Georgia IAI
Techl|

DATA ANALYTICS

USING DEEP LEARNING

GT 8803 // FALL 2019 // JOY ARULRAJ

LECTURE #15:RECURRENT NEURAL NETWORKS

I

CREATING THE NEXT"

Y/

ADMINISTRIVIA

* Reminders
— Signup for a weekly project discussion slot
— Project progress updates due on next Monday
— Assignment 2 due on next Wednesday

Georgia
Tech|

-1

GT 8803 // FALL 2019

LAST TIME: CNN ARCHITECTURES

ImageNet Large Scale Visual Recognition Challenge (ILSVRC) winners

30 282
152 layers| |152 layers| [152 layers|
25
A A A
20 |
16.4
15
| 19 Iayers| |22 Iayers,l'
10 ‘
7.3 6.7
B - 5.1
ol e B
2010 2011 2012 2013 2014 2014 2015 2016 2017 Human
Lin etal Sanchez & Krizhevsky etal Zeiler & Simonyan & Szegedy et al He et al Shao et al Huetal Russakovsky et al
Perronnin (AlexNet) Fergus Zisserman (VGG) (GooglLeNet) (ResNet) (SENet)
E\ +inge
B Sl 58 204 20ag \dense
{ —
5\ B o
224 o g .
L dense’| [dens
- \\ 1000
128 Max L
Max T M pooling 20% 2048
pooling pooling A I N
ae exNet
Georgia &
Tech|| 6T 8803 // FALL 2018

| J

| |
| Softmax] | |
| FC 1000] | |
[FC 4096] I]
[FC 4096] |]
L 1 | |
|] | |
| | |]
| ||]
|] | J
]		
]]	
]]	
L]]	
3x3conv,128		8x8conv, 128
3x3conv,128		S3xBconv, 128
]	Pool]	
64] [_3x3 64		
B¢]	3x3conv, 64	
		Input]

VGG16

VGG19

GoogleNet

LAST TIME: CNN ARCHITECTURES

ImageNet Large Scale Visual Recognition Challenge (ILSVRC) winners

30 282

25

“Revolution of Depth”

152 layers| [152 layers| 152 layers

A A A

20 3x3 conv
16.4 A
15 F(x)
11.7 | 19 Iayersl |22 layers
10 3x3 conv
7.3 6.7
5 8 5.1
| B e s B C
2010 2011 2012 2013 2014 2014 2015 2016 2017 Human ReSIduaI bIOCk
Linetal Sanchez & Krizhevsky etal Zeiler & Simonyan & Szegedy et a Heetal Shao et al Hu et al Russakovsky et al
Perronnin (AlexNet) Fergus Zisserman (VGG) (GoogleNet (ResNet) (SENet)
F.. (W)
. exr \ s
X U F,, () » [N ———— HNT
/ 1x1xC 1x1xC
' Ftr H F.'.'c-an’e i)
— .
W' W

(11‘

Georgia \sa’,%
Tech|/|

relu

5 SENet

GT 8803 // FALL 2018

identity

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512, /2

__3x3conv. 128 |

3
[__Sx3conv, 128 |
_3x3cony, 128 |

5

x3 conv, 128

H

3x3 conv, 128, /2

LAST TIME: COMPARING COMPLEXITY

‘ Inception-v4
80 1 80 1 _ : i
Inception-v3 ° ResNet-152
ResNet-50° E ! VGG-16 & VGG-19
LN N BN B 51 ResNet-101 " g
° ResNet-34 ! !
2 70 4 2 70 4 ResNet-18
> g | O
© © GooglLeNet
S 5 ENet
< 65 1 < 65
T Y © BN-NIN ‘ ‘
= o : : :
Feoq —E E BN B BN~ B AN B 1 S 5M - 35M - 65M - 95M - 125M - 155M -
BN-AlexNet
55 1 55 AlexNet
>0 N ?) Q. o).l O & 0% 5 10 1;5 20 2;5 30 3;5 40
N et wet, A By % ,’b B> A0* 15 N2 (N
p~\e’* Ps\e*$ V\'& V\ \‘\\\\ ‘\l 6\166 \Qe \\\ V\e‘ e_ A0 0 Operations [G-Ops]
ENM C>°° 9@ €7 Q%P e\ ‘10&9

An Analysis of Deep Neural Network Models for Practical Applications, 2017.

Georgla

Tech || GT 8803 // FALL 2018

EFFICIENT NETWORKS...

MOBILENETS: EFFICIENT CONVOLUTIONAL NEURAL NETWORKS FOR
MOBILE APPLICATIONS —

M
[Howard et al. 2017] .
Depthwise separable convolutions replace Dx N —
standard convolutions by factorizing them into a (@) Standard Convolution Filers
depthwise convolution and a 1x1 convolution] -
that is much more efficient Dx
Much more efficient, with little loss in accuracy Dx —M —
Follow-up MobileNetV2 work in 2018 (Sandler et (5) Depthwise Convolutional Filtrs
al.)
Other works in this space e.g. ShuffleNet (Zhang
et al. 2017)
Georgia

Tech GT 8803 // FALL 2018

META-LEARNING: LEARNING TO LEARN NETWORK ARCHITECTURES...
NEURAL ARCHITEGTURE SEARCH

WITH REINFORCEMENT LEARNING CNAS)

[Zoph et al. 2016]
“Controller” network that learns to design a good I e mint
network architecture (output a string corresponding f l
to network design) Tralns a child natwork
The controller (RNN) with architecture
Ite I’ate: A to get accuracy R
o Sample an architecture from search space t
o Train the architecture to get a “reward” R ——— /
. ompute gradient of p an
corresponding to accuracy RCRlER by tn bpdste
o Compute gradient of sample probability, and
Number Filter Filter Stride Stride Number Filter
scale by R to perform controller parameter . [of Filtersf: | Height [\ | width [[Height [\ | width | [of Filters|, | Height [

. . . . : N R A LA \
update (i.e. increase likelihood of good : -,| -: - ; ;] :
architecture being sampled, decrease likelihood ~— VL LI VLI VLI PL M PL I PLI?
of bad architecture) i M i L) L L i ;

s iy Ly Ry v S s Y
”L.ayer N-1 > < Layer N > < Layer N+1
Georgia
Tech GT 8803 // FALL 2018 /

META-LEARNING: LEARNING TO LEARN NETWORK ARCHITECTURES...
LEARNING TRANSFERABLE ARCHITECTURES

FOR SCALABLE IMAGE RECOGNITION
[Zoph etal. 2017]

Applying neural architecture search (NAS) to a
large dataset like ImageNet is expensive

Design a search space of building blocks
(“cells”) that can be flexibly stacked

NASNet: Use NAS to find best cell structure on
smaller CIFAR-10 dataset, then transfer
architecture to ImageNet

Many follow-up works in this B N dﬂ"ﬁf 3 53-":-3-’“ 3 &?%‘*ﬂﬁw\ f’-’éw""?”m :.,:,.":";..::“u
space e.g. AmoebaNet (Real etal. £% R ‘ s N N
2019) and ENAS (Pham, Guan et o2 \ 7 \\Ji‘ 7 7 \‘f

al. 2018) - [repeat B imes

Georgia
Tech|| GT 8803 // FALL 2018

TODAY'S AGENDA

. Recurrent Neural Networks

. Case Studies
— Language Modeling
— Image Captioning
. Gradient Flow
- Long Short Term Memory (LSTM)

Georgia |

Tozh | 6T 8803 // FALL 2019

Georgia
Tech

GT 8803 // FALL 2018

10

"VANILLA™ NEURAL NETWORK

one to one

\ Vanilla Neural Networks
Georgia

Tech|) GT 8803 // FALL 2018

11

RECURRENT NEURAL NETWORKS: PROCESS SEQUENGES

one to one one to many many to one many to many

\ e.g. Image Captioning
image -> sequence of words

Georgia

Tech|) GT 8803 // FALL 2018

many to many

12

RECURRENT NEURAL NETWORKS: PROCESS SEQUENGES

one to one one to many many to one many to many
f Pt ! Pt
f ! Pt Pt

\ e.g. Sentiment Classification
sequence of words -> sentiment

Georgia

Tech|) GT 8803 // FALL 2018

many to many

13

RECURRENT NEURAL NETWORKS: PROCESS SEQUENGES

one to one one to many many to one many to many many to many
f Pt ! Pt Pt
f ! Pt bt 1 bt

\ e.g. Machine Translation
seq of words -> seq of words

Georgia
Tech || 6T 8803 // FALL 2018 14

RECURRENT NEURAL NETWORKS: PROCESS SEQUENGES

one to one one to many many to one many to many many to many
f Pt ! Pt Pt
f ! Pt bt 1 bt

e.g. Video classification on frame level

Georgia
Tech || 6T 8803 // FALL 2018 15

SEQUENTIAL PROGESSING OF NON-SEQUENGE DATA

Classify images by taking a series
of “glimpses”

Ba, Mnih, and Kavukcuoglu, “Multiple Object Recognition with Visual Attention”, ICLR 2015.

Gregor et al, “DRAW: A Recurrent Neural Network For Image Generation”, ICML 2015

Figure copyright Karol Gregor, Ivo Danihelka, Alex Graves, Danilo Jimenez Rezende, and Daan Wierstra, 2015.
Reproduced with permission.

Georgia

Tech GT 8803 // FALL 2018

16

SEQUENTIAL PROGESSING OF NON-SEQUENGE DATA

Generate images one piece at a time!

9 g ‘

Gregor et al, “DRAW: A Recurrent Neural Networ k For Image Generation”, ICML 2015
Figure copyright Karol Gregor, Ivo Danihelka, Alex Graves, Danilo Jimenez Rezende, and Daan Wierstra, 2015. Reproduced with permission.

RECURRENT NEURAL NETWORK

Key idea: RNNs have an
“internal state” that is

/ updated as a sequence is
processed

Georgia |

Tech|| GT 8803 // FALL 2018

18

RECURRENT NEURAL NETWORK

We can process a sequence of vectors x by applying a
recurrence formula at every time step:

huy

new state

fw

/ 0

some function

(

P

)

L ¢

)

with parameters W

Georgia
Tech||

GT 8803 // FALL 2018

d state input vector at
some time step

I

B

|

19

RECURRENT NEURAL NETWORK

We can process a sequence of vectors x by applying a
recurrence formula at every time step:

hy = fw (ht—la wt)

Notice: the same function and the same set of
parameters are used at every time step.

Georgia

Tech|) GT 8803 // FALL 2018

20

(SIMPLE) RECURRENT NEURAL NETWORK

The state consists of a single “hidden” vector h:

-

|

Georgia
Tech

hy = fw (ht—la xt)

|

h; = tanh(Wpphy 1 + Wy zy)
Yt — Whyht

Sometimes called a “Vanilla RNN”
or an “Elman RNN" after Prof. Jeffrey Elman

GT 8803 // FALL 2018

21

RNN: COMPUTATIONAL GRAPH

Georgia
Tech||

GT 8803 // FALL 2018

22

RNN: COMPUTATIONAL GRAPH

Georgia
Tech||

GT 8803 // FALL 2018

23

RNN: COMPUTATIONAL GRAPH

Georgia
Tech

GT 8803 // FALL 2018

24

RNN: COMPUTATIONAL GRAPH

Re-use the same weight matrix at every time-step

Georgia

Tech GT 8803 // FALL 2018

ho — fy h, hy, —
/ i
W

25

RNN: COMPUTATIONAL GRAPH: MANY TO MANY

Y1 Y2
ho 1 fiy h,
/ i
W

Georgia

Tech GT 8803 // FALL 2018

RNN: COMPUTATIONAL GRAPH: MANY TO MANY

Y1 1L Y2 1 L
h, > fW h,
/ i
W

Georgia

Tech GT 8803 // FALL 2018

RNN: COMPUTATIONAL GRAPH: MANY TO MANY

Y1 1L Y2 1 L
h, > fW h,
/ i
W

Georgia

Tech GT 8803 // FALL 2018

RNN: COMPUTATIONAL GRAPH: MANY T0 ONE

ho — fy h,
/ i
W

Georgia

Tech GT 8803 // FALL 2018

29

RNN: COMPUTATIONAL GRAPH: ONE TO MANY

Y1

Y>

Y3

Y1

Georgia

GT 8803 // FALL 2018

SEQUENCE TO SEQUENCE: MANY-TO-ONE + ONE-TO-MANY

Many to one: Encode input
sequence in a single vector

=
-
=
-
=
-
>

1

W

—_
N
W

Sutskever et al, “Sequence to Sequence Learning with Neural Networks”, NIPS 2014

Georgia
Tech

GT 8803 // FALL 2018

31

SEQUENCE TO SEQUENCE: MANY-TO-ONE + ONE-TO-MANY

One to many: Produce output

: sequence from single input vector
Many to one: Encode input . gleinp

sequence in a single vector }/ 3’
ﬂk
h > f > h > f > h > f > h > ...—D- h —_ f > h T > h > f
0 w 1 LW 2 | | W 3 T w | |1 w | |2 W
/ X X X /
YV 1 2 3 W
2

Sutskever et al, “Sequence to Sequence Learning with Neural Networks”, NIPS 2014

Georgia

Tech GT 8803 // FALL 2018

Georgia
Tech

LANGUAGE
MODELING

GT 8803 // FALL 2018

33

EXAMPLE: CHARACTER-

LEVEL
LANGUAGE MODEL

Vocabulary:
[hlelllo]

Example training

segquence:
“hello”

Georgia
Tech

input layer

input chars:

GT 8803 // FALL 2018

J oo -

O loo=o0

—|loaoco

—— |lo~0o0O

34

EXAMPLE: CHARACTER-

LEVEL
LANGUAGE MODEL

Vocabulary:
[hlelllo]

Example training

segquence:
“hello”

Georgia
Tech

hi = tanh(Wrphi—1 + Wapat)

1 0 0 0

: 0 1 0 0
tl

input layer 0 0 1 1

0 0 0 0

input chars: “h” e B I

GT 8803 // FALL 2018

35

target chars: ‘e’ " "

EXAMPLE: CHARACTER- = mm =
LEVEL output layer %% 9'% (132
LANGUAGE MODEL T 1T2 '1T'1
VocabUIary: hidden layer .(()):i > z)g - .(())15 M
[h,e,l 0] 0.9 0.1 0.3
Example training I I l
sequence: input layer | 9 . ;
“hello” D e 2

input chars: “h” “e” I

Georgia

Tech GT 8803 // FALL 2018

EXAMPLE: CHARACTER-

LEVEL
LANGUAGE MODEL

Vocabulary:
[h,el,0]

At test-time sample
characters one at a
time, feed back to
model

Georgia

Tech

Sample

Softmax

output layer

hidden layer

input layer

input chars:

GT 8803 // FALL 2018

lle
f,

.03
13
.00
.84

T

-3.0

1.0
2.2

41

|

0.3
01—
0.9

1
0
0
0
Hh“

37

EXAMPLE: CHARACTER-

LEVEL
LANGUAGE MODEL

Vocabulary:
[hlelllo]

At test-time sample
characters one at a
time, feed back to
model

Georgia
Tech

Sample

Softmax

output layer

hidden layer

input layer

input chars:

GT 8803 // FALL 2018

lle\\
5

.03
13
.00
.84

T

-3.0

1.0
2.2

41

|

0.3

-0.1
0.9

1
0
0
0
Hh“

O |loo=o0o

38

EXAMPLE: CHARACTER-

LEVEL
LANGUAGE MODEL

Vocabulary:
[hlelllo]

At test-time sample
characters one at a
time, feed back to
model

Georgia
Tech

Sample

Softmax

output layer

hidden layer

input layer

input chars:

GT 8803 // FALL 2018

lle\\
5

.03
13
.00
.84

T

1.0
2.2
-3.0
41

|

0.3

III

-0.1
0.9

1
0
0
0
Hh“

EXAMPLE: CHARACTER-
LEVEL
LANGUAGE MODEL

Vocabulary:
[h,el,0]

At test-time sample
characters one at a
time, feed back to
model

Georgia
Tech

«“ ”I
Sample f’e\\ 5

llI

!

A1
17
.68
.03

0.1
0.5
1.9

-1.1

0.1

-0.5
-0.3

W_hh|

= [asa s

.03 .25
13 .20
Softmax | .00 .05
.84 .50
t t
1.0 05
22 03
tput |
output layer 30 10
4.1 1.2
g3 1.0
hidden layer | -0.1 > 0.3
0.9 01
1 0
. 0 1
tl
input layer 0 0
0 0
input chars: “h” \/‘ “‘e”

GT 8803 // FALL 2018

40

Forward through entire sequence to

BACKPROPAGATION THROUGH TIME (BPTT) T

I =

<

Georgia |

Tozh | 6T 8803 // FALL 2018

41

TRUNCATED BACKPROPAGATION THROUGH TIME

Loss

f
//(/ \ \\ Run forward and backward
through chunks of the

sequence instead of whole
sequence

<

Georgia
Tech|| GT 8803 // FALL 2018

42

TRUNCATED BACKPROPAGATION THROUGH TIME

Loss
/I | T © X Carry hidden states

forward in time forever,
but only backpropagate
for some smaller number
of steps

> >

<

Georai
“Fech | 6T 8803 // FALL 2018 13

TRUNCATED BACKPROPAGATION THROUGH TIME

Loss

/TN

/[I \

Georgia |

Tozh | 6T 8803 // FALL 2018

Georgia
Teoh

——

min-char-rnn.py gist: 112 lines of Python

Minimal character-level vanilla RNN model. Written by Andrej Karpathy (@karpathy)
BSD License

import numpy as np

data I/0

data = open('input.txt', 'r').read() # should be simple plain text file
chars = list(set(data))

data_size, vocab_size = len(data), len(chars)

print 'data has %d characters, %d unique.' % (data_size, vocab_size)
char_to_ix = { ch:i for i,ch in enumerate(chars) }

ix_to_char = { i:ch for i,ch in enumerate(chars) }

hyperparameter
hidden_size = 100 # size of hidden layer of neurons
seq_length = 25 # number of steps to unroll the RNN for
learning_rate = le-1

model parameters

wxh = np.random.randn(hidden_size, vocab_size)*®.01 # input to hidden
whh = np.random.randn(hidden_size, hidden_size)*®.81 # hidden to hidden
Why = np.random.randn(vocab_size, hidden_size)*©.01 # hidden to output
bh = np.zeros((hidden_size, 1)) # hidden bias

by = np.zeros((vocab_size, 1)) # output bias

def lossFun(inputs, targets, hprev):
inputs, targets are both list of integers.
hprev is Hx1 array of initial hidden state
returns the loss, gradients on model parameters, and last hidden state
o
xs, hs, ys, ps = {}, {}, {}, O
hs[-1] = np.copy(hprev)
loss = @
forward pass
for t in xrange(len(inputs)):
xs[t] = np.zeros((vocab_size,1)) # encode in 1-of-k representation
xs[t][inputs[t]] = 1
hs[t] = np.tanh(np.dot(wxh, xs[t]) + np.dot(whh, hs[t-1]) + bh) # hidden state
ys[t] = np.dot(why, hs[t]) + by # unnormalized log probabilities for next chars
ps[t] = np.exp(ys[t]) / np.sum(np.exp(ys[t])) # pro
loss += -np.log(ps[t][targets[t],@]) # softmax
backward pass: compute gradien going backwards
dwxh, dwhh, dwhy = np.zeros_like(wxh), np.zeros_like(whh), np.zeros_like(why)
dbh, dby = np.zeros_like(bh), np.zeros_like(by)
dhnext = np.zeros_like(hs[e])
for t in reversed(xrange(len(inputs))):
dy = np.copy(ps[t])
dy[targets[t]] -= 1 # backprop into y
dwhy += np.dot(dy, hs[t].T)
dby += dy
dh = np.dot(why.T, dy) + dhnext # backprop into h
dhraw = (1 - hs[t] * hs[t]) * dh # backprop through tanh nonlinearity
dbh += dhraw
dwxh += np.dot(dhraw, xs[t].T)
dwhh += np.dot(dhraw, hs[t-1].T)
dhnext = np.dot(whh.T, dhraw)
for dparam in [dwxh, dwhh, dwhy, dbh, dby]:
np.clip(dparam, -5, 5, out=dparam) # clip to mitigate expl:
return loss, dwxh, dwhh, dwhy, dbh, dby, hs[len(inputs)-1]

abilities for next chars

ss-entropy loss)

ing gradients

def sample(h, seed_ix, n):

sample a sequence of integers from the model
h is memory state, seed_ix is seed letter for first time step
X = np.zeros((vocab_size, 1))
x[seed_ix] = 1
ixes = []
for t in xrange(n):
h = np.tanh(np.dot(wxh, x) + np.dot(whh, h) + bh)
y = np.dot(why, h) + by
p = np.exp(y) / np.sum(np.exp(y))
ix = np.random.choice(range(vocab_size), p=p.ravel())
X = np.zeros((vocab_size, 1))
x[ix] = 1
ixes.append(ix)
return ixes

n,p=9, 8
mwWxh, mwWhh, mwhy = np.zeros_like(wxh), np.zeros_like(whh), np.zeros_like(Why)
mbh, mby = np.zeros_like(bh), np.zeros_like(by) # memory variables for Adagrad
smooth_loss = -np.log(1l.8/vocab_size)*seq_length # loss at iteration @
while True:
prepare inputs (we're sweeping from left to right in ste
if p+seq_length+1 >= len(data) or n e:
hprev = np.zeros((hidden_size,1)) # reset RNN memory
p =0 # go from start of data
inputs = [char_to_ix[ch] for ch in data[p:p+seq_length]]
targets = [char_to_ix[ch] for ch in data[p+1:p+seq_length+1]]

seq_length long)

sample from the model now
if n % 100 == O:
sample_ix = sample(hprev, inputs[e], 2ee)
txt = ''.join(ix_to_char[ix] for ix in sample_ix)
print -\n %s \n----' % (txt,)

forward seg_length cha
loss, dwxh, dwhh, dwhy, dbh, dby, hprev = lossFun{inputs, targets, hprev)
smooth_loss = smooth_loss * ©.999 + loss * ©.801

if n % 100 @: print 'iter %d, loss: %f' % (n, smooth_loss) # print progress

ters through the net and fetch gradient

perform parameter update with Adagrad
for param, dparam, mem in zip([wxh, whh, why, bh, by],
[dwxh, dwhh, dwhy, dbh, dby],
[mwxh, mwhh, mwhy, mbh, mby]):
mem += dparam * dparam
param += -learning_rate * dparam / np.sqrt(mem + 1le-8) # adagrad update

p += seq_length # move data poi
n += 1 # iteration counter

er

(https://qist.github.com/karpathy/d4dee566867f8291f086)

GT 8803 // FALL 2018

THE SONNETS

by William Shakespeare y

From fairest creatures we desire increase,
That thereby beauty's rose might never die,
But as the riper should by time decease,
His tender heir might bear his memory:
But thou, contracted to thine own bright eyes,
Feed'st thy light's flame with self-substantial fuel,
Making a famine where abundance lies,
Thyself thy foe, to thy sweet self too cruel:
Thou that art now the world's fresh ornament, _
And only herald to the gaudy spring,
Within thine own bud buriest thy content,
And tender churl mak'st waste in niggarding:
Pity the world, or else this glutton be,
To eat the world's due, by the grave and thee.

When forty winters shall besiege thy brow,
And dig deep trenches in thy beauty's field,
Thy youth's proud livery so gazed on now,
Will be a tatter'd weed of small worth held: X
Then being asked, where all thy beauty lies,
Where all the treasure of thy lusty days;
To say, within thine own deep sunken eyes,
Were an all-eating shame, and thriftless praise.
How much more praise deserv'd thy beauty's use,
If thou couldst answer 'This fair child of mine
Shall sum my count, and make my old excuse,’'
Proving his beauty by succession thine!
This were to be new made when thou art old,
And see thy blood warm when thou feel'st it cold.

Georgia

Tech|) GT 8803 // FALL 2018

fi . tyntd-iafhatawiaoihrdemot 1lytdws e ,tfti, astai f ogoh eoase rrranbyne ‘nhthnee e
at rirst: plia tklrgd t o idoe ns,smtt h ne etie h,hregtrs nigtike,aoaenns lng

l train more
"Tmont thithey" fomesscerliund

Keushey. Thom here
sheulke, anmerenith ol sivh I lalterthend Bleipile shuwy fil on aseterlome

coaniogennc Phe lism thond hon at. MeiDimorotion in ther thize."

l train more
Aftair fall unsuch that the hall for Prince Velzonski's that me of

her hearly, and behs to so arwage fiving were to it beloge, pavu say falling misfort
how, and Gogition is so overelical and ofter.

l train more

"Why do what that day," replied Natasha, and wishing to himself the fact the
princess, Princess Mary was easier, fed in had oftened him.
Pierre aking his soul came to the packs and drove up his father-in-law women.

Georgia
Tech|| GT 8803 // FALL 2018

4]

Georgia
Tech

PANDARUS: VIOLA:

Alas, I think he shall be come approached and the day Why, Salisbury must find his flesh and thought

When little srain would be attain'd into being never fed, That which I am not aps, not a man and in fire,

And who is but a chain and subjects of his death, To show the reining of the raven and the wars

I should not sleep. To grace my hand reproach within, and not a fair are hand,
That Caesar and my goodly father's world;

Second Senator: When I was heaven of presence and our fleets,

They are away this miseries, produced upon my soul, We spare with hours, but cut thy council I am great,

Breaking and strongly should be buried, when I perish Murdered and by thy master's ready there

The earth and thoughts of many states. My power to give thee but so much as hell:

Some service in the noble bondman here,
DUKE VINCENTIO: Would show him to her wine.
Well, your wit is in the care of side and that.

KING LEAR:

Second Lord: 0, if you were a feeble sight, the courtesy of your law,

They would be ruled after this chamber, and
my fair nues begun out of the fact, to be conveyed,

Your sight and several breath, will wear the gods

With his heads, and my hands are wonder'd at the deeds,
Whose noble souls I'll have the heart of the wars. So drop upon your lordship's head, and your opinion
Shall be against your honour.

Clown:

Come, sir, I will make did behold your worship.

VIOLA:
I'll drink it.

GT 8803 // FALL 2018

48

THE STACKS PROJECT: OPEN SOURCE ALGEBRAIC GEOMETRY TEXTBOOK

[The Stacks Project

home about tagsexplained taglookup browse search Dbibliography

Browse chapters

Part Chapter

Preliminaries
1. Introduction
2. Conventions
3. Set Theory
4. Categories
5. Topology
6. Sheaves on Spaces
7. Sites and Sheaves
8. Stacks

9. Fields

10. Commutative Algebra

online TeX source view pdf

online tex()
online tex()
online tex()
online tex()
online tex()
online tex()
online tex()
online tex()
online tex()
online tex()

recent comments blog add slogans

Parts

1. Preliminaries

2. Schemes

3. Topics in Scheme Theory
pdf > 4. Algebraic Spaces

df s 5. Topics in Geometry

RAL 6. Deformation Theory
pdf > 7. Algebraic Stacks
pdf > 8. Miscellany
pdf > Statistics
pdf >
pdf > The Stacks project now consists of
pdf > o 455910 lines of code
pdf > o 14221 tags (56 inactive tags)
pdf > o 2366 sections

Latex source

Georgia
Tech

GT 8803 // FALL 2018

http://stacks.math.columbia.edu/
The stacks project is licensed under the GNU Free Documentation License

49

Georgia
Tec

For @, -, . where £,,,, = 0, hence we can find a closed subset H in H and
any sets F on X, U is a closed immersion of S, then U — T is a separated algebraic
space.

Proof. Proof of (1). It also start we get
S=SPEC(R)=UX_xUXxU

and the comparicoly in the fibre product covering we have to prove the lemma
generated by [[Z xy U — V. Consider the maps M along the set of points
Schgppy and U — U is the fibre category of S in U in Section, 77 and the fact that
any U affine, see Morphisms, Lemma ??. Hence we obtain a scheme S and any
open subset W C U in Sh(G) such that Spec(R’) — S is smooth or an

U=|JU: xs, Us
which has a nonzero morphism we may assume that f; is of finite presentation over
S. We claim that Ox . is a scheme where z,2’, s” € S’ such that Oy .+ — O, _, is

separated. By Algebra, Lemma ?? we can define a map of complexes GLg(2'/S")
and we win.

To prove study we see that F|y is a covering of A”, and T; is an object of Fy/s for
i > 0 and F,, exists and let F; be a presheaf of Ox-modules on C as a F-module.
In particular F = U/F we have to show that

ﬂ. = I. ®Spcc(k) 05‘, g l)_(lf)
is a unique morphism of algebraic stacks. Note that
Arrows = (Sch/S)7, ¢, (Sch/S) fpps
and
V =T(S,0) — (U,Spec(A))
is an open subset of X. Thus U is affine. This is a continuous map of X is the
inverse, the groupoid scheme S.

Proof. See discussion of sheaves of sets. O

The result for prove any open covering follows from the less of Example ??7. It may
replace S by X paces.étale Which gives an open subspace of X and T equal to Szar,
see Descent, Lemma ?7. Namely, by Lemma ??7 we see that R is geometrically

regular over S.

Lemma 0.1. Assume (3) and (3) by the construction in the description.

Suppose X = lim |X| (by the formal open covering X and a single map Proj, (A) =
Spec(B) over U compatible with the complex

Set(A) =T'(X, Ox_ox).

When in this case of to show that Q — Cz;x is stable under the following result
in the second conditions of (1), and (3). This finishes the proof. By Definition 7?7
(without element is when the closed subschemes are catenary. If T is surjective we
may assume that T is connected with residue fields of S. Moreover there exists a
closed subspace Z C X of X where U in X' is proper (some defining as a closed
subset of the uniqueness it suffices to check the fact that the following theorem

(1) f is locally of finite type. Since S = Spec(R) and Y = Spec(R).

Proof. This is form all sheaves of sheaves on X. But given a scheme U and a
surjective étale morphism U — X. Let UNU =[] . Ui be the scheme X over
S at the schemes X; — X and U = lim; X;.

i=1....,

The following lemma surjective restrocomposes of this implies that F,, = F,,

Lemma 0.2. Let X be a locally Noetherian scheme over S, E = Fx;g. Set I =
Ji CI.,. Since I" C I" are nonzero over ig < p is a subset of J, o o Az works.

Lemma 0.3. In Situation 7?7. Hence we may assume q' = 0.

Proof. We will use the property we see that p is the mext functor (?7). On the
other hand, by Lemma 7?7 we see that

D(Ox:) = Ox(D)

where K is an F-algebra where 4,,+; is a scheme over S. O

J

=

GT 8803 // FALL 2018

®

00

Proof. Omitted. O

Lemma 0.1. Let C be a set of the construction.
Let C be a gerber covering. Let F be a quasi-coherent sheaves of O-modules. We
have to show that

OOx — OX([')

Proof. This is an algebraic space with the composition of sheaves F on Xgq. we
have

OX(-F) = {morphl XOx (g}_)}
where G defines an isomorphism F — F of O-modules. m

Lemma 0.2. This is an integer Z is injective.
Proof. See Spaces, Lemma ?77. O

Lemma 0.3. Let S be a scheme. Let X be a scheme and X is an affine open
covering. Let U C X be a canonical and locally of finite type. Let X be a scheme.
Let X be a scheme which is equal to the formal complez.

The following to the construction of the lemma follows.
Let X be a scheme. Let X be a scheme covering. Let
b: X=2Y 5Y Y aY xxY - X.

be a morphism of algebraic spaces over S and Y.

Proof. Let X be a nonzero scheme of X. Let X be an algebraic space. Let F be a
quasi-coherent sheaf of Ox-modules. The following are equivalent

(1) F is an algebraic space over S.

(2) If X is an affine open covering.

Consider a common structure on X and X the functor Ox(U) which is locally of
finite type. O

This since F € F and x € G the diagram

55— &

|

{ —*Ox-

I\

=a ——a X
Spec(Ky) Morsets d(Oxy,,.G)

is a limit. Then G is a finite type and assume S is a flat and F and G is a finite
type f.. This is of finite type diagrams, and
e the composition of G is a regular sequence,
e Oy is a sheaf of rings.
(|

Proof. We have see that X = Spec(R) and F is a finite type representable by
algebraic space. The property F is a finite morphism of algebraic stacks. Then the
cohomology of X is an open neighbourhood of U. O

Proof. This is clear that G is a finite presentation, see Lemmas 77.
A reduced above we conclude that U is an open covering of C. The functor F is a
“field

Oxz —Fz UOx,uy) — O}:O,\—,\(Oﬁn)
is an isomorphism of covering of Oy,. If F is the unique element of F such that X
is an isomorphism.
The property F is a disjoint union of Proposition 7?7 and we can filtered set of
presentations of a scheme O x-algebra with F are opens of finite type over S.
If F is a scheme theoretic image points. a

If F is a finite direct sum Ox, is a closed immersion, see Lemma ?7?. This is a
sequence of F is a similar morphism.

Georgia
Teoh

——

®

GT 8803 // FALL 2018

ol

() | is reposiiory searen Explore Gist Blog Help Slrapany +. (F & B

I;j torvalds / linux @Watch. 3711 g Star 23054 YFork 9,141

Linux kernel source tree

' 520,037 commits 1 branch 420 roloases o 5,039 contributors :::ldl
I branch: master - linux / + = 2. requests -
Merge branch ‘drm-fixes' of git:/people.freedesktop.orgi~airiedlinux -
M torvalds authored 9 hours ago latest commit 4b1786927d f= ;;M
8 Documentation Merge git/igit kemel.org/pubscmilinuckemeligitnabAarget-pending 6 days ago
M arch Merge branch ‘x86-urgent-for-linus’ of gitigit kemel.org/pubdscmd... a day ago gm
N block block: discard bdi_unregister() in favour of bdi_destroy() 9 days ago
M crypto Merge gitigit kemel.org/pub/scmAinuxkemel/githerbert/crypto-2.6 10 days ago HTTPS clone URAL
I drivers Merge branch ‘drm-fixes’ of gitJ/people.freedeskiop.org/~aiedNinux 8 hours ago https://github.c B
M firmware firmware/ihex2tw.c: restore missing default in switch statement 2 months ago You can clone with HTTPS,
.fs vis: read file_handle only once in handle_to_path 4 days ago SSH, or Subversion. @
I include Merge branch ‘perf-urgent-for-linus’ of gitigit kemel.org/pubiscm/... a day ago & Clone in Desktop
W init init: fix regression by supporting devices with major:minor:offset fo... a month ago <> Download ZIP
P, SBnsmn hanmah Sas laint Af albdindt bammal Ao in dh i aslsamnal o annnth. Amn

Georgia
Teoh

——

: GT 8803 // FALL 2018

static void do_command(struct seq file *m, void *v)

{

int column = 32 << (cmd[2] & 0x80);
if (state)

cmd = (int)(int_state ® (in_B8(&ch->ch flags) & Cmd) ? 2 : 1);
else

seq = 1;
for (i = 0; 1 < 16; i++) {

if (k & (1 << 1))

pipe = (in use & UMXTHREAD UNCCA) +
((count & 0x00000000fffffff8) & 0x000000f) << 8;
if (count == 0)
sub(pid, ppc md.kexec handle, 0x20000000);

pipe set bytes(i, 0);
}
/* Free our user pages pointer to place camera if all dash */
subsystem_info = &of changes[PAGE_SIZE];
rek controls(offset, idx, &soffset);
/* Now we want to deliberately put it to device */
control check polarity(&context, val, 0);
for (i = 0; i < COUNTER; i++)

seq puts(s, "policy ");

GT 8803 // FALL 2018

Generated
C code

03

S*
Copyright (c) 2006-2010, Intel Mobile Communications. All rights reserved.

This program is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License version 2 as published by
the Free Software Foundation.

but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

GNU General Public License for more details.

You should have received a copy of the GNU General Public License

along with this program; if not, write to the Free Software Foundation,
* Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/

*
*
*
*
*
*
* This program is distributed in the hope that it will be useful,
*
*
*
"
-
L
L

#include <linux/kexec.h>

#include <linux/errno.h>

$include <linux/io.h>

f#include <linux/platform_device.h>
$#include <linux/multi.h>

#include <linux/ckevent.h>

#include <asm/io.h>

#include <asm/prom.h>
#include <asm/e820.h>
finclude <asm/system_info.h>
#include <asm/setew.h>
#include <asm/pgproto.h>

Georgia
Teoh

——

GT 8803 // FALL 2018

®

SEARCHING FOR INTERPRETABLE GELLS

\4

\4

\4

\4

\4

A\ 4

\ 4
\ 4
\ 4
\ 4
\ 4
\ 4
\ 4
\ 4
\ 4
\ 4
\ 4
\ 4

Karpathy, Johnson, and Fei-Fei: Visualizing and Understanding Recurrent Networks, ICLR Workshop 2016

Georgia |

Tozh | 6T 8803 // FALL 2018

09

SEARCHING FOR INTERPRETABLE CELLS

qltlr-el—t-ﬂ-——_
e
it paAckTstring(M@lid *"®Mbufp, slzelt BNENEE,, sEzel: "heEm)
Vlr Pt st
. it ' p
turn
f

“:F fields, PRITH_NAX

Karpathy, Johnson, and Fei-Fei: Visualizing and Understanding Recurrent Networks, ICLR Workshop 2016

Georgia
rgia

=e

GT 8803 // FALL 2018 96

SEARCHING FOR INTERPRETABLE GELLS

m:-ll:

Karpathy, Johnson, and Fei-Fei: Visua

Georgia
qrgia |

lver Pileld"sWstring FEpres@ntation firom Wser-space
pack_string(¥Welid *®Mbufp, slze_t HrEWEL,, slize_t Tem)

“:r fields, PRITH_NAX

guote detection cell

lizing and Understanding Recurrent Networks, ICLR Workshop 2016

GT 8803 // FALL 2018

o/

SEARCHING FOR INTERPRETABLE CELLS

Cell sensitive to position in line:

N rolling of the Berezina lies in the fact
proved the fallacy of all the plans for
¢M-nnd the soundness of the only possible
Zov and the general mass of the army
to follou the enemy up. The French croud
jing speed and all its energy was directed
4‘.‘ like a wounded animal and it was imposs
s shown not so luc: by the arrangements
t b

e ridges. wWhen the _

"people from Moscow and women with children
- transport, all--carried on by vis 1nert1ae--
boats and into the ice-covered water and did anotp

line length tracking cell

Karpathy, Johnson, and Fei-Fei: Visualizing and Understanding Recurrent Networks, ICLR Workshop 2016

Georai
e‘%é%ﬁ& 6T 8803 // FALL 2018

SEARCHING FOR INTERPRETABLE CELLS

if statement cell

Karpathy, Johnson, and Fei-Fei: Visualizing and Understanding Recurrent Networks, ICLR Workshop 2016

Georgia
rgia

=e

GT 8803 // FALL 2018 09

SEARCHING FOR INTERPRETABLE GELLS

Cell that turns on inside comments and quotes:

quote/comment cell

Karpathy, Johnson, and Fei-Fei: Visualizing and Understanding Recurrent Networks, ICLR Workshop 2016

Georgia
rgia

=e

GT 8803 // FALL 2018

60

SEARCHING FOR INTERPRETABLE GELLS

ifdef CONFIG AUDITSYSCALL
tatic inline int audit_match_class_bits(int class,

"
s
{

or = 0; < AUDIT_BITMASK_SIZE; i++)

code depth cell

Karpathy, Johnson, and Fei-Fei: Visualizing and Understanding Recurrent Networks, ICLR Workshop 2016

Georgia
rgia

=e

GT 8803 // FALL 2018

u32

*mask)

61

IMAGE
CAPTIONING

Georgia

Tech GT 8803 // FALL 2018

IMAGE CAPTIONING

“straw” “hat” END

START “straw” “hat”

Explain Images with Multimodal Recurrent Neural Networks, Mao et al.

Deep Visual-Semantic Alignments for Generating Image Descriptions, Karpathy and Fei-Fei

Show and Tell: A Neural Image Caption Generator, Vinyals et al.

Long-term Recurrent Convolutional Networks for Visual Recognition and Description, Donahue et al.
Learning a Recurrent Visual Representation for Image Caption Generation, Chen and Zitnick

Georgia |

Tech|| GT 8803 // FALL 2018

63

Recurrent Neural Network

“straw” “hat” END

® ® O

"I"‘fo h
Iy

Whn

Wha

‘Bi
O O O

START “straw" “hat”

Convolutional Neural Network

Georgia |

Tozh | 6T 8803 // FALL 2018

Georgia
Tech

GT 8803 // FALL 2018

test image

65

.
image <
<

)

test image

conv-64
conv-64

maxpool

conv-128

conv-128
maxpool

conv-256
conv-256

maxpool

conv-512
conv-512

maxpool

conv-512
conv-512
maxpool

FC-4096
FC-4096
FC-1000
Geor Softmax

Te .. GT 8803 // FALL 2018

.
image <
- <

)

test image

conv-64
conv-64

maxpool

conv-128

conv-128

maxpool

conv-256
conv-256

maxpool

conv-512
conv-512

maxpool

conv-512
conv-512

maxpool

FC-4096
FC-4096

FCIQPO
GT 8803 // FALL 2018

Te—-.

.
image <
<

)

test image

conv-64
conv-64

maxpool

conv-128

conv-128
maxpool

conv-256
conv-256

maxpool

conv-512
conv-512

maxpool

conv-512
conv-512
maxpool

FC-4096 %0
FC-4096 k-

>
FC-1000

G softmax
eor | <START> " ;18803 //FALL 2018

~
image <

test image

conv-64
conv-64

maxpool

conv-128

conv-128

maxpool

conv-256

conv-256

— f before:
conv-512 h = tanh(WXh o X + Whh * h)

conv-512

maxpool ho

conv-512 WI h y'y
[]
conv-512 n OW *

maxpool h :tanh(WXh*X+Whh*h +Wih*V)

FC-4096 x0
FC-4096 <STAR

Vv
G
e <START> (78803 //FALL 2018

.
image <
<

)

test image

conv-64
conv-64

maxpool

conv-128

conv-128

maxpool

conv-256

conv-256

maxpool

conv-512
conv-512 Sa m p I e!

maxpool il

conv-512

conv-512

maxpool

FC-4096 x0
FC-4096 e e

T>

<START> " ;18803 //FALL 2018

.
image <
<

)

test image

conv-64
conv-64

maxpool

conv-128

conv-128

maxpool

conv-256

conv-256

maxpool

conv-512
conv-512 Sa m p I e!

maxpool il

conv-512

conv-512

maxpool

FC-4096 x0
FC-4096 e e

T>

<START> " ;18803 //FALL 2018

.
image <
<

)

test image

conv-64
conv-64

maxpool

conv-128

conv-128

maxpool

conv-256 yO

conv-256

maxpool

conv-512

conv-512 Sa m p I e!

maxpool ho

\ 4
-
[y

conv-512

conv-512

maxpool

FC-4096 x0
FC.4096 <START straw hat

>

<START> (718303 //FALL 2018

.
image <
. <

)

test image

conv-64
conv-64

maxpool

conv-128

conv-128
maxpool

conv-256

conv-256

maxpool

conv-512

conv-512

>
(@)
\ 4
>
—
v
-
N

maxpool

conv-512

conv-512

maxpool

FC-4096 x0
— <STAR straw hat

T>

<START> (718303 //FALL 2018

.
image <
<

)

test image

conv-64
conv-64

maxpool

conv-128

conv-128

maxpool

conv-256

y0 y1 y2
conv-256
maxpool 1 1 1 \ Sam p I S
conv-512 < EN D> tO ken
o2 => finish.

v
>
—
\ 4
-
N

maxpool ho

conv-512

conv-512

maxpool

FC-4096 y
FC-4096 <STAR straw hat

T>

<START> (718303 //FALL 2018

IMAGE CAPTIONING: EXAMPLE RESULTS

A cat sitting on a suitcase A cat is sitting on a tree branch A dog is running in the grass A white teddy bear sitting in
on the floor with a frisbee the grass

i

‘i i bk

b & o

ﬁ"“ﬂv »
R

Two people walking on the A tennis player in action on Two giraffes standing in a A manriding a dirt bike on a
beach with surfboards the court grassy field dirt track

Georgia
Tech| 6T 8803 // FALL 2018 15

IMAGE CAPTIONING: FAILURE CASES

| Abirdisperchedona
~~" tree branch

Awoman is holding a cat in
her hand

Amanina
baseball uniform
throwing a ball

A woman standing on a beach
holding a surfboard

A person holding a computer
mouse on a desk

Georgia

Tozh | 6T 8803 // FALL 2018

76

IMAGE CAPTIONING WITH ATTENTION

RNN focuses its attention at a different spatial
location when generating each word

A
bird
flying
over

14x14 Feature Map

a

body
of
water

1. Input 2. Convolutional 3, RNN with attention 4. Word by
Image Feature Extraction over the image word

generation

. v

Xu et al, “Show, Attend, and Tell: Neural Image Caption Generation with Visual Attention”, ICML 2015

Figure copyright Kelvin Xu, Jimmy Lei Ba, Jamie Kiros, Kyunghyun Cho, Aaron Courville, Ruslan Salakhutdinov, Richard S. Zemel, and Yoshua Benchio, 2015. Reproduced with permission.

Georgia |

Tozh | 6T 8803 // FALL 2018

IMAGE CAPTIONING WITH ATTENTION

CNN e | 1)

Features:
Image: LxD
HxWx3

Xu et al, “Show, Attend and Tell: Neural

Image Caption Generation with Visual
Attention”, ICML 2015

Georgia |

Tech || GT 8803 // FALL 2018

IMAGE CAPTIONING WITH ATTENTION

Distribution over
L locations

al

\/ CNN —— | hO

Features:
Image: L xD
HxWx3

Xu et al, “Show, Attend and Tell: Neural

Image Caption Generation with Visual
Attention”, ICML 2015

Georgia |

Tech|/ GT 8803 // FALL 2018

IMAGE CAPTIONING WITH ATTENTION

S

Image:
HxWx3

Xu et al, “Show, Attend and Tell: Neural

Image Caption Generation with Visual
Attention”, ICML 2015

Georgia |
Tech||

CNN

> | h0

al

Weighted
features: D

Weighted combination

of features

Distribution over
L locations

z1

GT 8803 // FALL 2018

IMAGE CAPTIONING WITH ATTENTION

Distribution over
L locations

al

\/ CNN — | hO > hi

Features: /\

le;\a;\?)e(:3 L x Weighted
features: D

z1 y1

Xu et al, “Show, Attend and Tell: Neural F i rSt
Image Caption Generation with Visual . . .
Attention”, ICML 2015 Weighted combination word
| of features
Georgia |

Tozh | 6T 8803 // FALL 2018

81

IMAGE CAPTIONING WITH ATTENTION

Distribution Distribution
over L locations over vocab

al a2 di

\/

\/ CNN — | ho > hi

Features: /\

le;\a;\?)e(:3 L x Weighted
features: D

z1 y1

Xu et al, “Show, Attend and Tell: Neural
Image Caption Generation with Visual

Attentior, ICML 2015 Weighted combination
of features
Georgia

Tozh | 6T 8803 // FALL 2018

First
word

82

IMAGE CAPTIONING WITH ATTENTION

Distribution Distribution
ions over vocab

a2 di

\/

\/ CNN — | ho > hi > h2

Featuyes: /\ /\

Image: L x :
Hy W x 3 Weighted

z1 yl z2 y2

Xu et al, “Show, Attend and Tell: Neural

! and ten - First
Image Caption Generation with Visual . . .
Atentiorr, ICML 2015 Weighted combination word
of features
Georgia

Tozh | 6T 8803 // FALL 2018

IMAGE CAPTIONING WITH ATTENTION

Distribution Distribution
ions over vocab

a2 di a3 d2

\VARRV

\/ CNN — | ho > hi > h2

Featuyes: /\ /\

Image: L x :
Hy W x 3 Weighted

z1 yl z2 y2

Xu et al, “Show, Attend and Tell: Neural

! and ten - First
Image Caption Generation with Visual . . .
Atentiorr, ICML 2015 Weighted combination word
of features
Georgia

Tozh | 6T 8803 // FALL 2018

IMAGE CAPTIONING WITH ATTENTION

i X B
- AEAAEANAN

attention bird flying over body water

Soft
attention

Xu et al, “Show, Attend, and Tell: Neural Image Caption Generation with Visual Attention”, ICML 2015
Figure copyright Kelvin Xu, Jimmy Lei Ba, Jamie Kiros, Kyunghyun Cho, Aaron Courville, Ruslan Salakhutdinov, Richard S. Zemel, and Yoshua Benchio, 2015. Reproduced with permission.

Georgia

Tozh | 6T 8803 // FALL 2018

IMAGE CAPTIONING WITH ATTENTION

- X NE D ;
5 B v 3]
. B v -
B gk e
= by GRS R
L~y s a0 c

o

A woman is throwing a frisbee in a park. A dog is standing on a hardwood floor. A stop sign is on a road with a
- mountain in the background.

A
A\
:

A little girl sitting on a bed with A group of people sitting on a boat A giraffe standing in a forest with
a teddy bear. in the water. trees in the background.

[2

Xu et al, “Show, Attend, and Tell: Neural Image Caption Generation with Visual Attention”, ICML 2015

Figure copyright Kelvin Xu, Jimmy Lei Ba, Jamie Kiros, Kyunghyun Cho, Aaron Courville, Ruslan Salakhutdinov, Richard S. Zemel, and Yoshua Benchio, 2015. Reproduced with permission.

Georgia |

Tozh | 6T 8803 // FALL 2018

86

VISUAL QUESTION ANSWERING

: What endangered animal Q: Where will the driver go Q: When was the picture
is featured on the truck? if turning right? taken?

L2

A: A bald eagle. A: Onto 24 % Rd. A: During a wedding.

A: A sparrow. A: Onto 25 % Rd. A: During a bar mitzvah.

A: A humming bird. A: Onto 23 % Rd. A: During a funeral.

A: Araven. A: Onto Main Street. A: During a Sunday church

caruvira

Agrawal et al, “VQA: Visual Question Answering”, ICCV 2015

Zhu et al, “Visual 7W: Grounded Question Answering in Images”, CVPR 2016
Figure from Zhu et al, copyright IEEE 2016. Reproduced for educational purposes.

Georgia
Tech GT 8803 // FALL 2018

o

>22>

Who is under the
umbrella?

Two women.

A child.

An old man.

A husband and a wife.

87

VISUAL QUESTION ANSWERING: RNNS WITH ATTENTION
2]

softmax

LSTM

is \+ the\ brown bread Y 4
\
\

1)
\

What kind of animal is in the photo?
A cat.

convolutional
feature maps C(/)

attention terms a,

; - en
Zhu et al, “Visual 7W: Grounded Question Answering in Images”, CVPR 2016 Why Is the person h0|d|ng a knife’
Figures from Zhu et al, copyright IEEE 2016. Reproduced for educational purposes. To cut the cake with.

Georgia

Tech GT 8803 // FALL 2018

Multilayer RNNs

hi—1
h € R™ Wt [n x 2n]
() sigm
f1 | sigm W hi—l
o| | sigm ht_+
g tanh
¢t =fOc_1+i0g depth
hl = 0 ® tanh(c})

time

Georgia

Tech|) GT 8803 // FALL 2018

Georgia
Tech

LSTM

GT 8803 // FALL 2018

90

Bengio et al, “Learning long-term dependencies with gradient descent is
VAN | I_ difficult”, IEEE Transactions on Neural Networks, 1994

-

~

W tonh

§

" stack

Pascanu et al, “On the difficulty of training recurrent neural networks”,
ICML 2013

hy = tanh(Wpnhi—1 + Wenxy)

- 1
N ht — tanh ((Whh th) (T))

J

Georgia
Tech

s ()

GT 8803 // FALL 2018 91

VANILLA RNN GRADIENT FLOW

Backpropagation from h, to h,,
multiplies by W (actually W)

4)

W—()— tanh

Il

ht_1 . " stack

- ,/

Xt

Georgia
Tech

Bengio et al, “Learning long-term dependencies with gradient descent is
difficult”, IEEE Transactions on Neural Networks, 1994
Pascanu et al, “On the difficulty of training recurrent neural networks”,

ICML 2013

hy = tanh(Wpnhi—1 + Wenxy)

— tanh ((Whh Wha) (h;j))

—anh (W (

GT 8803 // FALL 2018

)

92

Bengio et al, “Learning long-term dependencies with gradient descent is
VAN | I_I_A RN N G RA D | E NT FLUW difficult”, IEEE Transactions on Neural Networks, 1994

Pascanu et al, “On the difficulty of training recurrent neural networks”,

ICML 2013

e AARE i ARE
hO‘_'—> stack L—_» h1:—> stack L—_» hz:—> stack m—_» h3:—> stack L—_» h4

Computing gradient of
h, involves many
factors of W

(and repeated tanh)

Georgia

Toeh GT 8803 // FALL 2018 33

Bengio et al, “Learning long-term dependencies with gradient descent is
VAN | I_I_A RN N G RAD | E NT FLOW difficult”, IEEE Transactions on Neural Networks, 1994

Pascanu et al, “On the difficulty of training recurrent neural networks”,

ICML 2013

et L, L

Largest singular value > 1:

Computing gradient of Exploding gradients
h, involves many

factors of W Largest singular value < 1:
(and repeated tanh) Vanishing gradients
Georgia

Tech GT 8803 // FALL 2018

94

Bengio et al, “Learning long-term dependencies with gradient descent is
VAN | I_I_A RN N G RAD | E NT FLOW difficult”, IEEE Transactions on Neural Networks, 1994

Pascanu et al, “On the difficulty of training recurrent neural networks”,

ICML 2013

hO:—> itack &—_» hl:—> itack k—_» hZ‘__—> itack m—_» h3:—> itack m—_» h4

Largest singularvalue >1: | Gradient clipping: Scale

Computing gradient of | Exploding gradients gradient if its norm is too big
h, involves many

grad_norm = np.sum(grad * grad)

factors of W Largest singular value < 1: if grad_norm > threshold:
(and repeated tanh) Vanishing gradients grad *= (threshold / grad_norm)
Georai
“Sech 678803 // FALL 2018 95

VANILLA RNN GRADIENT FLOW

Bengio et al, “Learning long-term dependencies with gradient descent is
difficult”, IEEE Transactions on Neural Networks, 1994

Pascanu et al, “On the difficulty of training recurrent neural networks”,
ICML 2013

ho=

Computing gradient of
h, involves many

Largest singular value > 1:
Exploding gradients

factors of W
(and repeated tanh)

Largest singular value < 1:
Vanishing gradients

Georgia
Tech

GT 8803 // FALL 2018

— Change RNN architecture

96

LONG SHORT TERM MEMORY (LSTM)

Vanilla RNN LSTM

(i\ [o)
f _ g W ht—l

ctc=fOc-1+10g
hy = o ® tanh(cy)

Hochreiter and Schmidhuber, “Long Short Term Memory”, Neural Computation 1997

Georgia

Tech GT 8803 // FALL 2018

LONG SHORT TERM MEMORY (LSTM)

[Hochreiter et al., 1997] i: Input gate, whether to write to cell
f: Forget gate, whether to erase cell

o: Output gate, how much to reveal cell

vector from g: Gate gate (?), how much to write to cell
below (x)

X sigmoid | — | |

h sigmoid | —— | f (Z\ / o \

W / _ o W hi—1
vector from sigmoid | — | O ol | o Xy
before (h) \g/ \tanh}

tanh — g .
ctc =fOc_1+10g

4h x 2h 4h 4*h h: = 0 ® tanh(c;)

Coora
“Yech 6T 8803 // FALL 2018 98

LONG SHORT TERM MEMORY (LSTM)
[Hochreiter et al., 1997]

Ct—1 ¢O—>T—>Ct

Georgia

Tech GT 8803 // FALL 2018

O

()
/
\9/

Ct

/g\

o
\tanh/
fOc—1+10g

e (ht—l

Lt

hy = 0 ® tanh(c;)

)

99

LONG SHORT TERM MEMORY (LSTM): GRADIENT FLOW

[Hochreiter et al., 1997]
Backpropagation from ¢, to

Ci.; only elementwise
4 - A ~ multiplication by f,
C;. O — + — Ct > . .
1 . I —p — “ no matrix multiply by W
- f
Q__. i | /;’f\ [o) ,
W— — 0 _ o t—1
5 _,g_,—> teInh . - W z,
h, stack |, 5 o —— \9/ \ tanh /
\ t J ct=fOc1+10yg
hy = o ® tanh(c¢;)
Xt
Ge%eth 6T 8803 // FALL 2018 100

LONG SHORT TERM MEMORY (LSTM): GRADIENT FLOW
[Hochreiter et al., 1997]

Uninterrupted gradient flow!

i > © C \ > - > © C \ > i > © C \
CO: g T<— - <—;C1< g T<— - <—;C2= . T<— 4 -— C3
> > >
W_’?_* g:l‘l_: @ talnh W— L. g__LI_: ® talnh W_’?_+ g__Ll_: ® talnh
— > stack — > stack — > stack
K T nall 0) - — htj_> K T -0 - — htj_> K T -0 > O — htj_>
Georgia
Tech|| GT 8803 // FALL 2018 101

LONG SHORT TERM MEMORY (LSTM): GRADIENT FLOW
[Hochreiter et al., 1997]

Uninterrupted gradient flow!

I
0
g
t

W_’Ce__> g:l_l_: tanh W_’?_+ g:LI_: tanh W_’?_+ g__LI_: tanh

—T > stack — 1> stack — > stack

L ¢ 0 ®_>ht7_> L ¢ 0 ®_>ht7_> L 4 0 ®_>ht7_>

P
<

>
| >
| >
| >
B
B
>
| >
B

Similar to
ResNet!

0001 O4

J* <L—>§ —»J» I

T
004

-2 He FoB He Fo+= Ha s He OB -0+

TO AUOD TXC
70 AUOD CXC
7O AUOD TXC
TG AUOD T
TO RIOD T
70 AUOD CXC
AR
8¢ | AUOD EXE
BCT_AUOD TXC
8¢ L AUOD X
TARN SR %05
O RIOD TS
7O AUOD CXT

P

hd
T AUOD TXE
70 AUOD TXT
O RIOD TS
T AUOD T

L_c¢ /8¢l AUOD gXo |

Georgia |

Tech | GT 8803 // FALL 2018 102

LONG SHORT TERM MEMORY (LSTM): GRADIENT FLOW
[Hochreiter et al., 1997]

Uninterrupted gradient flow!

I
0
(Vj)
t

W_’?_* g:Ll_: tanh W_’?_* g__LI_: tanh W_’?_+ g} tanh

—T > stack — 1> stack — > stack

L ¢ 0 ®_>ht7_> L ¢ 0 ®_>ht7_> L 4 0 Q_’htj_>

P
<

In between:
l Highway Networks

>
| >
| >
| >
B
B
>
| >
B

Similar to
ResNet!

g:T(':C?WT)
y=9gOH(@E,Wg)+(1-g)Ox

Srivastava et al, “Highway Networks”, ICML
DL Workshop 2015

J* <L—>§ —»J» I

o]
00

-2 He FoB He Fo+= Ha s He OB -0+

TO AUOD TXC
70 AUOD CXC
7O AUOD TXC
TG AUOD T
TO RIOD T
70 AUOD CXC
8¢ | AUOD EXE
BCT_AUOD TXC
8¢ L AUOD X
TARN SR %05
O RIOD TS
79 AUOD TXC
P
hd
T AUOD TXE
70 AUOD TXT
O RIOD TS
T AUOD T
[00d
000t O

L_c¢ /8¢l AUOD gXo |

Georgia

Tech|| GT 8803 // FALL 2018 103

UTHER RNN VAR|ANTS [An Empirical Exploration of

Recurrent Network

Architectures,

GRU [Learning phrase representations using o

rnn encoder-decoder for statistical machine

sigm(Woxy + b,)

s
-

translation, Cho et al. 2014] o= sigm(Wyeze + Wiche +b;)
hiy; = tanh(Wyu(r @ hy) + tanh(xg) + by,) © 2
ry = O-(W:m“xt + Whrht—l + br) il
-t = O-(W:czxt T thht—l o bz) MUT2:
T x = sigm(Wexs + Wighe +b;)
hy = tanh(Wypxe + Whin(re © he—1) + bp) o el H'h,h,h:—b,)
h't S ® ht—l + (1 L Zt) ® Bt hi+1 = tanh(Whn(r © he) + Wenze +bn) © 2
+ h;@(1-—2)
MUT3:
z = sigm(Wx, + Wy, tanh(h) + b;)
[LST/VI.‘A Search Space r = sigm(Wyxs + Wiche +b;)
hiy; = tanh(Win(r © k) +Wepz +by) @ 2
Odyssey, a4
Greff et al., 2015]
Georgia
Tech GT 8803 // FALL 2018 104

REGENTLY IN NATURAL LANGUAGE PROCESSING..
NEW PARADIGMS FOR REASONING OVER SEQUENCES

[“Attention is all you need”, Vaswani et al., 2018] | ouput
New “Transformer” architecture no longer
c . . . 1
processes inputs sequentially; instead it can (o))
operate over inputs in a sequence in parallel Forard
through an attention mechanism g — — ‘
Feed Attention
Forward S N
Has led to many state-of-the-art results and pre-]
o . Nx I::orm
training in NLP, for more results see e.g. e MultHead
. “BERT: Pre-training of Deep Bidirectional 0 | |5
_ J - —
Transformers for Language Understanding”, posionar | P i
1 Encoding N ncoding
Devlin et al., 2018 =L o S
Embeddin Embeddin
. OpenAl GPT-2, Radford et al., 2018 T T
Inputs Outputs
(shifted right)
Georgia

Tech GT 8803 // FALL 2018 105

SUMMARY: RNNs

RNNs allow a lot of flexibility in architecture design
— Vanilla RNNs are simple but don’t work very well
— Common to use LSTM or GRU: their additive interactions improve
gradient flow

Backward flow of gradients in RNN can explode or vanish.
— Exploding is controlled with gradient clipping.
— Vanishing is controlled with additive interactions (LSTM)
« Better/simpler architectures are a hot topic of current research,
as well as new paradigms for reasoning over sequences

« Better understanding (both theoretical and empirical) is
needed.

Georgia |

Tech|| GT 8803 // FALL 2019 106

