out L-BFGS 
(and don’t forget to disable all sources of noise)
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TEST ERROR

55
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BEYOND TRAINING ERROR

Better optimization algorithms 

help reduce training loss

But we really care about error on new 

data - how to reduce the gap?
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EARLY STOPPING: ALWAYS DO THIS

Iteration

Loss

Iteration

Accuracy

Train

Val

Stop training here

Stop training the model when accuracy on the validation set decreases

Or train for a long time, but always keep track of the model snapshot that 
worked best on val
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MODEL ENSEMBLES

1. Train multiple independent models

2. At test time average their results
(Take average of predicted probability distributions, then choose 

argmax)

Enjoy 2% extra accuracy.
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MODEL ENSEMBLES: TIPS AND TRICKS

Instead of training independent models, use multiple 

snapshots of a single model during training!

Loshchilov and Hutter, “SGDR: Stochastic gradient descent with restarts”, arXiv 2016

Huang et al, “Snapshot ensembles: train 1, get M for free”, ICLR 2017

Figures copyright Yixuan Li and Geoff Pleiss, 2017. Reproduced with permission.
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MODEL ENSEMBLES: TIPS AND TRICKS

Instead of training independent models, use multiple 

snapshots of a single model during training!

Loshchilov and Hutter, “SGDR: Stochastic gradient descent with restarts”, arXiv 2016

Huang et al, “Snapshot ensembles: train 1, get M for free”, ICLR 2017

Figures copyright Yixuan Li and Geoff Pleiss, 2017. Reproduced with permission.

Cyclic learning rate schedules can 

make this work even better!
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MODEL ENSEMBLES: TIPS AND TRICKS

Instead of using actual parameter vector, keep a moving 

average of the parameter vector and use that at test 

time (Polyak averaging)

Polyak and Juditsky, “Acceleration of stochastic approximation by averaging”, SIAM Journal on Control and Optimization, 1992.
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HOW TO IMPROVE SINGLE-MODEL PERFORMANCE?

Regularization
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REGULARIZATION

63
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REGULARIZATION: ADD TERM TO LOSS

In common use:

L2 regularization

L1 regularization

Elastic net (L1 + L2)

(Weight decay)
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REGULARIZATION: DROPOUT

Srivastava et al, “Dropout: A simple way to prevent neural networks from overfitting”, JMLR 2014

In each forward pass, randomly set some neurons to zero

Probability of dropping is a hyperparameter; 0.5 is common
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REGULARIZATION: DROPOUT Example forward 

pass with a 3-layer 
network using 

dropout
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REGULARIZATION: DROPOUT

How can this possibly be a good idea?

Forces the network to have a redundant representation;

Prevents co-adaptation of features

has an ear

has a tail

is furry

has claws

mischievous 

look

cat 

score

X

X

X
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REGULARIZATION: DROPOUT

How can this possibly be a good idea?

Another interpretation:

Dropout is training a large ensemble of 

models (that share parameters).

Each binary mask is one model

An FC layer with 4096 units has

24096 ~ 101233 possible masks!

Only ~ 1082 atoms in the universe...
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DROPOUT: TEST TIME

Dropout makes our output random!

Output

(label)

Input

(image)

Random 

dropout

mask

Want to “average out” the randomness at test-time

But this integral seems hard … 
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DROPOUT: TEST TIME

Want to approximate the 

integral

Consider a single neuron.

a

x y

w1 w2
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DROPOUT: TEST TIME

Want to approximate the 

integral

Consider a single neuron.

At test time we have:a

x y

w1 w2



GT 8803 // Fall 2018 72

DROPOUT: TEST TIME

Want to approximate the 

integral

Consider a single neuron.

At test time we have:

During training we have: 

a

x y

w1 w2
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DROPOUT: TEST TIME

Want to approximate the 

integral

Consider a single neuron.

At test time we have:

During training we have: 

a

x y

w1 w2

At test time, multiply

by dropout probability



GT 8803 // Fall 2018 74

DROPOUT: TEST TIME

At test time all neurons are active always

=> We must scale the activations so that for each neuron:

output at test time = expected output at training time
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DROPOUT: SUMMARY

drop in forward pass

scale at test time
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MORE COMMON: ”INVERTED DROPOUT”

test time is unchanged!
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REGULARIZATION: A COMMON PATTERN

Training: Add some kind 

of randomness

Testing: Average out randomness 

(sometimes approximate)
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REGULARIZATION: A COMMON PATTERN

Training: Add some kind 

of randomness

Testing: Average out randomness 

(sometimes approximate)

Example: Batch 

Normalization

Training: Normalize 

using stats from 

random minibatches

Testing: Use fixed 

global stats to 

normalize
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REGULARIZATION: DATA AUGMENTATION

Load 

image and 
label

“cat”

CNN

Compute

loss
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REGULARIZATION: DATA AUGMENTATION

Load 

image and 
label

“cat”

CNN

Compute

loss

Transform 

image
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DATA AUGMENTATION

Horizontal Flips
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DATA AUGMENTATION

Random crops and scales
Training: sample random crops / scales
ResNet:

1. Pick random L in range [256, 480]

2. Resize training image, short side = L

3. Sample random 224 x 224 patch
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DATA AUGMENTATION

Random crops and scales
Training: sample random crops / scales
ResNet:

1. Pick random L in range [256, 480]

2. Resize training image, short side = L

3. Sample random 224 x 224 patch

Testing: average a fixed set of crops
ResNet:

1. Resize image at 5 scales:  {224, 256, 384, 480, 640}

2. For each size, use 10 224 x 224 crops: 4 corners + center, + flips



GT 8803 // Fall 2018 84

DATA AUGMENTATION

Color Jitter
Simple: Randomize 

contrast and brightness
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DATA AUGMENTATION

Color Jitter
Simple: Randomize 

contrast and brightness

More Complex:

1. Apply PCA to all [R, G, B] 

pixels in training set

2. Sample a “color offset” along 

principal component 

directions

3. Add offset to all pixels of a 

training image

( [Krizhevsky et al. 2012], ResNet, etc)
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DATA AUGMENTATION

Get creative for your problem!

Random mix/combinations of :

• translation

• rotation

• stretching

• shearing, 

• lens distortions, …  (go crazy)
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REGULARIZATION: A COMMON PATTERN

Testing: Marginalize over the noise

Training: Add random noise

Examples:
Dropout

Batch Normalization

Data Augmentation
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REGULARIZATION: DROPCONNECT

Testing: Use all the connections

Training: Drop connections between neurons (set weights to 0)

Examples:
Dropout

Batch Normalization

Data Augmentation

DropConnect

Wan et al, “Regularization of Neural Networks using DropConnect”, ICML 2013



GT 8803 // Fall 2018 89

REGULARIZATION: FRACTIONAL MAX POOLING

Testing: Average predictions from several regions

Training: Use randomized pooling regions

Examples:
Dropout

Batch Normalization

Data Augmentation

DropConnect

Fractional Max Pooling

Graham, “Fractional Max Pooling”, arXiv 2014
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REGULARIZATION: STOCHASTIC DEPTH

Testing: Use all the layers

Training: Skip some layers in the network

Examples:
Dropout

Batch Normalization

Data Augmentation

DropConnect

Fractional Max Pooling

Stochastic Depth

Huang et al, “Deep Networks with Stochastic Depth”, ECCV 2016
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REGULARIZATION: CUTOUT

Testing: Use full image

Training: Train on random blends of images

Examples:
Dropout

Batch Normalization

Data Augmentation

DropConnect

Fractional Max Pooling

Stochastic Depth

Cutout
Works very well for small datasets like CIFAR, less 

common for large datasets like ImageNetDeVries and Taylor, “Improved Regularization of Convolutional 

Neural Networks with Cutout”, arXiv 2017
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REGULARIZATION: MIXUP

Testing: Use original images

Training: Set random image regions to zero

Examples:
Dropout

Batch Normalization

Data Augmentation

DropConnect

Fractional Max Pooling

Stochastic Depth

Cutout

Mixup

Randomly blend the pixels of 

pairs of training images, e.g. 

40% cat, 60% dog

CNN
Target label:

cat: 0.4

dog: 0.6

Zhang et al, “mixup: Beyond Empirical Risk Minimization”, ICLR 2018
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REGULARIZATION: SUMMARY

Testing: Marginalize over the noise

Training: Add random noise

Examples:
Dropout

Batch Normalization

Data Augmentation

DropConnect

Fractional Max Pooling

Stochastic Depth

Cutout

Mixup

• Consider dropout for large fully-connected layers

• Batch normalization and data augmentation 

almost always a good idea

• Try cutout and mixup especially for small 

classification datasets
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CHOOSING

HYPER-

PARAMETERS

94
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CHOOSING HYPERPARAMETERS

Step 1: Check initial loss

Turn off weight decay, sanity check loss at initialization

e.g. log(C) for softmax with C classes
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CHOOSING HYPERPARAMETERS

Step 1: Check initial loss

Step 2: Overfit a small sample

Try to train to 100% training accuracy on a small sample of training 

data (~5-10 minibatches); fiddle with architecture, learning rate, 

weight initialization

Loss not going down? LR too low, bad initialization

Loss explodes to Inf or NaN? LR too high, bad initialization



GT 8803 // Fall 2018 97

CHOOSING HYPERPARAMETERS

Step 1: Check initial loss

Step 2: Overfit a small sample

Step 3: Find LR that makes loss go down

Use the architecture from the previous step, use all training data, 

turn on small weight decay, find a learning rate that makes the loss 

drop significantly within ~100 iterations

Good learning rates to try: 1e-1, 1e-2, 1e-3, 1e-4
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CHOOSING HYPERPARAMETERS

Step 1: Check initial loss

Step 2: Overfit a small sample

Step 3: Find LR that makes loss go down

Step 4: Coarse grid, train for ~1-5 epochs

Choose a few values of learning rate and weight decay around 

what worked from Step 3, train a few models for ~1-5 epochs.

Good weight decay to try: 1e-4, 1e-5, 0
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CHOOSING HYPERPARAMETERS

Step 1: Check initial loss

Step 2: Overfit a small sample

Step 3: Find LR that makes loss go down

Step 4: Coarse grid, train for ~1-5 epochs

Step 5: Refine grid, train longer

Pick best models from Step 4, train them for longer (~10-20 

epochs) without learning rate decay
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CHOOSING HYPERPARAMETERS

Step 1: Check initial loss

Step 2: Overfit a small sample

Step 3: Find LR that makes loss go down

Step 4: Coarse grid, train for ~1-5 epochs

Step 5: Refine grid, train longer

Step 6: Look at loss curves
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LOOK AT LEARNING CURVES!

Losses may be noisy, use a scatter 

plot and also plot moving average 

to see trends better

Training Loss Train / Val Accuracy
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Loss

time

Bad initialization a prime suspect
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Loss

time

Loss plateaus: Try learning 

rate decay
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Loss

time

Learning rate step decay Loss was still going down 

when learning rate dropped, 
you decayed too early!
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Accuracy

time

Train

Accuracy still going up, you 

need to train longer

Val
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Accuracy

time

Train

Huge train / val gap means 

overfitting! Increase regularization, 
get more data

Val
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Accuracy

time

Train

No gap between train / val means 

underfitting: train longer, use a 
bigger model

Val
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CHOOSING HYPERPARAMETERS

Step 1: Check initial loss

Step 2: Overfit a small sample

Step 3: Find LR that makes loss go down

Step 4: Coarse grid, train for ~1-5 epochs

Step 5: Refine grid, train longer

Step 6: Look at loss curves

Step 7: GOTO step 5
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CROSS-VALIDATION 

“COMMAND CENTER”
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RANDOM SEARCH Vs. GRID SEARCH

Important 

Parameter

Important 

Parameter
U

n
im

p
o

rt
a

n
t 

P
a

ra
m

e
te

r

U
n

im
p

o
rt

a
n

t 

P
a

ra
m

e
te

r

Grid Layout Random Layout

Random Search for Hyper-Parameter Optimization, Bergstra and Bengio, 2012
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TRACK RATIO OF WEIGHT UPDATES/ WEIGHT MAGNITUDES

ratio between the updates and values: ~ 0.0002 / 0.02 = 0.01 (about okay)

want this to be somewhere around 0.001 or so
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HYPERPARAMETERS TO PLAY WITH

neural networks practitioner

music = loss function

• network architecture

• learning rate, its decay schedule, update type

• regularization (e.g., dropout strength)
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s U M M A R Y

• Improve your training error:
– Optimizers

– Learning rate schedules

• Improve your test error
– Regularization

– Choosing hyperparameters

113


