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a d m i n i s t r i v i a

• Reminders
– Code reviews due on Nov 9

– Team member contribution analyses will be anonymous

– Grades for project checkpoint #1 released 

– Assignment 3 released

2
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LAST TIME: LOTS OF Computer Vision Tasks

Classification 
Semantic

Segmentation
Object 

Detection

Instance 
Segmentation

CAT GRASS, CAT, 

TREE, SKY
DOG, DOG, CAT DOG, DOG, CAT

No spatial 

extent

Multiple 

Object
No objects, just 

pixels

This image is CC0 public domain
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W h a t ’ s  g o i n g  o n  i n s i d e  C o n v N e t s ?

4

Class Scores: 

1000 numbers

Input Image:

3 x 224 x 224

What are the intermediate features looking for?
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F i r s t  L a y e r :  V i s u a l i z e  F i l t e r s

AlexNet:

64 x 3 x 11 x 11 

ResNet-18:

64 x 3 x 7 x 7

ResNet-101:

64 x 3 x 7 x 7

DenseNet-

121:
64 x 3 x 7 x 7

Krizhevsky, “One weird trick for parallelizing convolutional neural networks”, arXiv 2014

He et al, “Deep Residual Learning for Image Recognition”, CVPR 2016

Huang et al, “Densely Connected Convolutional Networks”, CVPR 2017
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Visualize the 

filters/kernels 

(raw weights)

We can visualize 

filters at higher 
layers, but not 

that interesting

(these are taken 

from ConvNetJS 
CIFAR-10 demo)

layer 1 weights

layer 2 weights

layer 3 weights

16 x 3 x 7 x 7

20 x 16 x 7 x 7

20 x 20 x 7 x 7
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FC7 layer
L a s t  L a y e r

4096-dimensional feature vector for an image

(layer immediately before the classifier)

Run the network on many images, collect the 

feature vectors
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L a s t  L a y e r :  N e a r e s t  N e i g h b o r s
Test 

image

L2 Nearest neighbors 

in feature space

4096-dim 

vector

Recall: Nearest 

neighbors in pixel space

Krizhevsky et al, “ImageNet Classification with Deep Convolutional Neural Networks”, NIPS 2012.
Figures reproduced with permission.
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L a s t  L a y e r :  D i m e n s i o n a l i t y  R e d u c t i o n

Van der Maaten and Hinton, “Visualizing Data using t-SNE”, JMLR 2008
Figure copyright Laurens van der Maaten and Geoff Hinton, 2008. Reproduced with permission.

Visualize the “space” of FC7 feature 

vectors by reducing dimensionality 
of vectors from 4096 to 2 dimensions

Simple algorithm: 

Principal Component Analysis (PCA)

More complex: t-SNE
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Van der Maaten and Hinton, “Visualizing Data using t-SNE”, JMLR 2008
Krizhevsky et al, “ImageNet Classification with Deep Convolutional Neural Networks”, NIPS 2012.

Figure reproduced with permission.

See high-resolution versions at  

http://cs.stanford.edu/people/karpathy/cnnembed/

L a s t  L a y e r :  D i m e n s i o n a l i t y  R e d u c t i o n
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V i s u a l i z i n g  A c t i v a t i o n s

Yosinski et al, “Understanding Neural Networks Through Deep Visualization”, ICML DL Workshop 2014.
Figure copyright Jason Yosinski, 2014. Reproduced with permission.

conv5 feature map is 

128x13x13; visualize 
as 128 13x13 

grayscale images
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Pick a layer and a channel; e.g. conv5 is 128 x 

13 x 13, pick channel 17 out of 128

Run many images through the network, 

record values of chosen channel

Visualize image patches that correspond to 
maximal activations

Springenberg et al, “Striving for Simplicity: The All Convolutional Net”, ICLR Workshop 2015
Figure copyright Jost Tobias Springenberg, Alexey Dosovitskiy, Thomas Brox, Martin Riedmiller, 2015; 

reproduced with permission.

M a x i m a l l y  A c t i v a t i n g  P a t c h e s
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Zeiler and Fergus, “Visualizing and Understanding Convolutional 

Networks”, ECCV 2014

P(elephant) = 

0.95

P(elephant) = 

0.75

Mask part of the image before feeding to CNN, 

check how much predicted probabilities change

W h i c h  p i x e l s  m a t t e r :  

S a l i e n c y  v i a  O c c l u s i o n
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Mask part of the image before feeding to CNN, 

check how much predicted probabilities change

Zeiler and Fergus, “Visualizing and Understanding Convolutional 

Networks”, ECCV 2014

P(elephant) = 

0.95

P(elephant) = 

0.75

W h i c h  p i x e l s  m a t t e r :  

S a l i e n c y  v i a  O c c l u s i o n
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W h i c h  p i x e l s  m a t t e r :  S a l i e n c y  v i a  B a c k p r o p

Dog

Forward pass: Compute probabilities

Simonyan, Vedaldi, and Zisserman, “Deep Inside Convolutional Networks: Visualising Image Classification Models and 
Saliency Maps”, ICLR Workshop 2014.

Figures copyright Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman, 2014; reproduced with permission.
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W h i c h  p i x e l s  m a t t e r :  S a l i e n c y  v i a  B a c k p r o p

Dog

Forward pass: Compute probabilities

Simonyan, Vedaldi, and Zisserman, “Deep Inside Convolutional Networks: Visualising Image Classification Models and 
Saliency Maps”, ICLR Workshop 2014.

Figures copyright Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman, 2014; reproduced with permission.

Compute gradient of (unnormalized) 

class score with respect to image 
pixels, take absolute value and max 

over RGB channels
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S a l i e n c y  M a p s

Simonyan, Vedaldi, and Zisserman, “Deep Inside Convolutional Networks: Visualising Image Classification Models and 
Saliency Maps”, ICLR Workshop 2014.

Figures copyright Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman, 2014; reproduced with permission.
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S a l i e n c y  M a p s :  S e g m e n t a t i o n  w i t h o u t  s u p e r v i s i o n

Simonyan, Vedaldi, and Zisserman, “Deep Inside Convolutional Networks: Visualising Image Classification Models and 
Saliency Maps”, ICLR Workshop 2014.

Figures copyright Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman, 2014; reproduced with permission.
Rother et al, “Grabcut: Interactive foreground extraction using iterated graph cuts”, ACM TOG 2004

Use GrabCut on 

saliency map
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I n t e r m e d i a t e  F e a t u r e s  v i a  ( g u i d e d )  b a c k p r o p

Zeiler and Fergus, “Visualizing and Understanding Convolutional Networks”, ECCV 2014

Springenberg et al, “Striving for Simplicity: The All Convolutional Net”, ICLR Workshop 2015

Pick a single intermediate neuron, e.g. 

one value in 128 x 13 x 13 conv5 feature 
map

Compute gradient of neuron value with 

respect to image pixels
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I n t e r m e d i a t e  F e a t u r e s  v i a  ( g u i d e d )  b a c k p r o p

Zeiler and Fergus, “Visualizing and Understanding Convolutional Networks”, ECCV 2014

Springenberg et al, “Striving for Simplicity: The All Convolutional Net”, ICLR Workshop 2015

Pick a single intermediate neuron, e.g. 

one value in 128 x 13 x 13 conv5 feature 
map

Compute gradient of neuron value with 

respect to image pixels

Images come out nicer if you only 

backprop positive gradients through 
each ReLU (guided backprop)

ReLU
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Maximally activating patches

(Each row is a different neuron)

Guided Backprop

I n t e r m e d i a t e  f e a t u r e s  v i a  ( g u i d e d )  b a c k p r o p

Zeiler and Fergus, “Visualizing and Understanding Convolutional Networks”, ECCV 2014
Springenberg et al, “Striving for Simplicity: The All Convolutional Net”, ICLR Workshop 2015

Figure copyright Jost Tobias Springenberg, Alexey Dosovitskiy, Thomas Brox, Martin Riedmiller, 2015; reproduced with permission.
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(Guided) backprop:

Find the part of an 

image that a neuron 

responds to

Gradient ascent:

Generate a synthetic 

image that maximally 

activates a neuron

I* = arg maxI f(I) + R(I)

Neuron value Natural image regularizer

Visualizing CNN features: Gradient Ascent
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Visualizing CNN features: Gradient Ascent

score for class c (before Softmax)

zero image

1. Initialize image to zeros

Repeat:

2. Forward image to compute current scores
3. Backprop to get gradient of neuron value with respect to image pixels

4. Make a small update to the image
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Visualizing CNN features: Gradient Ascent

Simonyan, Vedaldi, and Zisserman, “Deep Inside Convolutional Networks: Visualising Image Classification Models and 
Saliency Maps”, ICLR Workshop 2014.

Figures copyright Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman, 2014; reproduced with permission.

Simple regularizer: Penalize 

L2 norm of generated image
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Visualizing CNN features: Gradient Ascent

Simonyan, Vedaldi, and Zisserman, “Deep Inside Convolutional Networks: Visualising Image Classification Models and 
Saliency Maps”, ICLR Workshop 2014.

Figures copyright Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman, 2014; reproduced with permission.

Simple regularizer: Penalize 

L2 norm of generated image
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Visualizing CNN features: Gradient Ascent

Simonyan, Vedaldi, and Zisserman, “Deep Inside Convolutional Networks: Visualising Image Classification Models and 
Saliency Maps”, ICLR Workshop 2014.

Figures copyright Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman, 2014; reproduced with permission.

Simple regularizer: Penalize 

L2 norm of generated image
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Visualizing CNN features: Gradient Ascent

Yosinski et al, “Understanding Neural Networks Through Deep Visualization”, ICML DL Workshop 2014.

Better regularizer: Penalize L2 norm of 

image; also during optimization 
periodically

• Gaussian blur image

• Clip pixels with small values to 0

• Clip pixels with small gradients to 0
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Visualizing CNN features: Gradient Ascent

Yosinski et al, “Understanding Neural Networks Through Deep Visualization”, ICML DL Workshop 2014.

Better regularizer: Penalize L2 norm of 

image; also during optimization 
periodically

• Gaussian blur image

• Clip pixels with small values to 0

• Clip pixels with small gradients to 0
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Visualizing CNN features: Gradient Ascent

Better regularizer: Penalize L2 norm of 

image; also during optimization 
periodically

• Gaussian blur image

• Clip pixels with small values to 0

• Clip pixels with small gradients to 0

Yosinski et al, “Understanding Neural Networks Through Deep Visualization”, ICML DL Workshop 2014.
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Yosinski et al, “Understanding Neural Networks Through Deep Visualization”, ICML DL Workshop 2014.
Figure copyright Jason Yosinski, Jeff Clune, Anh Nguyen, Thomas Fuchs, and Hod Lipson, 2014. Reproduced with permission.

Use the same approach to visualize intermediate features

Visualizing CNN features: Gradient Ascent
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Visualizing CNN features: Gradient Ascent

Adding “multi-faceted” visualization gives even nicer results:

(Plus more careful regularization, center-bias)

Nguyen et al, “Multifaceted Feature Visualization: Uncovering the Different Types of Features Learned By Each Neuron in Deep Neural Networks”, ICML Visualization for Deep Learning Workshop 2016. 

Figures copyright Anh Nguyen, Jason Yosinski, and Jeff Clune, 2016; reproduced with permission.
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Visualizing CNN features: Gradient Ascent

Nguyen et al, “Multifaceted Feature Visualization: Uncovering the Different Types of Features Learned By Each Neuron in Deep Neural Networks”, ICML Visualization for Deep Learning Workshop 2016. 

Figures copyright Anh Nguyen, Jason Yosinski, and Jeff Clune, 2016; reproduced with permission.
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Visualizing CNN features: Gradient Ascent

Nguyen et al, “Multifaceted Feature Visualization: Uncovering the Different Types of Features Learned By Each Neuron in Deep Neural Networks”, ICML Visualization for Deep Learning Workshop 2016. 

Figures copyright Anh Nguyen, Jason Yosinski, and Jeff Clune, 2016; reproduced with permission.

Optimize in FC6 latent space instead of pixel space:
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(1) Start from an arbitrary image

(2) Pick an arbitrary class

(3) Modify the image to maximize the class

(4) Repeat until network is fooled

Fooling Images / Adversarial Examples
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Fooling Images / Adversarial Examples
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DeepDream: Amplify existing features
Rather than synthesizing an image to maximize a specific neuron, instead try to 

amplify the neuron activations at some layer in the network

Choose an image and a layer in a CNN; repeat:

1. Forward: compute activations at chosen layer

2. Set gradient of chosen layer equal to its activation

3. Backward: Compute gradient on image

4. Update image
Mordvintsev, Olah, and Tyka, “Inceptionism: Going Deeper into Neural 

Networks”, Google Research Blog. Images are licensed under CC-BY 4.0
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DeepDream: Amplify existing features
Rather than synthesizing an image to maximize a specific neuron, instead try to 

amplify the neuron activations at some layer in the network

Choose an image and a layer in a CNN; repeat:

1. Forward: compute activations at chosen layer

2. Set gradient of chosen layer equal to its activation

3. Backward: Compute gradient on image

4. Update image
Mordvintsev, Olah, and Tyka, “Inceptionism: Going Deeper into Neural 

Networks”, Google Research Blog. Images are licensed under CC-BY 4.0

Equivalent to:

I* = arg maxI ∑i fi(I)
2
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Code is very simple but it 

uses a couple tricks:
(Code is licensed under Apache 2.0)

DeepDream: Amplify existing features
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Code is very simple but it 

uses a couple tricks:
(Code is licensed under Apache 2.0)

DeepDream: Amplify existing features

Jitter image
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Code is very simple but it 

uses a couple tricks:
(Code is licensed under Apache 2.0)

DeepDream: Amplify existing features

Jitter image

L1 Normalize gradients
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Code is very simple but it 

uses a couple tricks:
(Code is licensed under Apache 2.0)

DeepDream: Amplify existing features

Jitter image

L1 Normalize gradients

Clip pixel values

Also uses multiscale processing for a fractal effect (not shown)
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Feature Inversion

Given a CNN feature vector for an image, find a new image that:

• Matches the given feature vector
• “looks natural” (image prior regularization) 

Mahendran and Vedaldi, “Understanding Deep Image Representations by Inverting Them”, CVPR 2015

Given feature 

vector

Features of new 

image

Total Variation regularizer 

(encourages spatial 

smoothness)
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Feature Inversion

Reconstructing from different layers of VGG-16

Mahendran and Vedaldi, “Understanding Deep Image Representations by Inverting Them”, CVPR 2015

Figure from Johnson, Alahi, and Fei-Fei, “Perceptual Losses for Real-Time Style Transfer and Super-Resolution”, ECCV 2016. Copyright Springer, 2016. Reproduced for 

educational purposes.
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Given a sample patch of some texture, can we 

generate a bigger image of the same texture?

Input

Output

Texture Synthesis
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Generate pixels one at a time in scanline order; 

form neighborhood of already generated pixels 
and copy nearest neighbor from input

Wei and Levoy, “Fast Texture Synthesis using Tree-structured Vector Quantization”, SIGGRAPH 2000

Efros and Leung, “Texture Synthesis by Non-parametric Sampling”, ICCV 1999

Texture Synthesis: NEAREST NEIGHBOR
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Texture Synthesis: NEAREST NEIGHBOR
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Each layer of CNN gives C x H x W tensor 

of features; H x W grid of C-dimensional 
vectors

w

H

C

Neural Texture Synthesis: Gram Matrix
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Neural Texture Synthesis: Gram Matrix

Each layer of CNN gives C x H x W tensor of 

features; H x W grid of C-dimensional vectors

Outer product of two C-dimensional vectors 

gives C x C matrix measuring co-occurrence

w

H

C

C

C
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Neural Texture Synthesis: Gram Matrix

Each layer of CNN gives C x H x W tensor of 

features; H x W grid of C-dimensional vectors

Outer product of two C-dimensional vectors 

gives C x C matrix measuring co-occurrence

Average over all HW pairs of vectors, giving 

Gram matrix of shape C x C

w

H

C

C

C

Gram 

Matrix
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Neural Texture Synthesis: Gram Matrix

Each layer of CNN gives C x H x W tensor of 

features; H x W grid of C-dimensional vectors

Outer product of two C-dimensional vectors 

gives C x C matrix measuring co-occurrence

Average over all HW pairs of vectors, giving 

Gram matrix of shape C x C

w

H

C
C

C

Efficient to compute; reshape features 

from

C x H x W to  =C x HW

then compute G = FFT
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Neural Texture Synthesis

Gatys, Ecker, and Bethge, “Texture Synthesis Using Convolutional Neural Networks”, NIPS 2015
Figure copyright Leon Gatys, Alexander S. Ecker, and Matthias Bethge, 2015. Reproduced with permission.

1. Pretrain a CNN on ImageNet (VGG-19)

2. Run input texture forward through CNN, 
record activations on every layer; layer i

gives feature map of shape Ci × Hi × Wi

3. At each layer compute the Gram matrix

giving outer product of features:

(shape Ci × Ci)

4. Initialize generated image from random 
noise

5. Pass generated image through CNN, 
compute Gram matrix on each layer

6. Compute loss: weighted sum of L2 

distance between Gram matrices
7. Backprop to get gradient on image

8. Make gradient step on image
9. GOTO 5
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Neural Texture Synthesis

Gatys, Ecker, and Bethge, “Texture Synthesis Using Convolutional Neural Networks”, NIPS 2015
Figure copyright Leon Gatys, Alexander S. Ecker, and Matthias Bethge, 2015. Reproduced with permission.

1. Pretrain a CNN on ImageNet (VGG-19)

2. Run input texture forward through CNN, 
record activations on every layer; layer i

gives feature map of shape Ci × Hi × Wi

3. At each layer compute the Gram matrix

giving outer product of features:

(shape Ci × Ci)

4. Initialize generated image from random 
noise

5. Pass generated image through CNN, 
compute Gram matrix on each layer

6. Compute loss: weighted sum of L2 

distance between Gram matrices
7. Backprop to get gradient on image

8. Make gradient step on image
9. GOTO 5
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Neural Texture Synthesis

Gatys, Ecker, and Bethge, “Texture Synthesis Using Convolutional Neural Networks”, NIPS 2015
Figure copyright Leon Gatys, Alexander S. Ecker, and Matthias Bethge, 2015. Reproduced with permission.

1. Pretrain a CNN on ImageNet (VGG-19)

2. Run input texture forward through CNN, 
record activations on every layer; layer i

gives feature map of shape Ci × Hi × Wi

3. At each layer compute the Gram matrix

giving outer product of features:

(shape Ci × Ci)

4. Initialize generated image from random 
noise

5. Pass generated image through CNN, 
compute Gram matrix on each layer

6. Compute loss: weighted sum of L2 

distance between Gram matrices
7. Backprop to get gradient on image

8. Make gradient step on image
9. GOTO 5
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Neural Texture Synthesis

Gatys, Ecker, and Bethge, “Texture Synthesis Using Convolutional Neural Networks”, NIPS 2015
Figure copyright Leon Gatys, Alexander S. Ecker, and Matthias Bethge, 2015. Reproduced with permission.

1. Pretrain a CNN on ImageNet (VGG-19)

2. Run input texture forward through CNN, 
record activations on every layer; layer i

gives feature map of shape Ci × Hi × Wi

3. At each layer compute the Gram matrix

giving outer product of features:

(shape Ci × Ci)

4. Initialize generated image from random 
noise

5. Pass generated image through CNN, 
compute Gram matrix on each layer

6. Compute loss: weighted sum of L2 

distance between Gram matrices
7. Backprop to get gradient on image

8. Make gradient step on image
9. GOTO 5
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Neural Texture Synthesis

Gatys, Ecker, and Bethge, “Texture Synthesis Using Convolutional Neural Networks”, NIPS 2015
Figure copyright Leon Gatys, Alexander S. Ecker, and Matthias Bethge, 2015. Reproduced with permission.

Reconstructing texture from 

higher layers recovers larger 

features from the input 

texture
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Neural Texture Synthesis

Gatys, Ecker, and Bethge, “Texture Synthesis Using Convolutional Neural Networks”, NIPS 2015
Figure copyright Leon Gatys, Alexander S. Ecker, and Matthias Bethge, 2015. Reproduced with permission.

Texture 

synthesis (Gram 
reconstruction)
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Neural Texture Synthesis

Gatys, Ecker, and Bethge, “Texture Synthesis Using Convolutional Neural Networks”, NIPS 2015
Figure copyright Leon Gatys, Alexander S. Ecker, and Matthias Bethge, 2015. Reproduced with permission.

Texture 

synthesis (Gram 
reconstruction)

Feature 

reconstruction
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Neural Style Transfer

Content Image Style Image

+

Gatys, Ecker, and Bethge, “Texture Synthesis Using Convolutional Neural Networks”, NIPS 2015
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Neural Style Transfer

Content Image Style Image

+

Gatys, Ecker, and Bethge, “Texture Synthesis Using Convolutional Neural Networks”, NIPS 2015

Style Transfer!

=
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Style 

image

Content 

image

Output 

image
(Start with 

noise)

Gatys, Ecker, and Bethge, “Image style transfer using convolutional neural networks”, CVPR 2016

Figure adapted from Johnson, Alahi, and Fei-Fei, “Perceptual Losses for Real-Time Style Transfer and Super-

Resolution”, ECCV 2016. Copyright Springer, 2016. Reproduced for educational purposes.
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Style 

image

Content 

image

Output 

image
(Start with 

noise)

Gatys, Ecker, and Bethge, “Image style transfer using convolutional neural networks”, CVPR 2016

Figure adapted from Johnson, Alahi, and Fei-Fei, “Perceptual Losses for Real-Time Style Transfer and Super-

Resolution”, ECCV 2016. Copyright Springer, 2016. Reproduced for educational purposes.
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Neural Style Transfer

Gatys, Ecker, and Bethge, “Image style transfer using convolutional neural networks”, CVPR 2016
Figure copyright Justin Johnson, 2015.

Example outputs 

from
implementation

(in Torch)
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More weight to

content loss

More weight to

style loss

Neural Style Transfer
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Neural Style Transfer

Larger style image Smaller style image

Resizing style image before running style transfer 

algorithm can transfer different types of features

Gatys, Ecker, and Bethge, “Image style transfer using convolutional neural networks”, CVPR 2016
Figure copyright Justin Johnson, 2015.
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Neural Style Transfer: Multiple Style Images

Mix style from multiple images by taking a weighted average of Gram matrices

Gatys, Ecker, and Bethge, “Image style transfer using convolutional neural networks”, CVPR 2016
Figure copyright Justin Johnson, 2015.
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Neural Style Transfer

Problem: Style transfer requires 

many forward / backward 

passes through VGG; very slow!
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Neural Style Transfer

Problem: Style transfer requires 

many forward / backward 

passes through VGG; very slow!

Solution: Train another neural 

network to perform style 

transfer for us!
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79

Fast Style Transfer
(1) Train a feedforward network for each style

(2) Use pretrained CNN to compute same losses as before

(3) After training, stylize images using a single forward pass

Johnson, Alahi, and Fei-Fei, “Perceptual Losses for Real-Time Style Transfer and Super-Resolution”, ECCV 2016

Figure copyright Springer, 2016. Reproduced for educational purposes.
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Slow SlowFast Fast

Johnson, Alahi, and Fei-Fei, “Perceptual Losses for Real-Time Style Transfer and Super-Resolution”, ECCV 2016

Figure copyright Springer, 2016. Reproduced for educational purposes.

https://github.com/jcjohnson/fast-neural-style

Fast Style Transfer
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Remember Normalization Methods?
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Instance Normalization was developed for style transfer!

Remember Normalization Methods?
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Fast Style Transfer

Ulyanov et al, “Texture Networks: Feed-forward Synthesis of Textures and Stylized Images”, ICML 2016

Ulyanov et al, “Instance Normalization: The Missing Ingredient for Fast Stylization”, arXiv 2016

Figures copyright Dmitry Ulyanov, Vadim Lebedev, Andrea Vedaldi, and Victor Lempitsky, 2016. Reproduced with permission.

Replacing batch normalization with Instance Normalization improves results
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One Network, Many Styles

Dumoulin, Shlens, and Kudlur, “A Learned Representation for Artistic Style”, ICLR 2017. 
Figure copyright Vincent Dumoulin, Jonathon Shlens, and Manjunath Kudlur, 2016; reproduced with permission.
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One Network, Many Styles

Dumoulin, Shlens, and Kudlur, “A Learned Representation for Artistic Style”, ICLR 2017. 
Figure copyright Vincent Dumoulin, Jonathon Shlens, and Manjunath Kudlur, 2016; reproduced with permission.

Use the same network for multiple 

styles using conditional instance 

normalization: learn separate scale and 

shift parameters per style

Single network can blend styles after training
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S U M M A R Y

• Many methods for understanding CNN representations

• Activation-based Methods: Nearest neighbors, 

Dimensionality reduction, maximal patches, occlusion

• Gradient-based Methods: Saliency maps, class 

visualization, fooling images, feature inversion

• Fun: DeepDream, Style Transfer.

86
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Next time: (Deep) Reinforcement Learning


