
1 / 51

Query Processing

Lecture 4: Query Processing



2 / 51

Query Processing Recap

Recap



3 / 51

Query Processing Recap

Access Methods

• Access methods are the alternative ways for retrieving specific tuples
• We covered two access methods: sequential scan and index scan
• Sequential scan is done over an unordered table heap
• Index scan is done over an ordered B-Tree or an unordered hash table
• Hash tables are fast data structures that support O(1) look-ups



4 / 51

Query Processing Recap

Hash Tables vs. B+Trees

• Hash tables are usually not what you want to use for a indexing tables
▶ Lack of ordering in widely-used hashing schemes
▶ Lack of locality of reference −→ more disk seeks
▶ Persistent data structures are much more complex (logging and recovery)
▶ Reference

• The venerable B+Tree is always a good choice for your DBMS.
• Making a data structure thread-safe is notoriously difficult in practice.
• We focused on B+Trees but the same high-level techniques are applicable to other data

structures.

https://www.evanjones.ca/ordered-vs-unordered-indexes.html


5 / 51

Query Processing Recap

Access Methods

• It is important to choose the right index for the target workload
▶ Hash Table
▶ B+Tree



6 / 51

Query Processing Recap

Today’s Agenda

• Query Processing
• Sorting Algorithms
• Aggregation Algorithms
• Join Algorithms
• Processing Models
• CPU and I/O Parallelism



7 / 51

Query Processing Query Processing

Query Processing



8 / 51

Query Processing Query Processing

Anatomy of a Database System [Monologue]

https://dsf.berkeley.edu/papers/fntdb07-architecture.pdf


9 / 51

Query Processing Query Processing

Anatomy of a Database System [Monologue]

• Process Manager
▶ Manages client connections

• Query Processor
▶ Parse, plan and execute queries on top of storage manager

• Transactional Storage Manager
▶ Knits together buffer management, concurrency control, logging and recovery

• Shared Utilities
▶ Manage hardware resources across threads

https://dsf.berkeley.edu/papers/fntdb07-architecture.pdf


10 / 51

Query Processing Query Processing

Anatomy of a Database System [Monologue]

• Process Manager
▶ Connection Manager + Admission Control

• Query Processor
▶ Query Parser
▶ Query Optimizer (a.k.a., Query Planner)
▶ Query Executor

• Transactional Storage Manager
▶ Lock Manager
▶ Access Methods (a.k.a., Indexes)
▶ Buffer Pool Manager
▶ Log Manager

• Shared Utilities
▶ Memory, Disk, and Networking Manager

https://dsf.berkeley.edu/papers/fntdb07-architecture.pdf


11 / 51

Query Processing Query Processing

Query Plan

• The operators are arranged in a tree.
• Data flows from the leaves of the tree

up towards the root.
• The output of the root node is the

result of the query.

SELECT A.id, B.value
FROM A, B
WHERE A.id = B.id AND B.value > 100



12 / 51

Query Processing Query Processing

Disk-Oriented DBMS

• We cannot assume that the results of a query fits in memory.
• We are going use the buffer pool to implement query execution algorithms that need

to spill to disk.
• We are also going to prefer algorithms that maximize the amount of sequential access.



13 / 51

Query Processing Sorting Algorithms

Sorting Algorithms



14 / 51

Query Processing Sorting Algorithms

Why do we need to sort?

• Tuples in a table have no specific order.
• But queries often want to retrieve tuples in a specific order.

▶ Trivial to support duplicate elimination (DISTINCT).
▶ Bulk loading sorted tuples into a B+Tree index is faster.
▶ Aggregation (GROUP BY).



15 / 51

Query Processing Sorting Algorithms

Sorting Algorithms

• If data fits in memory, then we can use a standard in-memory sorting algorithm like
quick-sort.

• If data does not fit in memory, then we need to use a technique that is aware of the cost
of writing data out to disk.



16 / 51

Query Processing Sorting Algorithms

External Merge Sort

• Divide-and-conquer sorting algorithm that splits the data set into separate runs and
then sorts them individually.

• Phase 1 – Sorting
▶ Sort blocks of data that fit in main-memory and then write back the sorted blocks to a file

on disk.
• Phase 2 – Merging

▶ Combine sorted sub-files into a single larger file.



17 / 51

Query Processing Sorting Algorithms

Using B+Trees for Sorting

• If the table that must be sorted already has a B+Tree index on the sort attribute(s), then
we can use that to accelerate sorting.

• Retrieve tuples in desired sort order by simply traversing the leaf pages of the tree.
• Cases to consider:

▶ Clustered B+Tree
▶ Unclustered B+Tree



18 / 51

Query Processing Sorting Algorithms

Case 1 – Clustered B+Tree

• Traverse to the left-most leaf page, and
then retrieve tuples from all leaf pages.

• This is always better than external
sorting because there is no
computational cost and all disk access
is sequential.



19 / 51

Query Processing Sorting Algorithms

Case 2 – Unclustered B+Tree

• Chase each pointer to the page that
contains the data.

• This is almost always a bad idea. In
general, one I/O per data record.



20 / 51

Query Processing Aggregation Algorithms

Aggregation Algorithms



21 / 51

Query Processing Aggregation Algorithms

Aggregation

• Collapse multiple tuples into a single scalar value.
• Two implementation choices:

▶ Sorting
▶ Hashing



22 / 51

Query Processing Aggregation Algorithms

Sorting Aggregation



23 / 51

Query Processing Aggregation Algorithms

Sorting Aggregation



24 / 51

Query Processing Aggregation Algorithms

Alternatives to Sorting

• What if we do not need the data to be ordered?
▶ Forming groups in GROUP BY (no ordering)
▶ Removing duplicates in DISTINCT (no ordering)

• Hashing is a better alternative in this scenario.
▶ Only need to remove duplicates, no need for ordering.
▶ May be computationally cheaper than sorting.



25 / 51

Query Processing Aggregation Algorithms

Hashing Aggregate

• Populate an ephemeral hash table as the DBMS scans the table.
• For each record, check whether there is already an entry in the hash table:

▶ GROUP BY: Perform aggregate computation.
▶ DISTINCT: Discard duplicates.

• If everything fits in memory, then it is easy.
• If the DBMS must spill data to disk, then we need to be smarter.



26 / 51

Query Processing Join Algorithms

Join Algorithms



27 / 51

Query Processing Join Algorithms

Why do we need to join?

• We normalize tables in a relational database to avoid unnecessary repetition of
information.

• We use the join operator to reconstruct the original tuples without any information loss.



28 / 51

Query Processing Join Algorithms

Join Algorithms

• We will focus on combining two tables at a time with inner equi-join algorithms.
▶ These algorithms can be tweaked to support other types of joins.

• In general, we want the smaller table to always be the left table (outer table) in the
query plan.



29 / 51

Query Processing Join Algorithms

Join vs Cross-Product

• R 1 S is the most common operation and thus must be carefully optimized.
• R × S followed by a selection is inefficient because the cross-product is large.
• There are many algorithms for reducing join cost, but no algorithm works well in all

scenarios.



30 / 51

Query Processing Join Algorithms

Join Algorithms

• Nested Loop Join
▶ Naïve
▶ Block
▶ Index

• Sort-Merge Join
• Hash Join



31 / 51

Query Processing Join Algorithms

Join Algorithms: Summary

Join Algorithm IO Cost Example

Simple Nested Loop Join M + (m x N) 1.3 hours
Block Nested Loop Join M + (M x N) 50 seconds
Index Nested Loop Join M + (M x C) Variable
Sort-Merge Join M + N + (sort cost) 0.75 seconds
Hash Join 3 x (M + N) 0.45 seconds



32 / 51

Query Processing Processing Models

Processing Models



33 / 51

Query Processing Processing Models

Processing Model

• A DBMS’s processing model defines how the system executes a query plan.
▶ Different trade-offs for different workloads.

• Approach 1: Iterator Model
• Approach 2: Materialization Model
• Approach 3: Vectorized / Batch Model



34 / 51

Query Processing Processing Models

Iterator Model

• Each query plan operator implements a Next function.
▶ On each invocation, the operator returns either a single tuple or a null marker if there are

no more tuples.
▶ The operator implements a loop that calls next on its children to retrieve their tuples and

then process them.

• Also called volcano or pipeline model.



35 / 51

Query Processing Processing Models

Iterator Model

• This is used in almost every DBMS. Allows for tuple pipelining.
• Some operators have to block until their children emit all of their tuples.
• These operators are known as pipeline breakers

▶ Joins, Subqueries, Order By

• Output control (e.g., LIMIT) works easily with this approach.
• Examples: SQLite, MySQL, PostgreSQL



36 / 51

Query Processing Processing Models

Materialization Model

• Each operator processes its input all at once and then emits its output all at once.
▶ The operator "materializes" its output as a single result.
▶ The DBMS can push down hints into to avoid scanning too many tuples (e.g., LIMIT).
▶ Can send either a materialized row or a single column.

• The output can be either whole tuples (NSM) or subsets of columns (DSM)



37 / 51

Query Processing Processing Models

Materialization Model

• Better for OLTP workloads because queries only access a small number of tuples at a
time.
▶ Lower execution / coordination overhead.
▶ Fewer function calls.

• Not good for OLAP queries with large intermediate results.
• Examples: MonetDB, VoltDB



38 / 51

Query Processing Processing Models

Vectorization Model

• Like the Iterator Model where each operator implements a Next function in this model.
• Each operator emits a batch of tuples instead of a single tuple.

▶ The operator’s internal loop processes multiple tuples at a time.
▶ The size of the batch can vary based on hardware or query properties.
▶ Useful in in-memory DBMSs (due to fewer function calls)
▶ Useful in disk-centric DBMSs (due to fewer IO operations)



39 / 51

Query Processing Processing Models

Vectorization Model

• Ideal for OLAP queries because it greatly reduces the number of invocations per
operator.

• Allows for operators to use vectorized (SIMD) instructions to process batches of tuples.
• Examples: Vectorwise, Snowflake, SQL Server, Oracle, Amazon RedShift



40 / 51

Query Processing Processing Models

Access Methods

• An access method is a way that the
DBMS can access the data stored in a
table.
▶ Located at the bottom of the query

plan
▶ Not defined in relational algebra.

• Three basic approaches:
▶ Sequential Scan
▶ Index Scan
▶ Multi-Index / "Bitmap" Scan



41 / 51

Query Processing CPU and I/O Parallelism

CPU and I/O Parallelism



42 / 51

Query Processing CPU and I/O Parallelism

Query Execution

• We discussed about how to compose
operators together to execute a query
plan.

• We assumed that the queries execute
with a single worker (e.g., thread).

• We now need to talk about how to
execute with multiple workers.

SELECT R.id, S.cdate
FROM R, S
WHERE R.id = S.id AND S.value > 100



43 / 51

Query Processing CPU and I/O Parallelism

Why care about Parallel Execution?

• Increased performance.
▶ Throughput
▶ Latency

• Increased responsiveness and availability.
• Potentially lower total cost of ownership (TCO).



44 / 51

Query Processing CPU and I/O Parallelism

Parallel Execution

• CPU Parallelism
• I/O Parallelism



45 / 51

Query Processing CPU and I/O Parallelism

Inter- VS. Intra-Query Parallelism

• Inter-Query: Different queries are executed concurrently.
▶ Increases throughput & reduces latency.

• Intra-Query: Execute the operations of a single query in parallel.
▶ Decreases latency for long-running queries.



46 / 51

Query Processing CPU and I/O Parallelism

Observation

• Using additional processes/threads to execute queries in parallel won’t help if the disk
is always the main bottleneck.
▶ Can make things worse if each worker is reading different segments of disk.



47 / 51

Query Processing CPU and I/O Parallelism

I/O Parallelism

• Split the DBMS installation across multiple storage devices.
▶ Multiple Disks per Database
▶ One Database per Disk
▶ One Relation per Disk
▶ Split Relation across Multiple Disks



48 / 51

Query Processing Conclusion

Conclusion



49 / 51

Query Processing Conclusion

Parting Thoughts

• Access methods are the alternative ways for retrieving specific tuples
• Hashing is almost always better than sorting for operator execution.
• Caveats:

▶ Sorting is better on non-uniform data.
▶ Sorting is better when result needs to be sorted.

• Good DBMSs use either or both.



50 / 51

Query Processing Conclusion

Parting Thoughts

• The same query plan be executed in multiple ways.
• A DBMS’s processing model defines how the system executes a query plan.
• (Most) DBMSs will want to use an index scan as much as possible.
• Parallel execution is important.
• (Almost) every DBMS supports this.
• This is really hard to get right.

▶ Coordination Overhead
▶ Scheduling
▶ Concurrency Issues
▶ Resource Contention



51 / 51

Query Processing Conclusion

Next Class

• Logging and Recovery Protocols


	Query Processing
	Recap
	Query Processing
	Sorting Algorithms
	Aggregation Algorithms
	Join Algorithms
	Processing Models
	CPU and I/O Parallelism
	Conclusion


