
DATA ANALYTICS

USING DEEP LEARNING

GT 8803 // FALL 2019 // JOY ARULRAJ

L E C T U R E # 1 3 : T R A I N I N G N E U R A L N E T W O R K S (P T 2)

GT 8803 // Fall 2019

a d m i n i s t r i v i a

• Reminders
– Assignment 1 grades released

– Project progress reports due in two weeks

– Assignment 2 due in three weeks

2

GT 8803 // Fall 2018

L A S T T I M E : A C T I V A T I O N F U N C T I O N S

3

Sigmoid

tanh

ReLU

Leaky ReLU

Maxout

ELU

GT 8803 // Fall 2018

L A S T T I M E : A C T I V A T I O N F U N C T I O N S

4

Sigmoid

tanh

ReLU

Leaky ReLU

Maxout

ELU

Good default choice

GT 8803 // Fall 2018

L A S T T I M E : W E I G H T I N I T I A L I Z A T I O N

5

Initialization too small:

Activations go to zero, gradients also zero,

No learning =(

Initialization too big:

Activations saturate (for tanh),

Gradients zero, no learning =(

Initialization just right:

Nice distribution of activations at all layers,

Learning proceeds nicely

GT 8803 // Fall 2018

L A S T T I M E : D A T A P R E P R O C E S S I N G

6

GT 8803 // Fall 2018

L A S T T I M E : B A T C H N O R M A L I Z A T I O N

7

Per-channel mean,

shape is D

Per-channel var,

shape is D

Normalized x,

Shape is N x D

[Ioffe and Szegedy, 2015]

Output,

Shape is N x D

Input:

Learnable scale and

shift parameters:

Learning = ,

= will recover the

identity function!

GT 8803 // Fall 2019

T O D A Y ’ s A G E N D A

• Improve your training error:
– Optimizers

– Learning rate schedules

• Improve your test error
– Regularization

– Choosing hyperparameters

8

GT 8803 // Fall 2018

OPTIMIZATION

9

GT 8803 // Fall 2018 10

Optimization: SGD

W_1

W_2

GT 8803 // Fall 2018 11

Optimization: PROBLEMS WITH SGD

What if loss changes quickly in one direction and slowly in another?

What does gradient descent do?

Loss function has high condition number: ratio of largest to smallest singular

value of the Hessian matrix is large

GT 8803 // Fall 2018 12

Optimization: PROBLEMS WITH SGD

What if loss changes quickly in one direction and slowly in another?

What does gradient descent do?
Very slow progress along shallow dimension, jitter along steep direction

Loss function has high condition number: ratio of largest to smallest singular

value of the Hessian matrix is large

GT 8803 // Fall 2018 13

Optimization: PROBLEMS WITH SGD

What if the loss

function has a local

minima or saddle

point?

GT 8803 // Fall 2018 14

Optimization: PROBLEMS WITH SGD

What if the loss function

has a local minima or

saddle point?

Zero gradient, gradient

descent gets stuck

GT 8803 // Fall 2018 15

Optimization: PROBLEMS WITH SGD

What if the loss function

has a local minima or

saddle point?

Saddle points much more

common than local

minima in high dimension

Dauphin et al, “Identifying and attacking the saddle point problem in high-dimensional non-convex optimization”, NIPS 2014

GT 8803 // Fall 2018 16

Optimization: PROBLEMS WITH SGD

Our gradients come from

minibatches so they can be noisy!

GT 8803 // Fall 2018 17

SGD + MOMENTUM

SGD

• Build up “velocity” as a running mean of gradients

• Rho gives “friction”; typically rho=0.9 or 0.99

Sutskever et al, “On the importance of initialization and momentum in deep learning”, ICML 2013

SGD+Momentum

GT 8803 // Fall 2018 18

SGD + MOMENTUM

SGD+Momentum SGD+Momentum

You may see SGD+Momentum formulated different ways, but

they are equivalent - given same sequence of x

Sutskever et al, “On the importance of initialization and momentum in deep learning”, ICML 2013

GT 8803 // Fall 2018 19

SGD + MOMENTUM

Local Minima Saddle points

Poor Conditioning

Gradient Noise

SGD SGD+

Momentum

GT 8803 // Fall 2018 20

SGD + MOMENTUM

Gradient

Velocity

actual step

Momentum update:

Combine gradient at current point

with velocity to get step used to
update weights

Nesterov, “A method of solving a convex programming problem with convergence rate O(1/k^2)”, 1983

Nesterov, “Introductory lectures on convex optimization: a basic course”, 2004

Sutskever et al, “On the importance of initialization and momentum in deep learning”, ICML 2013

GT 8803 // Fall 2018 21

NESTEROV MOMENTUM

Gradient

Velocity

actual step

Momentum update:

Combine gradient at current point

with velocity to get step used to
update weights

Nesterov, “A method of solving a convex programming problem with convergence rate O(1/k^2)”, 1983

Nesterov, “Introductory lectures on convex optimization: a basic course”, 2004

Sutskever et al, “On the importance of initialization and momentum in deep learning”, ICML 2013

Gradient
Velocity

actual step

Nesterov Momentum

“Look ahead” to the point where updating

using velocity would take us; compute
gradient there and mix it with velocity to

get actual update direction

GT 8803 // Fall 2018 22

NESTEROV MOMENTUM

Gradient
Velocity

actual step

“Look ahead” to the point where updating

using velocity would take us; compute
gradient there and mix it with velocity to

get actual update direction

GT 8803 // Fall 2018 23

NESTEROV MOMENTUM

Gradient
Velocity

actual step

“Look ahead” to the point where updating

using velocity would take us; compute
gradient there and mix it with velocity to

get actual update direction

Annoying, usually we want

update in terms of

GT 8803 // Fall 2018 24

NESTEROV MOMENTUM

Gradient
Velocity

actual step

“Look ahead” to the point where updating

using velocity would take us; compute
gradient there and mix it with velocity to

get actual update direction

Annoying, usually we want

update in terms of

Change of variables and rearrange:

GT 8803 // Fall 2018 25

NESTEROV MOMENTUM

Annoying, usually we want

update in terms of

Change of variables and rearrange:

GT 8803 // Fall 2018 26

NESTEROV MOMENTUM

SGD

SGD+Momentum

Nesterov

GT 8803 // Fall 2018 27

ADAGRAD

Added element-wise scaling of the gradient based on

the historical sum of squares in each dimension

“Per-parameter learning rates”

or “adaptive learning rates”

Duchi et al, “Adaptive subgradient methods for online learning and stochastic optimization”, JMLR 2011

GT 8803 // Fall 2018 28

ADAGRAD

Q: What happens with AdaGrad?

GT 8803 // Fall 2018 29

ADAGRAD

Q: What happens with AdaGrad?
Progress along “steep” directions is

damped; progress along “flat”
directions is accelerated

GT 8803 // Fall 2018 30

ADAGRAD

Q2: What happens to the step size over long time?

GT 8803 // Fall 2018 31

RMSPROP: “LEAKY ADAGRAD”

AdaGrad

RMSProp

Tieleman and Hinton, 2012

GT 8803 // Fall 2018 32

RMSPROP

SGD

SGD+Momentum

RMSProp

GT 8803 // Fall 2018 33

ADAM (ALMOST)

Kingma and Ba, “Adam: A method for stochastic optimization”, ICLR 2015

GT 8803 // Fall 2018 34

ADAM (ALMOST)

Kingma and Ba, “Adam: A method for stochastic optimization”, ICLR 2015

Momentum

AdaGrad / RMSProp

Sort of like RMSProp with momentum

Q: What happens at first timestep?

GT 8803 // Fall 2018 35

ADAM (FULL FORM)

Kingma and Ba, “Adam: A method for stochastic optimization”, ICLR 2015

Momentum

AdaGrad / RMSProp

Bias correction

Bias correction for the fact that

first and second moment

estimates start at zero

GT 8803 // Fall 2018 36

ADAM (FULL FORM)

Kingma and Ba, “Adam: A method for stochastic optimization”, ICLR 2015

Momentum

AdaGrad / RMSProp

Bias correction

Bias correction for the fact that

first and second moment

estimates start at zero

Adam with beta1 = 0.9,

beta2 = 0.999, and learning_rate = 1e-3 or 5e-4

is a great starting point for many models!

GT 8803 // Fall 2018 37

ADAM

SGD

SGD+Momentum

RMSProp

Adam

GT 8803 // Fall 2018

LEARNING

RATE

SCHEDULES

38

GT 8803 // Fall 2018 39

SGD, SGD+Momentum, Adagrad, RMSProp, Adam all have

learning rate as a hyperparameter.

Q: Which one of these learning rates

is best to use?

GT 8803 // Fall 2018 40

SGD, SGD+Momentum, Adagrad, RMSProp, Adam all have

learning rate as a hyperparameter.

Q: Which one of these learning rates

is best to use?

A: All of them! Start with large

learning rate and decay over time

GT 8803 // Fall 2018 41

Reduce learning rate

Step: Reduce learning rate at a few fixed points.

E.g. for ResNets, multiply LR by 0.1 after epochs
30, 60, and 90.

LEARNING RATE DECAY

GT 8803 // Fall 2018 42

LEARNING RATE DECAY

: Initial learning rate

: Learning rate at epoch t

: Total number of epochs

Loshchilov and Hutter, “SGDR: Stochastic Gradient Descent with Warm Restarts”, ICLR 2017

Radford et al, “Improving Language Understanding by Generative Pre-Training”, 2018

Feichtenhofer et al, “SlowFast Networks for Video Recognition”, arXiv 2018

Child at al, “Generating Long Sequences with Sparse Transformers”, arXiv 2019

Step: Reduce learning rate at a few fixed points.

E.g. for ResNets, multiply LR by 0.1 after epochs
30, 60, and 90.

Cosine:

GT 8803 // Fall 2018 43

LEARNING RATE DECAY

: Initial learning rate

: Learning rate at epoch t

: Total number of epochs

Loshchilov and Hutter, “SGDR: Stochastic Gradient Descent with Warm Restarts”, ICLR 2017

Radford et al, “Improving Language Understanding by Generative Pre-Training”, 2018

Feichtenhofer et al, “SlowFast Networks for Video Recognition”, arXiv 2018

Child at al, “Generating Long Sequences with Sparse Transformers”, arXiv 2019

Step: Reduce learning rate at a few fixed points.

E.g. for ResNets, multiply LR by 0.1 after epochs
30, 60, and 90.

Cosine:

GT 8803 // Fall 2018 44

LEARNING RATE DECAY

Devlin et al, “BERT: Pre-training of Deep Bidirectional Transformers for

Language Understanding”, 2018

Step: Reduce learning rate at a few fixed points.

E.g. for ResNets, multiply LR by 0.1 after epochs
30, 60, and 90.

Cosine:

Linear:

: Initial learning rate

: Learning rate at epoch t

: Total number of epochs

GT 8803 // Fall 2018 45

LEARNING RATE DECAY

Step: Reduce learning rate at a few fixed points.

E.g. for ResNets, multiply LR by 0.1 after epochs
30, 60, and 90.

Cosine:

Linear:

Inverse sqrt:

: Initial learning rate

: Learning rate at epoch t

: Total number of epochs
Vaswani et al, “Attention is all you need”, NIPS 2017

GT 8803 // Fall 2018 46

LEARNING RATE DECAY: LINEAR WARMUP

High initial learning rates can make loss

explode; linearly increasing learning rate from
0 over the first ~5000 iterations can prevent

this

Empirical rule of thumb: If you increase the

batch size by N, also scale the initial learning
rate by N

Goyal et al, “Accurate, Large Minibatch SGD: Training ImageNet in 1 Hour”, arXiv 2017

GT 8803 // Fall 2018 47

FIRST-ORDER OPTIMIZATION

Loss

w1

GT 8803 // Fall 2018 48

FIRST-ORDER OPTIMIZATION

Loss

w1

(1) Use gradient form linear approximation

(2) Step to minimize the approximation

GT 8803 // Fall 2018 49

SECOND-ORDER OPTIMIZATION

Loss

w1

(1) Use gradient and Hessian to form quadratic approximation

(2) Step to the minima of the approximation

GT 8803 // Fall 2018 50

SECOND-ORDER OPTIMIZATION

second-order Taylor expansion:

Solving for the critical point we obtain the Newton parameter update:

Q: Why is this bad for deep learning?

GT 8803 // Fall 2018 51

SECOND-ORDER OPTIMIZATION

second-order Taylor expansion:

Solving for the critical point we obtain the Newton parameter update:

Q: Why is this bad for deep learning?

Hessian has O(N^2) elements

Inverting takes O(N^3)
N = (Tens or Hundreds of) Millions

GT 8803 // Fall 2018 52

SECOND-ORDER OPTIMIZATION

Quasi-Newton methods (BGFS most popular):

instead of inverting the Hessian (O(n^3)), approximate inverse

Hessian with rank 1 updates over time (O(n^2) each).

L-BFGS (Limited memory BFGS):

Does not form/store the full inverse Hessian.

GT 8803 // Fall 2018 53

L-BFGS

Usually works very well in full batch, deterministic mode

i.e. if you have a single, deterministic f(x) then L-BFGS will

probably work very nicely

Does not transfer very well to mini-batch setting. Gives bad

results. Adapting second-order methods to large-scale,

stochastic setting is an active area of research.

Le et al, “On optimization methods for deep learning, ICML 2011”

Ba et al, “Distributed second-order optimization using Kronecker-factored approximations”, ICLR 2017

GT 8803 // Fall 2018 54

In PRACTICE

• Adam is a good default choice in many cases; it often works

ok even with constant learning rate

• SGD+Momentum can outperform Adam but may require

more tuning of LR and schedule

Try cosine schedule, very few hyperparameters!

• If you can afford to do full batch updates then try out L-BFGS
(and don’t forget to disable all sources of noise)

GT 8803 // Fall 2018

TEST ERROR

55

GT 8803 // Fall 2018 56

BEYOND TRAINING ERROR

Better optimization algorithms

help reduce training loss

But we really care about error on new

data - how to reduce the gap?

GT 8803 // Fall 2018 57

EARLY STOPPING: ALWAYS DO THIS

Iteration

Loss

Iteration

Accuracy

Train

Val

Stop training here

Stop training the model when accuracy on the validation set decreases

Or train for a long time, but always keep track of the model snapshot that
worked best on val

GT 8803 // Fall 2018 58

MODEL ENSEMBLES

1. Train multiple independent models

2. At test time average their results
(Take average of predicted probability distributions, then choose

argmax)

Enjoy 2% extra accuracy.

GT 8803 // Fall 2018 59

MODEL ENSEMBLES: TIPS AND TRICKS

Instead of training independent models, use multiple

snapshots of a single model during training!

Loshchilov and Hutter, “SGDR: Stochastic gradient descent with restarts”, arXiv 2016

Huang et al, “Snapshot ensembles: train 1, get M for free”, ICLR 2017

Figures copyright Yixuan Li and Geoff Pleiss, 2017. Reproduced with permission.

GT 8803 // Fall 2018 60

MODEL ENSEMBLES: TIPS AND TRICKS

Instead of training independent models, use multiple

snapshots of a single model during training!

Loshchilov and Hutter, “SGDR: Stochastic gradient descent with restarts”, arXiv 2016

Huang et al, “Snapshot ensembles: train 1, get M for free”, ICLR 2017

Figures copyright Yixuan Li and Geoff Pleiss, 2017. Reproduced with permission.

Cyclic learning rate schedules can

make this work even better!

GT 8803 // Fall 2018 61

MODEL ENSEMBLES: TIPS AND TRICKS

Instead of using actual parameter vector, keep a moving

average of the parameter vector and use that at test

time (Polyak averaging)

Polyak and Juditsky, “Acceleration of stochastic approximation by averaging”, SIAM Journal on Control and Optimization, 1992.

GT 8803 // Fall 2018 62

HOW TO IMPROVE SINGLE-MODEL PERFORMANCE?

Regularization

GT 8803 // Fall 2018

REGULARIZATION

63

GT 8803 // Fall 2018 64

REGULARIZATION: ADD TERM TO LOSS

In common use:

L2 regularization

L1 regularization

Elastic net (L1 + L2)

(Weight decay)

GT 8803 // Fall 2018 65

REGULARIZATION: DROPOUT

Srivastava et al, “Dropout: A simple way to prevent neural networks from overfitting”, JMLR 2014

In each forward pass, randomly set some neurons to zero

Probability of dropping is a hyperparameter; 0.5 is common

GT 8803 // Fall 2018 66

REGULARIZATION: DROPOUT Example forward

pass with a 3-layer
network using

dropout

GT 8803 // Fall 2018 67

REGULARIZATION: DROPOUT

How can this possibly be a good idea?

Forces the network to have a redundant representation;

Prevents co-adaptation of features

has an ear

has a tail

is furry

has claws

mischievous

look

cat

score

X

X

X

GT 8803 // Fall 2018 68

REGULARIZATION: DROPOUT

How can this possibly be a good idea?

Another interpretation:

Dropout is training a large ensemble of

models (that share parameters).

Each binary mask is one model

An FC layer with 4096 units has

24096 ~ 101233 possible masks!

Only ~ 1082 atoms in the universe...

GT 8803 // Fall 2018 69

DROPOUT: TEST TIME

Dropout makes our output random!

Output

(label)

Input

(image)

Random

dropout

mask

Want to “average out” the randomness at test-time

But this integral seems hard …

GT 8803 // Fall 2018 70

DROPOUT: TEST TIME

Want to approximate the

integral

Consider a single neuron.

a

x y

w1 w2

GT 8803 // Fall 2018 71

DROPOUT: TEST TIME

Want to approximate the

integral

Consider a single neuron.

At test time we have:a

x y

w1 w2

GT 8803 // Fall 2018 72

DROPOUT: TEST TIME

Want to approximate the

integral

Consider a single neuron.

At test time we have:

During training we have:

a

x y

w1 w2

GT 8803 // Fall 2018 73

DROPOUT: TEST TIME

Want to approximate the

integral

Consider a single neuron.

At test time we have:

During training we have:

a

x y

w1 w2

At test time, multiply

by dropout probability

GT 8803 // Fall 2018 74

DROPOUT: TEST TIME

At test time all neurons are active always

=> We must scale the activations so that for each neuron:

output at test time = expected output at training time

GT 8803 // Fall 2018 75

DROPOUT: SUMMARY

drop in forward pass

scale at test time

GT 8803 // Fall 2018 76

MORE COMMON: ”INVERTED DROPOUT”

test time is unchanged!

GT 8803 // Fall 2018 77

REGULARIZATION: A COMMON PATTERN

Training: Add some kind

of randomness

Testing: Average out randomness

(sometimes approximate)

GT 8803 // Fall 2018 78

REGULARIZATION: A COMMON PATTERN

Training: Add some kind

of randomness

Testing: Average out randomness

(sometimes approximate)

Example: Batch

Normalization

Training: Normalize

using stats from

random minibatches

Testing: Use fixed

global stats to

normalize

GT 8803 // Fall 2018 79

REGULARIZATION: DATA AUGMENTATION

Load

image and
label

“cat”

CNN

Compute

loss

GT 8803 // Fall 2018 80

REGULARIZATION: DATA AUGMENTATION

Load

image and
label

“cat”

CNN

Compute

loss

Transform

image

GT 8803 // Fall 2018 81

DATA AUGMENTATION

Horizontal Flips

GT 8803 // Fall 2018 82

DATA AUGMENTATION

Random crops and scales
Training: sample random crops / scales
ResNet:

1. Pick random L in range [256, 480]

2. Resize training image, short side = L

3. Sample random 224 x 224 patch

GT 8803 // Fall 2018 83

DATA AUGMENTATION

Random crops and scales
Training: sample random crops / scales
ResNet:

1. Pick random L in range [256, 480]

2. Resize training image, short side = L

3. Sample random 224 x 224 patch

Testing: average a fixed set of crops
ResNet:

1. Resize image at 5 scales: {224, 256, 384, 480, 640}

2. For each size, use 10 224 x 224 crops: 4 corners + center, + flips

GT 8803 // Fall 2018 84

DATA AUGMENTATION

Color Jitter
Simple: Randomize

contrast and brightness

GT 8803 // Fall 2018 85

DATA AUGMENTATION

Color Jitter
Simple: Randomize

contrast and brightness

More Complex:

1. Apply PCA to all [R, G, B]

pixels in training set

2. Sample a “color offset” along

principal component

directions

3. Add offset to all pixels of a

training image

([Krizhevsky et al. 2012], ResNet, etc)

GT 8803 // Fall 2018 86

DATA AUGMENTATION

Get creative for your problem!

Random mix/combinations of :

• translation

• rotation

• stretching

• shearing,

• lens distortions, … (go crazy)

GT 8803 // Fall 2018 87

REGULARIZATION: A COMMON PATTERN

Testing: Marginalize over the noise

Training: Add random noise

Examples:
Dropout

Batch Normalization

Data Augmentation

GT 8803 // Fall 2018 88

REGULARIZATION: DROPCONNECT

Testing: Use all the connections

Training: Drop connections between neurons (set weights to 0)

Examples:
Dropout

Batch Normalization

Data Augmentation

DropConnect

Wan et al, “Regularization of Neural Networks using DropConnect”, ICML 2013

GT 8803 // Fall 2018 89

REGULARIZATION: FRACTIONAL MAX POOLING

Testing: Average predictions from several regions

Training: Use randomized pooling regions

Examples:
Dropout

Batch Normalization

Data Augmentation

DropConnect

Fractional Max Pooling

Graham, “Fractional Max Pooling”, arXiv 2014

GT 8803 // Fall 2018 90

REGULARIZATION: STOCHASTIC DEPTH

Testing: Use all the layers

Training: Skip some layers in the network

Examples:
Dropout

Batch Normalization

Data Augmentation

DropConnect

Fractional Max Pooling

Stochastic Depth

Huang et al, “Deep Networks with Stochastic Depth”, ECCV 2016

GT 8803 // Fall 2018 91

REGULARIZATION: CUTOUT

Testing: Use full image

Training: Train on random blends of images

Examples:
Dropout

Batch Normalization

Data Augmentation

DropConnect

Fractional Max Pooling

Stochastic Depth

Cutout
Works very well for small datasets like CIFAR, less

common for large datasets like ImageNetDeVries and Taylor, “Improved Regularization of Convolutional

Neural Networks with Cutout”, arXiv 2017

GT 8803 // Fall 2018 92

REGULARIZATION: MIXUP

Testing: Use original images

Training: Set random image regions to zero

Examples:
Dropout

Batch Normalization

Data Augmentation

DropConnect

Fractional Max Pooling

Stochastic Depth

Cutout

Mixup

Randomly blend the pixels of

pairs of training images, e.g.

40% cat, 60% dog

CNN
Target label:

cat: 0.4

dog: 0.6

Zhang et al, “mixup: Beyond Empirical Risk Minimization”, ICLR 2018

GT 8803 // Fall 2018 93

REGULARIZATION: SUMMARY

Testing: Marginalize over the noise

Training: Add random noise

Examples:
Dropout

Batch Normalization

Data Augmentation

DropConnect

Fractional Max Pooling

Stochastic Depth

Cutout

Mixup

• Consider dropout for large fully-connected layers

• Batch normalization and data augmentation

almost always a good idea

• Try cutout and mixup especially for small

classification datasets

GT 8803 // Fall 2018

CHOOSING

HYPER-

PARAMETERS

94

GT 8803 // Fall 2018 95

CHOOSING HYPERPARAMETERS

Step 1: Check initial loss

Turn off weight decay, sanity check loss at initialization

e.g. log(C) for softmax with C classes

GT 8803 // Fall 2018 96

CHOOSING HYPERPARAMETERS

Step 1: Check initial loss

Step 2: Overfit a small sample

Try to train to 100% training accuracy on a small sample of training

data (~5-10 minibatches); fiddle with architecture, learning rate,

weight initialization

Loss not going down? LR too low, bad initialization

Loss explodes to Inf or NaN? LR too high, bad initialization

GT 8803 // Fall 2018 97

CHOOSING HYPERPARAMETERS

Step 1: Check initial loss

Step 2: Overfit a small sample

Step 3: Find LR that makes loss go down

Use the architecture from the previous step, use all training data,

turn on small weight decay, find a learning rate that makes the loss

drop significantly within ~100 iterations

Good learning rates to try: 1e-1, 1e-2, 1e-3, 1e-4

GT 8803 // Fall 2018 98

CHOOSING HYPERPARAMETERS

Step 1: Check initial loss

Step 2: Overfit a small sample

Step 3: Find LR that makes loss go down

Step 4: Coarse grid, train for ~1-5 epochs

Choose a few values of learning rate and weight decay around

what worked from Step 3, train a few models for ~1-5 epochs.

Good weight decay to try: 1e-4, 1e-5, 0

GT 8803 // Fall 2018 99

CHOOSING HYPERPARAMETERS

Step 1: Check initial loss

Step 2: Overfit a small sample

Step 3: Find LR that makes loss go down

Step 4: Coarse grid, train for ~1-5 epochs

Step 5: Refine grid, train longer

Pick best models from Step 4, train them for longer (~10-20

epochs) without learning rate decay

GT 8803 // Fall 2018 100

CHOOSING HYPERPARAMETERS

Step 1: Check initial loss

Step 2: Overfit a small sample

Step 3: Find LR that makes loss go down

Step 4: Coarse grid, train for ~1-5 epochs

Step 5: Refine grid, train longer

Step 6: Look at loss curves

GT 8803 // Fall 2018 101

LOOK AT LEARNING CURVES!

Losses may be noisy, use a scatter

plot and also plot moving average

to see trends better

Training Loss Train / Val Accuracy

GT 8803 // Fall 2018 102

Loss

time

Bad initialization a prime suspect

GT 8803 // Fall 2018 103

Loss

time

Loss plateaus: Try learning

rate decay

GT 8803 // Fall 2018 104

Loss

time

Learning rate step decay Loss was still going down

when learning rate dropped,
you decayed too early!

GT 8803 // Fall 2018 105

Accuracy

time

Train

Accuracy still going up, you

need to train longer

Val

GT 8803 // Fall 2018 106

Accuracy

time

Train

Huge train / val gap means

overfitting! Increase regularization,
get more data

Val

GT 8803 // Fall 2018 107

Accuracy

time

Train

No gap between train / val means

underfitting: train longer, use a
bigger model

Val

GT 8803 // Fall 2018 108

CHOOSING HYPERPARAMETERS

Step 1: Check initial loss

Step 2: Overfit a small sample

Step 3: Find LR that makes loss go down

Step 4: Coarse grid, train for ~1-5 epochs

Step 5: Refine grid, train longer

Step 6: Look at loss curves

Step 7: GOTO step 5

GT 8803 // Fall 2018 109

CROSS-VALIDATION

“COMMAND CENTER”

GT 8803 // Fall 2018 110

RANDOM SEARCH Vs. GRID SEARCH

Important

Parameter

Important

Parameter
U

n
im

p
o

rt
a

n
t

P
a

ra
m

e
te

r

U
n

im
p

o
rt

a
n

t

P
a

ra
m

e
te

r

Grid Layout Random Layout

Random Search for Hyper-Parameter Optimization, Bergstra and Bengio, 2012

GT 8803 // Fall 2018 111

TRACK RATIO OF WEIGHT UPDATES/ WEIGHT MAGNITUDES

ratio between the updates and values: ~ 0.0002 / 0.02 = 0.01 (about okay)

want this to be somewhere around 0.001 or so

GT 8803 // Fall 2018 112

HYPERPARAMETERS TO PLAY WITH

neural networks practitioner

music = loss function

• network architecture

• learning rate, its decay schedule, update type

• regularization (e.g., dropout strength)

GT 8803 // Fall 2019

s U M M A R Y

• Improve your training error:
– Optimizers

– Learning rate schedules

• Improve your test error
– Regularization

– Choosing hyperparameters

113

