Lecture 4: Query Processing

Query Processing

Recap

2/51

Recap
Access Methods

Access methods are the alternative ways for retrieving specific tuples

We covered two access methods: sequential scan and index scan

Sequential scan is done over an unordered table heap

Index scan is done over an ordered B-Tree or an unordered hash table

Hash tables are fast data structures that support O(1) look-ups

Recap
Hash Tables vs. B+Trees

Hash tables are usually not what you want to use for a indexing tables
> Lack of ordering in widely-used hashing schemes
> Lack of locality of reference — more disk seeks
> Persistent data structures are much more complex (logging and recovery)
> Reference

The venerable B+Tree is always a good choice for your DBMS.

Making a data structure thread-safe is notoriously difficult in practice.

We focused on B+Trees but the same high-level techniques are applicable to other data
structures.

https://www.evanjones.ca/ordered-vs-unordered-indexes.html

Query Processing [EET)

Access Methods

e Itis important to choose the right index for the target workload

» Hash Table
> B+Tree

Query Processing [EET)

Today’s Agenda

* Query Processing
e Sorting Algorithms

Aggregation Algorithms

Join Algorithms
e Processing Models
CPU and I/O Parallelism

s IEHWEAS Query Process ing

Query Processing

(OIS FALIVELNESN Query Processing

Anatomy of a Database System [Monologue]

(=
VN = Cot LR
Application IZZER Y] 0 u
oz) Svystem q — Schema Info e
Cgtdog E: __?__ _\
L
© SQL Query O Logical
Plan o o
Schoma nfo Optimizer
SQL Rewriter
(Optional) .
Name—Internal ID Lz Rewr(‘;fﬂ'd) Og?aymal
n

© sQL Query

loal
O

Executor Q
eAbstract
Syntax

ree

https://dsf.berkeley.edu/papers/fntdb07-architecture.pdf

(OIS FALIVELNESN Query Processing

Anatomy of a Database System [Monologue]

Process Manager
> Manages client connections
Query Processor
> Parse, plan and execute queries on top of storage manager

Transactional Storage Manager
> Knits together buffer management, concurrency control, logging and recovery
Shared Utilities

> Manage hardware resources across threads

https://dsf.berkeley.edu/papers/fntdb07-architecture.pdf

(OIS FALIVELNESN Query Processing

Anatomy of a Database System [Monologue]

Process Manager
> Connection Manager + Admission Control
Query Processor
> Query Parser
> Query Optimizer (a.k.a., Query Planner)
> Query Executor
Transactional Storage Manager
> Lock Manager
> Access Methods (a.k.a., Indexes)
> Buffer Pool Manager
> Log Manager
Shared Utilities

> Memory, Disk, and Networking Manager

https://dsf.berkeley.edu/papers/fntdb07-architecture.pdf

Query Processing

Query Plan

e The operators are arranged in a tree.
e Data flows from the leaves of the tree
up towards the root.

e The output of the root node is the
result of the query.
SELECT A.id, B.value

FROM A, B
WHERE A.id = B.id AND B.value > 100

Query Processing

A

n A.id, B.value

t
MA.id:B.id
N

G value>100
N

Query Processing
Disk-Oriented DBMS

e We cannot assume that the results of a query fits in memory.

e We are going use the buffer pool to implement query execution algorithms that need
to spill to disk.

e We are also going to prefer algorithms that maximize the amount of sequential access.

Sorting Algorithms

(O[EVALCIEEDUEEN Sorting Algorithms

Why do we need to sort?

e Tuples in a table have no specific order.
e But queries often want to retrieve tuples in a specific order.

> Trivial to support duplicate elimination (DISTINCT).
> Bulk loading sorted tuples into a B+Tree index is faster.
> Aggregation (GROUP BY).

(O[EVALCIEEDUEEN Sorting Algorithms

Sorting Algorithms

e If data fits in memory, then we can use a standard in-memory sorting algorithm like
quick-sort.

e If data does not fit in memory, then we need to use a technique that is aware of the cost
of writing data out to disk.

Sorting Algorithms
External Merge Sort

e Divide-and-conquer sorting algorithm that splits the data set into separate runs and
then sorts them individually.

e Phase 1 - Sorting

> Sort blocks of data that fit in main-memory and then write back the sorted blocks to a file
on disk.

e Phase 2 - Merging

> Combine sorted sub-files into a single larger file.

Sorting Algorithms
Using B+Trees for Sorting

e If the table that must be sorted already has a B+Tree index on the sort attribute(s), then
we can use that to accelerate sorting.
e Retrieve tuples in desired sort order by simply traversing the leaf pages of the tree.

e Cases to consider:

» Clustered B+Tree
» Unclustered B+Tree

Query Processing

Case 1 — Clustered B+Tree

e Traverse to the left-most leaf page, and

then retrieve tuples from all leaf pages.

e This is always better than external
sorting because there is no
computational cost and all disk access
is sequential.

Sorting Algorithms

B+Tree Index

Tuple Pages

(OIS yAL IS Sorting Algorithms

Case 2 — Unclustered B+Tree

B+Tree Index

e Chase each pointer to the page that —
contains the data. =~ . > S A
\ K

e This is almost always a bad idea. In
general, one I/O per data record.

Tuple Pages

(O[EYALCIEENIESY Aggregation Algorithms

Aggregation Algorithms

(O[EYALCIEENIESY Aggregation Algorithms

Aggregation

e Collapse multiple tuples into a single scalar value.
e Two implementation choices:

> Sorting
> Hashing

(O[EYALCIEENIESY Aggregation Algorithms

Sorting Aggregation

enrolled(sid,cid,grade)
SELECT DISTINCT cid

FROM enrolled 53666 |15-445 |C
WHERE grade IN ('B','C") 53688 |15-721 |A
ORDER BY cid 53688 [15-826 B

53666 [15-721 |C
53655 |15-445 |c
sid cid grade cid d
53666 |15-445|C T T
- 53688 |15-826/8 - 15-826 - 15-445
Filter [52666_|15-721]c 15-721 Sort 15-721
53655 |15-445]C Remove 15-445 15-826

Columns

(O[EYALCIEENIESY Aggregation Algorithms

Sorting Aggregation

enrolled(sid,cid,grade)

SELECT DISTINCT cid sid cid grade
FROM enrolled 53666 |15-445 |C
WHERE grade IN ('B','C") 53688 [15-721 |A
ORDER BY cid 53688 |15-826 |B
53666 [15-721 |C
c

53655 [15-445

sid cid grade

cid d
53666 |15-445]C T 15-445
53688 |15-826]B ‘ 15-826 ‘ 1545
: 53666 |15-721|C 15-721 15-721
Filter ~ (%8 S-T21C Remove =55 Sort 15-626
Columns Eliminate

Dupes

(O[EYALCIEENIESY Aggregation Algorithms

Alternatives to Sorting

e What if we do not need the data to be ordered?
> Forming groups in GROUP BY (no ordering)
> Removing duplicates in DISTINCT (no ordering)
e Hashing is a better alternative in this scenario.

> Only need to remove duplicates, no need for ordering.
> May be computationally cheaper than sorting.

Aggregation Algorithms
Hashing Aggregate

Populate an ephemeral hash table as the DBMS scans the table.

For each record, check whether there is already an entry in the hash table:

> GROUP BY: Perform aggregate computation.
» DISTINCT: Discard duplicates.

If everything fits in memory, then it is easy.
If the DBMS must spill data to disk, then we need to be smarter.

(OTENALRIEENHERN Join Algorithms

Join Algorithms

(OTENALRIEENHERN Join Algorithms

Why do we need to join?

e We normalize tables in a relational database to avoid unnecessary repetition of
information.

e We use the join operator to reconstruct the original tuples without any information loss.

Jefnlgesi
Join Algorithms

e We will focus on combining two tables at a time with inner equi-join algorithms.

» These algorithms can be tweaked to support other types of joins.

e In general, we want the smaller table to always be the left table (outer table) in the
query plan.

(OTENALRIEENHERN Join Algorithms

Join vs Cross-Product

e RS is the most common operation and thus must be carefully optimized.
e R x S followed by a selection is inefficient because the cross-product is large.

e There are many algorithms for reducing join cost, but no algorithm works well in all
scenarios.

Query Processing

Join Algorithms

e Nested Loop Join
> Naive
> Block
> Index
e Sort-Merge Join
e Hash Join

Join Algorithms

Join Algorithms: Summary

Join Algorithm IO Cost Example
Simple Nested Loop Join M + (m x N) 1.3 hours
Block Nested Loop Join M + (M x N) 50 seconds
Index Nested Loop Join M+ (M xC) Variable
Sort-Merge Join M + N + (sort cost) 0.75 seconds
Hash Join 3x (M +N) 0.45 seconds

(OITEYALIEDNEEN Processing Models

Processing Models

Processing Model

A DBMS’s processing model defines how the system executes a query plan.
> Different trade-offs for different workloads.

Approach 1: Iterator Model

Approach 2: Materialization Model
Approach 3: Vectorized / Batch Model

Processing Models
Iterator Model

e Each query plan operator implements a Next function.
> On each invocation, the operator returns either a single tuple or a null marker if there are
no more tuples.
> The operator implements a loop that calls next on its children to retrieve their tuples and
then process them.

e Also called volcano or pipeline model.

Processing Models
Iterator Model

This is used in almost every DBMS. Allows for tuple pipelining.

e Some operators have to block until their children emit all of their tuples.
These operators are known as pipeline breakers

> Joins, Subqueries, Order By

Output control (e.g., LIMIT) works easily with this approach.
Examples: SQLite, MySQL, PostgreSQL

(OENALRIEEDIEEN Processing Models

Materialization Model

e Each operator processes its input all at once and then emits its output all at once.

» The operator "materializes" its output as a single result.
» The DBMS can push down hints into to avoid scanning too many tuples (e.g., LIMIT).
> Can send either a materialized row or a single column.

e The output can be either whole tuples (NSM) or subsets of columns (DSM)

(OITEYALIEDNEEN Processing Models

Materialization Model

e Better for OLTP workloads because queries only access a small number of tuples at a
time.

> Lower execution / coordination overhead.
> Fewer function calls.

e Not good for OLAP queries with large intermediate results.
e Examples: MonetDB, VoltDB

(OENALRIEEDIEEN Processing Models

Vectorization Model

e Like the Iterator Model where each operator implements a Next function in this model.
e Each operator emits a batch of tuples instead of a single tuple.

> The operator’s internal loop processes multiple tuples at a time.

> The size of the batch can vary based on hardware or query properties.
» Useful in in-memory DBMSs (due to fewer function calls)

> Useful in disk-centric DBMSs (due to fewer IO operations)

(OITEYALIEDNEEN Processing Models

Vectorization Model

e Ideal for OLAP queries because it greatly reduces the number of invocations per
operator.

e Allows for operators to use vectorized (SIMD) instructions to process batches of tuples.
e Examples: Vectorwise, Snowflake, SQL Server, Oracle, Amazon RedShift

Query Processing

Access Methods

¢ An access method is a way that the
DBMS can access the data stored in a
table.
> Located at the bottom of the query
plan
> Not defined in relational algebra.
e Three basic approaches:
> Sequential Scan
> Index Scan
> Multi-Index / "Bitmap" Scan

Processing Models

G value>100
\

R S

(O[EYALCIEEHES CPU and I/O Parallelism

CPU and I/O Parallelism

Query Processing

Query Execution

e We discussed about how to compose
operators together to execute a query
plan.

e We assumed that the queries execute
with a single worker (e.g., thread).

e We now need to talk about how to
execute with multiple workers.

SELECT R.id, S.cdate
FROM R, S
WHERE R.id = S.id AND S.value > 100

CPU and I/O Parallelism

n R.id, S.value
t
NR.id:S.id

/ K
G value>100
AN
R

S

(O[EYALCIEEHES CPU and I/O Parallelism

Why care about Parallel Execution?

e Increased performance.
> Throughput
> Latency

e Increased responsiveness and availability.
e Potentially lower total cost of ownership (TCO).

Query Processing CPU and I/O Parallelism

Parallel Execution

e CPU Parallelism
e /O Parallelism

(O[EYALCIEEHES CPU and I/O Parallelism

Inter- VS. Intra-Query Parallelism

e Inter-Query: Different queries are executed concurrently.
> Increases throughput & reduces latency.
e Intra-Query: Execute the operations of a single query in parallel.

> Decreases latency for long-running queries.

(O[EYALCIEEHES CPU and I/O Parallelism

Observation

e Using additional processes/threads to execute queries in parallel won't help if the disk
is always the main bottleneck.

> Can make things worse if each worker is reading different segments of disk.

(O[EYALCIEEHES CPU and I/O Parallelism

I/O Parallelism

e Split the DBMS installation across multiple storage devices.
> Multiple Disks per Database
> One Database per Disk
> One Relation per Disk
> Split Relation across Multiple Disks

Query Processing @IS

Conclusion

Query Processing @IS

Parting Thoughts

Access methods are the alternative ways for retrieving specific tuples

Hashing is almost always better than sorting for operator execution.
Caveats:

> Sorting is better on non-uniform data.
> Sorting is better when result needs to be sorted.

Good DBMSs use either or both.

Conclusion
Parting Thoughts

The same query plan be executed in multiple ways.

A DBMS’s processing model defines how the system executes a query plan.

(Most) DBMSs will want to use an index scan as much as possible.

Parallel execution is important.

¢ (Almost) every DBMS supports this.
e This is really hard to get right.

» Coordination Overhead
> Scheduling

> Concurrency Issues

»> Resource Contention

Next Class

Query Processing

e Logging and Recovery Protocols

51/51

	Query Processing
	Recap
	Query Processing
	Sorting Algorithms
	Aggregation Algorithms
	Join Algorithms
	Processing Models
	CPU and I/O Parallelism
	Conclusion

