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a d m i n i s t r i v i a

• Reminders
– Signup for a weekly project discussion slot

– Project progress updates due on next Monday

– Assignment 2 due on next Wednesday
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GoogLeNet
AlexNet

Last Time: CNN Architectures
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Last Time: CNN Architectures

ResNet

SENet
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An Analysis of Deep Neural Network Models for Practical Applications, 2017.

Last Time: COMPARING COMPLEXITY
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E f f i c i e n t  n e t w o r k s . . .

[Howard et al. 2017]

• Depthwise separable convolutions replace 

standard convolutions by factorizing them into a 
depthwise convolution and a 1x1 convolution 

that is much more efficient

• Much more efficient, with little loss in accuracy

• Follow-up MobileNetV2 work in 2018 (Sandler et 

al.)
• Other works in this space e.g. ShuffleNet (Zhang 

et al. 2017)

M o b i l e N e t s :  E f f i c i e n t  C o n v o l u t i o n a l  N e u r a l  N e t w o r k s  f o r  

M o b i l e  A p p l i c a t i o n s
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M e t a - l e a r n i n g :  L e a r n i n g  t o  l e a r n  n e t w o r k  a r c h i t e c t u r e s . . .

[Zoph et al. 2016]

N e u r a l  A r c h i t e c t u r e  S e a r c h  

w i t h  R e i n f o r c e m e n t  L e a r n i n g  ( N A S )

• “Controller” network that learns to design a good 

network architecture (output a string corresponding 

to network design)

• Iterate:

o Sample an architecture from search space

o Train the architecture to get a “reward” R 

corresponding to accuracy

o Compute gradient of sample probability, and 

scale by R to perform controller parameter 

update (i.e. increase likelihood of good 

architecture being sampled, decrease likelihood 

of bad architecture) 
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M e t a - l e a r n i n g :  L e a r n i n g  t o  l e a r n  n e t w o r k  a r c h i t e c t u r e s . . .

- Applying neural architecture search (NAS) to a 

large dataset like ImageNet is expensive

- Design a search space of building blocks 

(“cells”) that can be flexibly stacked

- NASNet: Use NAS to find best cell structure on 

smaller CIFAR-10 dataset, then transfer 

architecture to ImageNet

- Many follow-up works in this 

space e.g. AmoebaNet (Real et al. 

2019) and ENAS (Pham, Guan et 

al. 2018)

[Zoph et al. 2017]

L e a r n i n g  T r a n s f e r a b l e  A r c h i t e c t u r e s  

f o r  S c a l a b l e  I m a g e  R e c o g n i t i o n
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T O D A Y ’ s  A G E N D A

• Recurrent Neural Networks

• Case Studies
– Language Modeling

– Image Captioning

• Gradient Flow

• Long Short Term Memory (LSTM)
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RNN

10
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“Vanilla” Neural Network

Vanilla Neural Networks
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Recurrent Neural Networks: Process Sequences

e.g. Image Captioning

image -> sequence of words
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Recurrent Neural Networks: Process Sequences

e.g. Sentiment Classification

sequence of words -> sentiment



GT 8803 // Fall 2018 14

Recurrent Neural Networks: Process Sequences

e.g. Machine Translation

seq of words -> seq of words
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Recurrent Neural Networks: Process Sequences

e.g. Video classification on frame level
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Sequential Processing of Non-Sequence Data

Ba, Mnih, and Kavukcuoglu, “Multiple Object Recognition with Visual Attention”, ICLR 2015.

Gregor et al, “DRAW: A Recurrent Neural Network For Image Generation”, ICML 2015

Figure copyright Karol Gregor, Ivo Danihelka, Alex Graves, Danilo Jimenez Rezende, and Daan Wierstra, 2015. 

Reproduced with permission.

Classify images by taking a series 

of “glimpses”
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Sequential Processing of Non-Sequence Data

Gregor et al, “DRAW: A Recurrent Neural Network For Image Generation”, ICML 2015

Figure copyright Karol Gregor, Ivo Danihelka, Alex Graves, Danilo Jimenez Rezende, and Daan Wierstra, 2015. Reproduced with permission.

Generate images one piece at a time!
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Recurrent Neural Network

x

RNN

y

Key idea: RNNs have an 

“internal state” that is 
updated as a sequence is 

processed
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Recurrent Neural Network

x

RNN

y

We can process a sequence of vectors x by applying a 

recurrence formula at every time step:

new state old state input vector at 

some time step
some function

with parameters W
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Recurrent Neural Network

x

RNN

y
We can process a sequence of vectors x by applying a 

recurrence formula at every time step:

Notice: the same function and the same set of 

parameters are used at every time step.
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(Simple) Recurrent Neural Network

x

RNN

y

The state consists of a single “hidden” vector h:

Sometimes called a “Vanilla RNN” 

or an “Elman RNN” after Prof. Jeffrey Elman
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h0 fW h1

x1

RNN: Computational Graph
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h0 fW h1

x1

RNN: Computational Graph

fW h2

x2
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h0 fW h1

x1

RNN: Computational Graph

fW h2

x2

fW h3

x3

… hT
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h0 fW h1

x1

RNN: Computational Graph

fW h2

x2

fW h3

x3

… hT

W

Re-use the same weight matrix at every time-step
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h0 fW h1

x1

RNN: Computational Graph: MANY TO MANY

fW h2

x2

fW h3

x3

… hT

W

yTy3y2y1
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h0 fW h1

x1

RNN: Computational Graph: MANY TO MANY

fW h2

x2

fW h3

x3

… hT

W

yTy3y2y1 L1
L2 L3 LT
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h0 fW h1

x1

RNN: Computational Graph: MANY TO MANY

fW h2

x2

fW h3

x3

… hT

W

yTy3y2y1 L1
L2 L3 LT

L
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h0 fW h1

x1

RNN: Computational Graph: MANY TO ONE

fW h2

x2

fW h3

x3

… hT

W

y
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RNN: Computational Graph: ONE TO MANY

h0 fW h1

x

fW h2 fW h3 … hT

W

yTy3y2y1
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Sequence to Sequence: Many-to-one + one-to-many

h
0

f
W

h
1

f
W

h
2

f
W

h
3

x
3

… 

x
2

x
1W

1

h
T

Many to one: Encode input 

sequence in a single vector

Sutskever et al, “Sequence to Sequence Learning with Neural Networks”, NIPS 2014
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Sequence to Sequence: Many-to-one + one-to-many

h
0

f
W

h
1

f
W

h
2

f
W

h
3

x
3

… 

x
2

x
1W

1

h
T

Many to one: Encode input 

sequence in a single vector

Sutskever et al, “Sequence to Sequence Learning with Neural Networks”, NIPS 2014

y
1

y
2

… 

One to many: Produce output 

sequence from single input vector

f
W

h
1

f
W

h
2

f
W

W
2
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LANGUAGE

MODELING

33
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Example: Character-

level

Language Model

Vocabulary:

[h,e,l,o]

Example training

sequence:

“hello”
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Example: Character-

level

Language Model

Vocabulary:

[h,e,l,o]

Example training

sequence:

“hello”
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Example: Character-

level

Language Model

Vocabulary:

[h,e,l,o]

Example training

sequence:

“hello”
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Example: Character-

level

Language Model

Vocabulary:

[h,e,l,o]

At test-time sample 

characters one at a 

time, feed back to 

model

.03

.13

.00

.84

.25

.20

.05

.50

.11

.17

.68

.03

.11

.02

.08

.79
Softmax

“e

”

“l

”
“l

”

“o

”
Sample
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Example: Character-

level

Language Model
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Example: Character-

level

Language Model

Vocabulary:

[h,e,l,o]

At test-time sample 

characters one at a 

time, feed back to 
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Example: Character-

level

Language Model

Vocabulary:

[h,e,l,o]

At test-time sample 

characters one at a 

time, feed back to 

model
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Backpropagation through time (BPTT)

Loss

Forward through entire sequence to 

compute loss, then backward through 

entire sequence to compute gradient
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Truncated Backpropagation through time

Loss

Run forward and backward 

through chunks of the 
sequence instead of whole 

sequence
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Truncated Backpropagation through time

Loss

Carry hidden states 

forward in time forever, 
but only backpropagate 

for some smaller number 

of steps
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Truncated Backpropagation through time

Loss
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min-char-rnn.py gist: 112 lines of Python

(https://gist.github.com/karpathy/d4dee566867f8291f086)
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x

RNN

y
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train more

train more

train more

at first:
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http://stacks.math.columbia.edu/

The stacks project is licensed under the GNU Free Documentation License

Latex source

The Stacks Project: open source algebraic geometry textbook
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Generated 

C code
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Searching for  interpretable cells

Karpathy, Johnson, and Fei-Fei: Visualizing and Understanding Recurrent Networks, ICLR Workshop 2016
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Searching for  interpretable cells

Karpathy, Johnson, and Fei-Fei: Visualizing and Understanding Recurrent Networks, ICLR Workshop 2016
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Searching for  interpretable cells

Karpathy, Johnson, and Fei-Fei: Visualizing and Understanding Recurrent Networks, ICLR Workshop 2016

quote detection cell
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Searching for  interpretable cells

Karpathy, Johnson, and Fei-Fei: Visualizing and Understanding Recurrent Networks, ICLR Workshop 2016

line length tracking cell
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Searching for  interpretable cells

Karpathy, Johnson, and Fei-Fei: Visualizing and Understanding Recurrent Networks, ICLR Workshop 2016

if statement cell
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Searching for  interpretable cells

Karpathy, Johnson, and Fei-Fei: Visualizing and Understanding Recurrent Networks, ICLR Workshop 2016

quote/comment cell
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Searching for  interpretable cells

Karpathy, Johnson, and Fei-Fei: Visualizing and Understanding Recurrent Networks, ICLR Workshop 2016

code depth cell
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IMAGE

CAPTIONING

62
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Explain Images with Multimodal Recurrent Neural Networks, Mao et al.

Deep Visual-Semantic Alignments for Generating Image Descriptions, Karpathy and Fei-Fei

Show and Tell: A Neural Image Caption Generator, Vinyals et al.

Long-term Recurrent Convolutional Networks for Visual Recognition and Description, Donahue et al.

Learning a Recurrent Visual Representation for Image Caption Generation, Chen and Zitnick

Image Captioning
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Convolutional Neural Network

Recurrent Neural Network
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test image
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test image
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test image

X



GT 8803 // Fall 2018 68

test image

x0

<STAR

T>

<START>
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test image

h0

x0

<STAR

T>

y0

<START>

before:

h = tanh(Wxh * x + Whh * h)

now:

h = tanh(Wxh * x + Whh * h + Wih * v)

v

Wih
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h0

x0

<STAR

T>

y0

test image

straw

sample!

<START>
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h0

x0

<STAR

T>

y0

test image

straw

sample!

<START>
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h0

x0

<START

>

y0

<START>

test image

straw

h1

y1

hat

sample!
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test image

h0

x0

<STAR

T>

y0

straw

h1

y1

hat

h2

y2

<START>
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test image

h0

x0

<STAR

T>

y0

straw

h1

y1

hat

h2

y2

<START>

sample

<END> token

=> finish.
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A cat sitting on a suitcase 

on the floor

A cat is sitting on a tree branch A dog is running in the grass 

with a frisbee

A white teddy bear sitting in 

the grass

Two people walking on the 

beach with surfboards

Two giraffes standing in a 

grassy field

A man riding a dirt bike on a 

dirt track

Image Captioning: Example Results

A tennis player in action on 

the court
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Image Captioning: Failure Cases

A woman is holding a cat in 

her hand

A woman standing on a beach 

holding a surfboard

A person holding a computer 

mouse on a desk

A bird is perched on a 

tree branch

A man in a 

baseball uniform 

throwing a ball
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Xu et al, “Show, Attend, and Tell: Neural Image Caption Generation with Visual Attention”, ICML 2015
Figure copyright Kelvin Xu, Jimmy Lei Ba, Jamie Kiros, Kyunghyun Cho, Aaron Courville, Ruslan Salakhutdinov, Richard S. Zemel, and Yoshua Benchio, 2015. Reproduced with permission.

RNN focuses its attention at a different spatial 

location when generating each word

Image Captioning with Attention
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Image Captioning with Attention

CNN

Image: 

H x W x 3

h0

Xu et al, “Show, Attend and Tell: Neural 

Image Caption Generation with Visual 

Attention”, ICML 2015

Features: 

L x D
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Image Captioning with Attention

CNN

Image: 

H x W x 3

Features: 

L x D

h0

Xu et al, “Show, Attend and Tell: Neural 

Image Caption Generation with Visual 

Attention”, ICML 2015

a1

Distribution over 

L locations
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Image Captioning with Attention

CNN

Image: 

H x W x 3

Features: 

L x D

h0

Xu et al, “Show, Attend and Tell: Neural 

Image Caption Generation with Visual 

Attention”, ICML 2015

a1

Distribution over 

L locations

z1Weighted 

features: D

Weighted combination 

of features
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Image Captioning with Attention

CNN

Image: 

H x W x 3

Features: 

L x D

h0

Xu et al, “Show, Attend and Tell: Neural 

Image Caption Generation with Visual 

Attention”, ICML 2015

a1

Distribution over 

L locations

z1Weighted 

features: D

Weighted combination 

of features

h1

y1

First 

word
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Image Captioning with Attention

CNN

Image: 

H x W x 3

Features: 

L x D

h0

Xu et al, “Show, Attend and Tell: Neural 

Image Caption Generation with Visual 

Attention”, ICML 2015

a1

Distribution 

over L locations

z1Weighted 

features: D

Weighted combination 

of features

h1

y1

First 

word

a2 d1

Distribution 

over vocab
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Image Captioning with Attention

CNN

Image: 

H x W x 3

Features: 

L x D

h0

Xu et al, “Show, Attend and Tell: Neural 

Image Caption Generation with Visual 

Attention”, ICML 2015

a1

Distribution 

over L locations

z1Weighted 

features: D

Weighted combination 

of features

h1

y1

First 

word

a2 d1

Distribution 

over vocab

h2

z2 y2
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Image Captioning with Attention

CNN

Image: 

H x W x 3

Features: 

L x D

h0

Xu et al, “Show, Attend and Tell: Neural 

Image Caption Generation with Visual 

Attention”, ICML 2015

a1

Distribution 

over L locations

z1Weighted 

features: D

Weighted combination 

of features

h1

y1

First 

word

a2 d1

Distribution 

over vocab

h2

z2 y2

a3 d2
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Image Captioning with Attention

Soft 

attention

Hard 

attention

Xu et al, “Show, Attend, and Tell: Neural Image Caption Generation with Visual Attention”, ICML 2015
Figure copyright Kelvin Xu, Jimmy Lei Ba, Jamie Kiros, Kyunghyun Cho, Aaron Courville, Ruslan Salakhutdinov, Richard S. Zemel, and Yoshua Benchio, 2015. Reproduced with permission.
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Image Captioning with Attention

Xu et al, “Show, Attend, and Tell: Neural Image Caption Generation with Visual Attention”, ICML 2015
Figure copyright Kelvin Xu, Jimmy Lei Ba, Jamie Kiros, Kyunghyun Cho, Aaron Courville, Ruslan Salakhutdinov, Richard S. Zemel, and Yoshua Benchio, 2015. Reproduced with permission.
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Visual Question Answering

Agrawal et al, “VQA: Visual Question Answering”, ICCV 2015

Zhu et al, “Visual 7W: Grounded Question Answering in Images”, CVPR 2016
Figure from Zhu et al, copyright IEEE 2016. Reproduced for educational purposes.
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Zhu et al, “Visual 7W: Grounded Question Answering in Images”, CVPR 2016
Figures from Zhu et al, copyright IEEE 2016. Reproduced for educational purposes.

Visual Question Answering: RNNs with Attention
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time

depth

Multilayer RNNs

LSTM:
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LSTM

90
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ht-1

xt

W

stack

tanh

ht

Vanilla RNN Gradient Flow
Bengio et al, “Learning long-term dependencies with gradient descent is 

difficult”, IEEE Transactions on Neural Networks, 1994

Pascanu et al, “On the difficulty of training recurrent neural networks”, 
ICML 2013
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ht-1

xt

W

stack

tanh

ht

Vanilla RNN Gradient Flow
Bengio et al, “Learning long-term dependencies with gradient descent is 

difficult”, IEEE Transactions on Neural Networks, 1994

Pascanu et al, “On the difficulty of training recurrent neural networks”, 
ICML 2013

Backpropagation from ht to ht-1

multiplies by W (actually Whh
T)



GT 8803 // Fall 2018 93

Vanilla RNN Gradient Flow
Bengio et al, “Learning long-term dependencies with gradient descent is 

difficult”, IEEE Transactions on Neural Networks, 1994

Pascanu et al, “On the difficulty of training recurrent neural networks”, 
ICML 2013

h0 h1 h2 h3 h4

x1 x2 x3 x4

Computing gradient of 

h0 involves many 
factors of W

(and repeated tanh)
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Vanilla RNN Gradient Flow
Bengio et al, “Learning long-term dependencies with gradient descent is 

difficult”, IEEE Transactions on Neural Networks, 1994

Pascanu et al, “On the difficulty of training recurrent neural networks”, 
ICML 2013

h0 h1 h2 h3 h4

x1 x2 x3 x4

Computing gradient of 

h0 involves many 
factors of W

(and repeated tanh)

Largest singular value > 1: 

Exploding gradients

Largest singular value < 1:

Vanishing gradients



GT 8803 // Fall 2018 95

Vanilla RNN Gradient Flow
Bengio et al, “Learning long-term dependencies with gradient descent is 

difficult”, IEEE Transactions on Neural Networks, 1994

Pascanu et al, “On the difficulty of training recurrent neural networks”, 
ICML 2013

h0 h1 h2 h3 h4

x1 x2 x3 x4

Computing gradient of 

h0 involves many 
factors of W

(and repeated tanh)

Largest singular value > 1: 

Exploding gradients

Largest singular value < 1:

Vanishing gradients

Gradient clipping: Scale 

gradient if its norm is too big



GT 8803 // Fall 2018 96

Vanilla RNN Gradient Flow
Bengio et al, “Learning long-term dependencies with gradient descent is 

difficult”, IEEE Transactions on Neural Networks, 1994

Pascanu et al, “On the difficulty of training recurrent neural networks”, 
ICML 2013

h0 h1 h2 h3 h4

x1 x2 x3 x4

Computing gradient of 

h0 involves many 
factors of W

(and repeated tanh)

Largest singular value > 1: 

Exploding gradients

Largest singular value < 1:

Vanishing gradients
Change RNN architecture
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Long Short Term Memory (LSTM)

Hochreiter and Schmidhuber, “Long Short Term Memory”, Neural Computation 1997

Vanilla RNN LSTM
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Long Short Term Memory (LSTM)

[Hochreiter et al., 1997]

x

h

vector from 

before (h)

W

i

f

o

g

vector from 

below (x)

sigmoid

sigmoid

tanh

sigmoid

4h x 2h 4h 4*h

i: Input gate, whether to write to cell

f: Forget gate, whether to erase cell

o: Output gate, how much to reveal cell

g: Gate gate (?), how much to write to cell
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Long Short Term Memory (LSTM)

[Hochreiter et al., 1997]

☉ct-1

ht-1

xt

f

i

g

o

W ☉

+ ct

tanh

☉ ht
stack
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Long Short Term Memory (LSTM): GRADIENT FLOW

[Hochreiter et al., 1997]

☉ct-1

ht-1

xt

f

i

g

o

W ☉

+ ct

☉ ht

Backpropagation from ct to 

ct-1 only elementwise 
multiplication by f, 

no matrix multiply by W

stack

tanh
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Long Short Term Memory (LSTM): GRADIENT FLOW

[Hochreiter et al., 1997]

c0 c1 c2 c3

Uninterrupted gradient flow!
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Long Short Term Memory (LSTM): GRADIENT FLOW

[Hochreiter et al., 1997]

c0 c1 c2 c3

Uninterrupted gradient flow!
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Similar to 

ResNet!
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Long Short Term Memory (LSTM): GRADIENT FLOW

[Hochreiter et al., 1997]
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In between:

Highway Networks

Srivastava et al, “Highway Networks”, ICML 

DL Workshop 2015
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Other RNN Variants

[LSTM: A Search Space 

Odyssey, 
Greff et al., 2015]

[An Empirical Exploration of 

Recurrent Network 
Architectures,

Jozefowicz et al., 2015]
GRU [Learning phrase representations using 

rnn encoder-decoder for statistical machine 
translation, Cho et al. 2014]



GT 8803 // Fall 2018 105

Recently in Natural Language Processing… 

New paradigms for reasoning over sequences
[“Attention is all you need”, Vaswani et al., 2018]

• New “Transformer” architecture no longer 

processes inputs sequentially; instead it can 

operate over inputs in a sequence in parallel 

through an attention mechanism

• Has led to many state-of-the-art results and pre-

training in NLP, for more results see e.g.

• “BERT: Pre-training of Deep Bidirectional 

Transformers for Language Understanding”, 

Devlin et al., 2018

• OpenAI GPT-2, Radford et al., 2018
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s U M M A R Y :  R N N s

• RNNs allow a lot of flexibility in architecture design
– Vanilla RNNs are simple but don’t work very well

– Common to use LSTM or GRU: their additive interactions improve 

gradient flow

• Backward flow of gradients in RNN can explode or vanish. 
– Exploding is controlled with gradient clipping. 

– Vanishing is controlled with additive interactions (LSTM)

• Better/simpler architectures are a hot topic of current research, 

as well as new paradigms for reasoning over sequences

• Better understanding (both theoretical and empirical) is 

needed.
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