
DATA ANALYTICS

USING DEEP LEARNING

GT 8803 // FALL 2019 // JOY ARULRAJ

L E C T U R E # 1 8 : V I S U A L I Z I N G & U N D E R S T A N D I N G

C O N V O L U T I O N A L N E T W O R K S

GT 8803 // Fall 2019

a d m i n i s t r i v i a

• Reminders
– Code reviews due on Nov 9

– Team member contribution analyses will be anonymous

– Grades for project checkpoint #1 released

– Assignment 3 released

2

GT 8803 // Fall 2018 3

LAST TIME: LOTS OF Computer Vision Tasks

Classification
Semantic

Segmentation
Object

Detection

Instance
Segmentation

CAT GRASS, CAT,

TREE, SKY
DOG, DOG, CAT DOG, DOG, CAT

No spatial

extent

Multiple

Object
No objects, just

pixels

This image is CC0 public domain

GT 8803 // Fall 2019

W h a t ’ s g o i n g o n i n s i d e C o n v N e t s ?

4

Class Scores:

1000 numbers

Input Image:

3 x 224 x 224

What are the intermediate features looking for?

GT 8803 // Fall 2018 5

F i r s t L a y e r : V i s u a l i z e F i l t e r s

AlexNet:

64 x 3 x 11 x 11

ResNet-18:

64 x 3 x 7 x 7

ResNet-101:

64 x 3 x 7 x 7

DenseNet-

121:
64 x 3 x 7 x 7

Krizhevsky, “One weird trick for parallelizing convolutional neural networks”, arXiv 2014

He et al, “Deep Residual Learning for Image Recognition”, CVPR 2016

Huang et al, “Densely Connected Convolutional Networks”, CVPR 2017

GT 8803 // Fall 2018 6

Visualize the

filters/kernels

(raw weights)

We can visualize

filters at higher
layers, but not

that interesting

(these are taken

from ConvNetJS
CIFAR-10 demo)

layer 1 weights

layer 2 weights

layer 3 weights

16 x 3 x 7 x 7

20 x 16 x 7 x 7

20 x 20 x 7 x 7

7

FC7 layer
L a s t L a y e r

4096-dimensional feature vector for an image

(layer immediately before the classifier)

Run the network on many images, collect the

feature vectors

GT 8803 // Fall 2018 8

L a s t L a y e r : N e a r e s t N e i g h b o r s
Test

image

L2 Nearest neighbors

in feature space

4096-dim

vector

Recall: Nearest

neighbors in pixel space

Krizhevsky et al, “ImageNet Classification with Deep Convolutional Neural Networks”, NIPS 2012.
Figures reproduced with permission.

GT 8803 // Fall 2018 9

L a s t L a y e r : D i m e n s i o n a l i t y R e d u c t i o n

Van der Maaten and Hinton, “Visualizing Data using t-SNE”, JMLR 2008
Figure copyright Laurens van der Maaten and Geoff Hinton, 2008. Reproduced with permission.

Visualize the “space” of FC7 feature

vectors by reducing dimensionality
of vectors from 4096 to 2 dimensions

Simple algorithm:

Principal Component Analysis (PCA)

More complex: t-SNE

GT 8803 // Fall 2018 10

Van der Maaten and Hinton, “Visualizing Data using t-SNE”, JMLR 2008
Krizhevsky et al, “ImageNet Classification with Deep Convolutional Neural Networks”, NIPS 2012.

Figure reproduced with permission.

See high-resolution versions at

http://cs.stanford.edu/people/karpathy/cnnembed/

L a s t L a y e r : D i m e n s i o n a l i t y R e d u c t i o n

GT 8803 // Fall 2018 11

V i s u a l i z i n g A c t i v a t i o n s

Yosinski et al, “Understanding Neural Networks Through Deep Visualization”, ICML DL Workshop 2014.
Figure copyright Jason Yosinski, 2014. Reproduced with permission.

conv5 feature map is

128x13x13; visualize
as 128 13x13

grayscale images

GT 8803 // Fall 2018 12

Pick a layer and a channel; e.g. conv5 is 128 x

13 x 13, pick channel 17 out of 128

Run many images through the network,

record values of chosen channel

Visualize image patches that correspond to
maximal activations

Springenberg et al, “Striving for Simplicity: The All Convolutional Net”, ICLR Workshop 2015
Figure copyright Jost Tobias Springenberg, Alexey Dosovitskiy, Thomas Brox, Martin Riedmiller, 2015;

reproduced with permission.

M a x i m a l l y A c t i v a t i n g P a t c h e s

GT 8803 // Fall 2018 13

Zeiler and Fergus, “Visualizing and Understanding Convolutional

Networks”, ECCV 2014

P(elephant) =

0.95

P(elephant) =

0.75

Mask part of the image before feeding to CNN,

check how much predicted probabilities change

W h i c h p i x e l s m a t t e r :

S a l i e n c y v i a O c c l u s i o n

GT 8803 // Fall 2018 14

Mask part of the image before feeding to CNN,

check how much predicted probabilities change

Zeiler and Fergus, “Visualizing and Understanding Convolutional

Networks”, ECCV 2014

P(elephant) =

0.95

P(elephant) =

0.75

W h i c h p i x e l s m a t t e r :

S a l i e n c y v i a O c c l u s i o n

GT 8803 // Fall 2018 15

W h i c h p i x e l s m a t t e r : S a l i e n c y v i a B a c k p r o p

Dog

Forward pass: Compute probabilities

Simonyan, Vedaldi, and Zisserman, “Deep Inside Convolutional Networks: Visualising Image Classification Models and
Saliency Maps”, ICLR Workshop 2014.

Figures copyright Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman, 2014; reproduced with permission.

GT 8803 // Fall 2018 16

W h i c h p i x e l s m a t t e r : S a l i e n c y v i a B a c k p r o p

Dog

Forward pass: Compute probabilities

Simonyan, Vedaldi, and Zisserman, “Deep Inside Convolutional Networks: Visualising Image Classification Models and
Saliency Maps”, ICLR Workshop 2014.

Figures copyright Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman, 2014; reproduced with permission.

Compute gradient of (unnormalized)

class score with respect to image
pixels, take absolute value and max

over RGB channels

GT 8803 // Fall 2018 17

S a l i e n c y M a p s

Simonyan, Vedaldi, and Zisserman, “Deep Inside Convolutional Networks: Visualising Image Classification Models and
Saliency Maps”, ICLR Workshop 2014.

Figures copyright Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman, 2014; reproduced with permission.

GT 8803 // Fall 2018 18

S a l i e n c y M a p s : S e g m e n t a t i o n w i t h o u t s u p e r v i s i o n

Simonyan, Vedaldi, and Zisserman, “Deep Inside Convolutional Networks: Visualising Image Classification Models and
Saliency Maps”, ICLR Workshop 2014.

Figures copyright Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman, 2014; reproduced with permission.
Rother et al, “Grabcut: Interactive foreground extraction using iterated graph cuts”, ACM TOG 2004

Use GrabCut on

saliency map

GT 8803 // Fall 2018 19

I n t e r m e d i a t e F e a t u r e s v i a (g u i d e d) b a c k p r o p

Zeiler and Fergus, “Visualizing and Understanding Convolutional Networks”, ECCV 2014

Springenberg et al, “Striving for Simplicity: The All Convolutional Net”, ICLR Workshop 2015

Pick a single intermediate neuron, e.g.

one value in 128 x 13 x 13 conv5 feature
map

Compute gradient of neuron value with

respect to image pixels

GT 8803 // Fall 2018 20

I n t e r m e d i a t e F e a t u r e s v i a (g u i d e d) b a c k p r o p

Zeiler and Fergus, “Visualizing and Understanding Convolutional Networks”, ECCV 2014

Springenberg et al, “Striving for Simplicity: The All Convolutional Net”, ICLR Workshop 2015

Pick a single intermediate neuron, e.g.

one value in 128 x 13 x 13 conv5 feature
map

Compute gradient of neuron value with

respect to image pixels

Images come out nicer if you only

backprop positive gradients through
each ReLU (guided backprop)

ReLU

GT 8803 // Fall 2018 21

Maximally activating patches

(Each row is a different neuron)

Guided Backprop

I n t e r m e d i a t e f e a t u r e s v i a (g u i d e d) b a c k p r o p

Zeiler and Fergus, “Visualizing and Understanding Convolutional Networks”, ECCV 2014
Springenberg et al, “Striving for Simplicity: The All Convolutional Net”, ICLR Workshop 2015

Figure copyright Jost Tobias Springenberg, Alexey Dosovitskiy, Thomas Brox, Martin Riedmiller, 2015; reproduced with permission.

GT 8803 // Fall 2018 22

(Guided) backprop:

Find the part of an

image that a neuron

responds to

Gradient ascent:

Generate a synthetic

image that maximally

activates a neuron

I* = arg maxI f(I) + R(I)

Neuron value Natural image regularizer

Visualizing CNN features: Gradient Ascent

GT 8803 // Fall 2018 23

Visualizing CNN features: Gradient Ascent

score for class c (before Softmax)

zero image

1. Initialize image to zeros

Repeat:

2. Forward image to compute current scores
3. Backprop to get gradient of neuron value with respect to image pixels

4. Make a small update to the image

GT 8803 // Fall 2018 24

Visualizing CNN features: Gradient Ascent

Simonyan, Vedaldi, and Zisserman, “Deep Inside Convolutional Networks: Visualising Image Classification Models and
Saliency Maps”, ICLR Workshop 2014.

Figures copyright Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman, 2014; reproduced with permission.

Simple regularizer: Penalize

L2 norm of generated image

GT 8803 // Fall 2018 25

Visualizing CNN features: Gradient Ascent

Simonyan, Vedaldi, and Zisserman, “Deep Inside Convolutional Networks: Visualising Image Classification Models and
Saliency Maps”, ICLR Workshop 2014.

Figures copyright Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman, 2014; reproduced with permission.

Simple regularizer: Penalize

L2 norm of generated image

GT 8803 // Fall 2018 26

Visualizing CNN features: Gradient Ascent

Simonyan, Vedaldi, and Zisserman, “Deep Inside Convolutional Networks: Visualising Image Classification Models and
Saliency Maps”, ICLR Workshop 2014.

Figures copyright Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman, 2014; reproduced with permission.

Simple regularizer: Penalize

L2 norm of generated image

GT 8803 // Fall 2018 27

Visualizing CNN features: Gradient Ascent

Yosinski et al, “Understanding Neural Networks Through Deep Visualization”, ICML DL Workshop 2014.

Better regularizer: Penalize L2 norm of

image; also during optimization
periodically

• Gaussian blur image

• Clip pixels with small values to 0

• Clip pixels with small gradients to 0

GT 8803 // Fall 2018 28

Visualizing CNN features: Gradient Ascent

Yosinski et al, “Understanding Neural Networks Through Deep Visualization”, ICML DL Workshop 2014.

Better regularizer: Penalize L2 norm of

image; also during optimization
periodically

• Gaussian blur image

• Clip pixels with small values to 0

• Clip pixels with small gradients to 0

GT 8803 // Fall 2018 29

Visualizing CNN features: Gradient Ascent

Better regularizer: Penalize L2 norm of

image; also during optimization
periodically

• Gaussian blur image

• Clip pixels with small values to 0

• Clip pixels with small gradients to 0

Yosinski et al, “Understanding Neural Networks Through Deep Visualization”, ICML DL Workshop 2014.

GT 8803 // Fall 2018 30

Yosinski et al, “Understanding Neural Networks Through Deep Visualization”, ICML DL Workshop 2014.
Figure copyright Jason Yosinski, Jeff Clune, Anh Nguyen, Thomas Fuchs, and Hod Lipson, 2014. Reproduced with permission.

Use the same approach to visualize intermediate features

Visualizing CNN features: Gradient Ascent

GT 8803 // Fall 2018 31

Visualizing CNN features: Gradient Ascent

Adding “multi-faceted” visualization gives even nicer results:

(Plus more careful regularization, center-bias)

Nguyen et al, “Multifaceted Feature Visualization: Uncovering the Different Types of Features Learned By Each Neuron in Deep Neural Networks”, ICML Visualization for Deep Learning Workshop 2016.

Figures copyright Anh Nguyen, Jason Yosinski, and Jeff Clune, 2016; reproduced with permission.

GT 8803 // Fall 2018 32

Visualizing CNN features: Gradient Ascent

Nguyen et al, “Multifaceted Feature Visualization: Uncovering the Different Types of Features Learned By Each Neuron in Deep Neural Networks”, ICML Visualization for Deep Learning Workshop 2016.

Figures copyright Anh Nguyen, Jason Yosinski, and Jeff Clune, 2016; reproduced with permission.

GT 8803 // Fall 2018 33

Visualizing CNN features: Gradient Ascent

Nguyen et al, “Multifaceted Feature Visualization: Uncovering the Different Types of Features Learned By Each Neuron in Deep Neural Networks”, ICML Visualization for Deep Learning Workshop 2016.

Figures copyright Anh Nguyen, Jason Yosinski, and Jeff Clune, 2016; reproduced with permission.

Optimize in FC6 latent space instead of pixel space:

GT 8803 // Fall 2018 34

(1) Start from an arbitrary image

(2) Pick an arbitrary class

(3) Modify the image to maximize the class

(4) Repeat until network is fooled

Fooling Images / Adversarial Examples

GT 8803 // Fall 2018 35

Fooling Images / Adversarial Examples

GT 8803 // Fall 2018 36

DeepDream: Amplify existing features
Rather than synthesizing an image to maximize a specific neuron, instead try to

amplify the neuron activations at some layer in the network

Choose an image and a layer in a CNN; repeat:

1. Forward: compute activations at chosen layer

2. Set gradient of chosen layer equal to its activation

3. Backward: Compute gradient on image

4. Update image
Mordvintsev, Olah, and Tyka, “Inceptionism: Going Deeper into Neural

Networks”, Google Research Blog. Images are licensed under CC-BY 4.0

GT 8803 // Fall 2018 37

DeepDream: Amplify existing features
Rather than synthesizing an image to maximize a specific neuron, instead try to

amplify the neuron activations at some layer in the network

Choose an image and a layer in a CNN; repeat:

1. Forward: compute activations at chosen layer

2. Set gradient of chosen layer equal to its activation

3. Backward: Compute gradient on image

4. Update image
Mordvintsev, Olah, and Tyka, “Inceptionism: Going Deeper into Neural

Networks”, Google Research Blog. Images are licensed under CC-BY 4.0

Equivalent to:

I* = arg maxI ∑i fi(I)
2

GT 8803 // Fall 2018 38

Code is very simple but it

uses a couple tricks:
(Code is licensed under Apache 2.0)

DeepDream: Amplify existing features

GT 8803 // Fall 2018 39

Code is very simple but it

uses a couple tricks:
(Code is licensed under Apache 2.0)

DeepDream: Amplify existing features

Jitter image

GT 8803 // Fall 2018 40

Code is very simple but it

uses a couple tricks:
(Code is licensed under Apache 2.0)

DeepDream: Amplify existing features

Jitter image

L1 Normalize gradients

GT 8803 // Fall 2018 41

Code is very simple but it

uses a couple tricks:
(Code is licensed under Apache 2.0)

DeepDream: Amplify existing features

Jitter image

L1 Normalize gradients

Clip pixel values

Also uses multiscale processing for a fractal effect (not shown)

GT 8803 // Fall 2018 42

GT 8803 // Fall 2018 43

GT 8803 // Fall 2018 44

GT 8803 // Fall 2018 45

GT 8803 // Fall 2018 46

GT 8803 // Fall 2018 47

GT 8803 // Fall 2018 48

Feature Inversion

Given a CNN feature vector for an image, find a new image that:

• Matches the given feature vector
• “looks natural” (image prior regularization)

Mahendran and Vedaldi, “Understanding Deep Image Representations by Inverting Them”, CVPR 2015

Given feature

vector

Features of new

image

Total Variation regularizer

(encourages spatial

smoothness)

GT 8803 // Fall 2018 49

Feature Inversion

Reconstructing from different layers of VGG-16

Mahendran and Vedaldi, “Understanding Deep Image Representations by Inverting Them”, CVPR 2015

Figure from Johnson, Alahi, and Fei-Fei, “Perceptual Losses for Real-Time Style Transfer and Super-Resolution”, ECCV 2016. Copyright Springer, 2016. Reproduced for

educational purposes.

GT 8803 // Fall 2018 50

Given a sample patch of some texture, can we

generate a bigger image of the same texture?

Input

Output

Texture Synthesis

GT 8803 // Fall 2018 51

Generate pixels one at a time in scanline order;

form neighborhood of already generated pixels
and copy nearest neighbor from input

Wei and Levoy, “Fast Texture Synthesis using Tree-structured Vector Quantization”, SIGGRAPH 2000

Efros and Leung, “Texture Synthesis by Non-parametric Sampling”, ICCV 1999

Texture Synthesis: NEAREST NEIGHBOR

GT 8803 // Fall 2018 52

Texture Synthesis: NEAREST NEIGHBOR

GT 8803 // Fall 2018 53

Each layer of CNN gives C x H x W tensor

of features; H x W grid of C-dimensional
vectors

w

H

C

Neural Texture Synthesis: Gram Matrix

GT 8803 // Fall 2018 54

Neural Texture Synthesis: Gram Matrix

Each layer of CNN gives C x H x W tensor of

features; H x W grid of C-dimensional vectors

Outer product of two C-dimensional vectors

gives C x C matrix measuring co-occurrence

w

H

C

C

C

GT 8803 // Fall 2018 55

Neural Texture Synthesis: Gram Matrix

Each layer of CNN gives C x H x W tensor of

features; H x W grid of C-dimensional vectors

Outer product of two C-dimensional vectors

gives C x C matrix measuring co-occurrence

Average over all HW pairs of vectors, giving

Gram matrix of shape C x C

w

H

C

C

C

Gram

Matrix

GT 8803 // Fall 2018 56

Neural Texture Synthesis: Gram Matrix

Each layer of CNN gives C x H x W tensor of

features; H x W grid of C-dimensional vectors

Outer product of two C-dimensional vectors

gives C x C matrix measuring co-occurrence

Average over all HW pairs of vectors, giving

Gram matrix of shape C x C

w

H

C
C

C

Efficient to compute; reshape features

from

C x H x W to =C x HW

then compute G = FFT

GT 8803 // Fall 2018 57

Neural Texture Synthesis

Gatys, Ecker, and Bethge, “Texture Synthesis Using Convolutional Neural Networks”, NIPS 2015
Figure copyright Leon Gatys, Alexander S. Ecker, and Matthias Bethge, 2015. Reproduced with permission.

1. Pretrain a CNN on ImageNet (VGG-19)

2. Run input texture forward through CNN,
record activations on every layer; layer i

gives feature map of shape Ci × Hi × Wi

3. At each layer compute the Gram matrix

giving outer product of features:

(shape Ci × Ci)

4. Initialize generated image from random
noise

5. Pass generated image through CNN,
compute Gram matrix on each layer

6. Compute loss: weighted sum of L2

distance between Gram matrices
7. Backprop to get gradient on image

8. Make gradient step on image
9. GOTO 5

GT 8803 // Fall 2018 58

Neural Texture Synthesis

Gatys, Ecker, and Bethge, “Texture Synthesis Using Convolutional Neural Networks”, NIPS 2015
Figure copyright Leon Gatys, Alexander S. Ecker, and Matthias Bethge, 2015. Reproduced with permission.

1. Pretrain a CNN on ImageNet (VGG-19)

2. Run input texture forward through CNN,
record activations on every layer; layer i

gives feature map of shape Ci × Hi × Wi

3. At each layer compute the Gram matrix

giving outer product of features:

(shape Ci × Ci)

4. Initialize generated image from random
noise

5. Pass generated image through CNN,
compute Gram matrix on each layer

6. Compute loss: weighted sum of L2

distance between Gram matrices
7. Backprop to get gradient on image

8. Make gradient step on image
9. GOTO 5

GT 8803 // Fall 2018 59

Neural Texture Synthesis

Gatys, Ecker, and Bethge, “Texture Synthesis Using Convolutional Neural Networks”, NIPS 2015
Figure copyright Leon Gatys, Alexander S. Ecker, and Matthias Bethge, 2015. Reproduced with permission.

1. Pretrain a CNN on ImageNet (VGG-19)

2. Run input texture forward through CNN,
record activations on every layer; layer i

gives feature map of shape Ci × Hi × Wi

3. At each layer compute the Gram matrix

giving outer product of features:

(shape Ci × Ci)

4. Initialize generated image from random
noise

5. Pass generated image through CNN,
compute Gram matrix on each layer

6. Compute loss: weighted sum of L2

distance between Gram matrices
7. Backprop to get gradient on image

8. Make gradient step on image
9. GOTO 5

GT 8803 // Fall 2018 60

Neural Texture Synthesis

Gatys, Ecker, and Bethge, “Texture Synthesis Using Convolutional Neural Networks”, NIPS 2015
Figure copyright Leon Gatys, Alexander S. Ecker, and Matthias Bethge, 2015. Reproduced with permission.

1. Pretrain a CNN on ImageNet (VGG-19)

2. Run input texture forward through CNN,
record activations on every layer; layer i

gives feature map of shape Ci × Hi × Wi

3. At each layer compute the Gram matrix

giving outer product of features:

(shape Ci × Ci)

4. Initialize generated image from random
noise

5. Pass generated image through CNN,
compute Gram matrix on each layer

6. Compute loss: weighted sum of L2

distance between Gram matrices
7. Backprop to get gradient on image

8. Make gradient step on image
9. GOTO 5

GT 8803 // Fall 2018 61

Neural Texture Synthesis

Gatys, Ecker, and Bethge, “Texture Synthesis Using Convolutional Neural Networks”, NIPS 2015
Figure copyright Leon Gatys, Alexander S. Ecker, and Matthias Bethge, 2015. Reproduced with permission.

Reconstructing texture from

higher layers recovers larger

features from the input

texture

GT 8803 // Fall 2018 62

Neural Texture Synthesis

Gatys, Ecker, and Bethge, “Texture Synthesis Using Convolutional Neural Networks”, NIPS 2015
Figure copyright Leon Gatys, Alexander S. Ecker, and Matthias Bethge, 2015. Reproduced with permission.

Texture

synthesis (Gram
reconstruction)

GT 8803 // Fall 2018 63

Neural Texture Synthesis

Gatys, Ecker, and Bethge, “Texture Synthesis Using Convolutional Neural Networks”, NIPS 2015
Figure copyright Leon Gatys, Alexander S. Ecker, and Matthias Bethge, 2015. Reproduced with permission.

Texture

synthesis (Gram
reconstruction)

Feature

reconstruction

GT 8803 // Fall 2018 64

Neural Style Transfer

Content Image Style Image

+

Gatys, Ecker, and Bethge, “Texture Synthesis Using Convolutional Neural Networks”, NIPS 2015

GT 8803 // Fall 2018 65

Neural Style Transfer

Content Image Style Image

+

Gatys, Ecker, and Bethge, “Texture Synthesis Using Convolutional Neural Networks”, NIPS 2015

Style Transfer!

=

GT 8803 // Fall 2018 66

Style

image

Content

image

Output

image
(Start with

noise)

Gatys, Ecker, and Bethge, “Image style transfer using convolutional neural networks”, CVPR 2016

Figure adapted from Johnson, Alahi, and Fei-Fei, “Perceptual Losses for Real-Time Style Transfer and Super-

Resolution”, ECCV 2016. Copyright Springer, 2016. Reproduced for educational purposes.

GT 8803 // Fall 2018 67

Style

image

Content

image

Output

image
(Start with

noise)

Gatys, Ecker, and Bethge, “Image style transfer using convolutional neural networks”, CVPR 2016

Figure adapted from Johnson, Alahi, and Fei-Fei, “Perceptual Losses for Real-Time Style Transfer and Super-

Resolution”, ECCV 2016. Copyright Springer, 2016. Reproduced for educational purposes.

GT 8803 // Fall 2018 68

GT 8803 // Fall 2018 69

Neural Style Transfer

Gatys, Ecker, and Bethge, “Image style transfer using convolutional neural networks”, CVPR 2016
Figure copyright Justin Johnson, 2015.

Example outputs

from
implementation

(in Torch)

GT 8803 // Fall 2018 70

More weight to

content loss

More weight to

style loss

Neural Style Transfer

GT 8803 // Fall 2018 71

Neural Style Transfer

Larger style image Smaller style image

Resizing style image before running style transfer

algorithm can transfer different types of features

Gatys, Ecker, and Bethge, “Image style transfer using convolutional neural networks”, CVPR 2016
Figure copyright Justin Johnson, 2015.

GT 8803 // Fall 2018 72

Neural Style Transfer: Multiple Style Images

Mix style from multiple images by taking a weighted average of Gram matrices

Gatys, Ecker, and Bethge, “Image style transfer using convolutional neural networks”, CVPR 2016
Figure copyright Justin Johnson, 2015.

GT 8803 // Fall 2018 73

GT 8803 // Fall 2018 74

GT 8803 // Fall 2018 75

GT 8803 // Fall 2018 76

GT 8803 // Fall 2018 77

Neural Style Transfer

Problem: Style transfer requires

many forward / backward

passes through VGG; very slow!

GT 8803 // Fall 2018 78

Neural Style Transfer

Problem: Style transfer requires

many forward / backward

passes through VGG; very slow!

Solution: Train another neural

network to perform style

transfer for us!

GT 8803 // Fall 2018 79

79

Fast Style Transfer
(1) Train a feedforward network for each style

(2) Use pretrained CNN to compute same losses as before

(3) After training, stylize images using a single forward pass

Johnson, Alahi, and Fei-Fei, “Perceptual Losses for Real-Time Style Transfer and Super-Resolution”, ECCV 2016

Figure copyright Springer, 2016. Reproduced for educational purposes.

GT 8803 // Fall 2018 80

Slow SlowFast Fast

Johnson, Alahi, and Fei-Fei, “Perceptual Losses for Real-Time Style Transfer and Super-Resolution”, ECCV 2016

Figure copyright Springer, 2016. Reproduced for educational purposes.

https://github.com/jcjohnson/fast-neural-style

Fast Style Transfer

GT 8803 // Fall 2018 81

Remember Normalization Methods?

GT 8803 // Fall 2018 82

Instance Normalization was developed for style transfer!

Remember Normalization Methods?

GT 8803 // Fall 2018 83

Fast Style Transfer

Ulyanov et al, “Texture Networks: Feed-forward Synthesis of Textures and Stylized Images”, ICML 2016

Ulyanov et al, “Instance Normalization: The Missing Ingredient for Fast Stylization”, arXiv 2016

Figures copyright Dmitry Ulyanov, Vadim Lebedev, Andrea Vedaldi, and Victor Lempitsky, 2016. Reproduced with permission.

Replacing batch normalization with Instance Normalization improves results

GT 8803 // Fall 2018 84

One Network, Many Styles

Dumoulin, Shlens, and Kudlur, “A Learned Representation for Artistic Style”, ICLR 2017.
Figure copyright Vincent Dumoulin, Jonathon Shlens, and Manjunath Kudlur, 2016; reproduced with permission.

GT 8803 // Fall 2018 85

One Network, Many Styles

Dumoulin, Shlens, and Kudlur, “A Learned Representation for Artistic Style”, ICLR 2017.
Figure copyright Vincent Dumoulin, Jonathon Shlens, and Manjunath Kudlur, 2016; reproduced with permission.

Use the same network for multiple

styles using conditional instance

normalization: learn separate scale and

shift parameters per style

Single network can blend styles after training

GT 8803 // Fall 2019

S U M M A R Y

• Many methods for understanding CNN representations

• Activation-based Methods: Nearest neighbors,

Dimensionality reduction, maximal patches, occlusion

• Gradient-based Methods: Saliency maps, class

visualization, fooling images, feature inversion

• Fun: DeepDream, Style Transfer.

86

GT 8803 // Fall 2018 87

Next time: (Deep) Reinforcement Learning

