Lecture 5: Logging (Part 1)

Logging

13163(32113

2/59

Query Plan
¢ The operators are arranged in a tree. TC 71, B.value
e Data flows from the leaves of the tree T
up towards the root. M A.id=B.1id
e The output of the root node is the ™~
result of the query. cyv"\al”e” oo
SELECT A.id, B.value
FROM A, B A B
WHERE A.id = B.id AND B.value > 100

Recap

Query Processing

Access methods are the alternative ways for retrieving specific tuples

Hashing is almost always better than sorting for operator execution.
Caveats:

> Sorting is better on non-uniform data.
> Sorting is better when result needs to be sorted.

Good DBMSs use either or both.

Recap

Process Models

The same query plan be executed in multiple ways.

A DBMS’s processing model defines how the system executes a query plan.

(Most) DBMSs will want to use an index scan as much as possible.

Parallel execution is important.
e (Almost) every DBMS supports this.
e This is really hard to get right.

Logging [ENe)

Today’s Agenda

Motivation

Failure Classification

Buffer Pool Policies

Shadow Paging

INal Motivation

Motivation

INal Motivation

Anatomy of a Database System [Monologue]

A
Application [ZZE1 ¢ =
s stem q = Schema Info
zzn Chtalog g = _\
© SQL Query O Logical

Cost
Model

A ara-ar

Plan o o
Schoma nfo Optimizer
SQL Rewriter
(Optional) .
Name—sInternal ID i Rew'(;‘ffm) Og?aj;lmal

© sQL Query

loal
O

Executor Q
eAbstract
Syntax

ree

https://dsf.berkeley.edu/papers/fntdb07-architecture.pdf

Motivation
Anatomy of a Database System [Monologue]

Process Manager
> Manages client connections
Query Processor
> Parse, plan and execute queries on top of storage manager

Transactional Storage Manager
> Knits together buffer management, concurrency control, logging and recovery
Shared Utilities

> Manage hardware resources across threads

https://dsf.berkeley.edu/papers/fntdb07-architecture.pdf

Motivation
Anatomy of a Database System [Monologue]

Process Manager
> Connection Manager + Admission Control
Query Processor
> Query Parser
> Query Optimizer (a.k.a., Query Planner)
> Query Executor
Transactional Storage Manager
> Lock Manager
> Access Methods (a.k.a., Indexes)
> Buffer Pool Manager
> Log Manager
Shared Utilities

> Memory, Disk, and Networking Manager

https://dsf.berkeley.edu/papers/fntdb07-architecture.pdf

50
&
‘B
80
|

Motivation

Schedule

Buffer Pool

BEGIN
R(A)
W(A)
COMMIT

(R ———— 4

11/59

A

Logging

Motivation

Schedule

T e e s\
] T ! ;,
! BEGIN 1 /
i R(A) i [Buffer Pod, «
: W(A) =— .

:] /
H : !
| mpCOMMIT i V4
! I
! I
! I
! 1
! i
! 1
! I
! I
! I
! 1
!]
‘s ______________ 4

Da 12 /59

Logging

Motivation

Schedule
........... -
JJR— .
i T, \
1 1
! BEGIN 1
I R(A) H
1
: i () ——| |
) 1
! COMMIT i
1
H 1
H 1
H 1
H 1
H 1
H 1
H 1
H 1
H 1
!]
\ ____J
N ———————— -

Do 13 /59

IGEEESN Motivation

Crash Recovery

e Recovery algorithms are techniques to ensure database consistency, transaction
atomicity, and durability despite failures.

e Recovery algorithms have two parts:

> Actions during normal txn processing to ensure that the DBMS can recover from a failure.
> Actions after a failure to recover the database to a state that ensures atomicity, consistency,
and durability.

il Failure Classification

Failure Classification

Crash Recovery

e DBMS is divided into different components based on the underlying storage device.
e We must also classify the different types of failures that the DBMS needs to handle.

Failure Classfcaton
Storage Types

¢ Volatile Storage

> Data does not persist after power loss or program exit.
> Examples: DRAM, SRAM

e Non-volatile Storage

> Data persists after power loss and program exit.
> Examples: HDD, SDD

e Stable Storage

> A non-existent form of non-volatile storage that survives all possible failures scenarios.
> Approximated using a collection of storage devices.

Logging

Failure Classification

e Type 1 - Transaction Failures

e Type 2 — System Failures

e Type 3 — Storage Media Failures

Failure Classification

Transaction Failures

e Logical Errors:

> Transaction cannot complete due to some internal error condition (e.g., integrity constraint
violation).

e Internal State Errors:
> DBMS must terminate an active transaction due to an error condition (e.g., deadlock).

System Failures

e Software Failure:
> Problem with the DBMS implementation (e.g., uncaught divide-by-zero exception).

e Hardware Failure:
» The computer hosting the DBMS crashes (e.g., power plug gets pulled).
> Fail-stop Assumption: Non-volatile storage contents are assumed to not be corrupted by
system crash.

Failure Classification
Storage Media Failure

e Non-Repairable Hardware Failure:

> A head crash or similar disk failure destroys all or part of non-volatile storage.
> Destruction is assumed to be detectable (e.g., disk controller use checksums to detect
failures).

e No DBMS can recover from this! Database must be restored from archived version.

Observation

e The primary storage location of the database is on non-volatile storage, but this is
much slower than volatile storage.
e Use volatile memory for faster access:

> First copy target record into memory.
» Perform the writes in memory.
> Write dirty records back to disk.

Observation

e The DBMS needs to ensure the following guarantees:

> The changes for any txn are durable once the DBMS has told somebody that it committed.
> No partial changes are durable if the txn aborted.

INerfaiial Buffer Pool Policies
g&mng

Buffer Pool Policies

Buffer Pool Policies
Undo vs. Redo

e Undo: The process of removing the effects of an incomplete or aborted txn.
e Redo: The process of re-instating the effects of a committed txn for durability.

e How the DBMS supports this functionality depends on how it manages the buffer
pool. ..

Logging

Buffer Pool

Schedule
T ———— ~\
: T T, :
11 BEGIN I

JR(A) ! Buffer Pool
HLIGY) I
H BEGIN !
! R(B) I
H W(B) 1
! comMT | |}
: 1
I
1 | ABORT H
! 1
! 1
! I
! I
! 1
!]
\ 7’

Da 26 /59

Logging

Buffer Pool

Schedule

P \\
: T T, :
1| BEGIN 1
1
1R ! Buffer Pool
Hww I
H BEGIN !
: R(B) 1
H v (8) !
! COMMIT |

; 1
1
! ABORT H
I i
! I
! I
! I
!]
‘n 4

Da 27 /59

Logging

Buffer Pool

Schedule :

I I H Do we force T,’s changes to

i
i Is T, allowed to overwrite A even be written to disk?
H | though it has not committed? Poo
WA
: ¢) BEGIN 1 A=3|B=8|C=7
I R(B) i
H W(B) i
i comMIT ||
! 1
1
1
1
1
I M
1
1
]
(N —— 4

Do 28 /59

Logging

Buffer Pool

COMMIT

Schedule

e ~

T, T, :
ﬁff)l N i Buffer Pool

W(A) 1

BEGIN !

R(B) I

W(B) 1

1

1

1

1

1

1

NS —
What happens when we m
need to rollback T

DA 29/59

Buffer Pool Policies
Steal Policy

e Whether the DBMS allows an uncommitted txn to overwrite the most recent
committed value of an object in non-volatile storage.

e STEAL: Is allowed.
e NO-STEAL.: Is not allowed.

Buffer Pool Policies
Force Policy

e Whether the DBMS requires that all updates made by a txn are reflected on
non-volatile storage before the txn is allowed to commit.

e FORCE: Is required.
e NO-FORCE: Is not required.

Logging

NO-STEAL + FORCE

Schedule

't """"""" ~\
1 T1 Tz 1
1 | BEGIN i
1R 1 [Buffer Pool
() |
H BEGIN '
: R(B) 1
: W(B) 1
! COMMIT |}
1 : 1
1 | ABORT H
H 1
H 1
1 1
i i
']
(S —— 7’

Do 32/59

Logging

NO-STEAL + FORCE

Schedule
T, T, E
BEGIN

R(A) i Buffer Pool

W(A) 1

BEGIN '

R(B) i

W(B) !

1

COMMIT

ABORT [FORCE means that T, changes must be

—
written to disk at this point.
| .

o

r
1
1
1
1
1
1
1
1
1
1
1
1
1
1
\-

Do 33/59

Logging

NO-STEAL + FORCE

Schedule
I I \
NO-STEAL means that T, changes
cannot be written to disk yet. |
W(A)

BEGIN
R(B)
W(B)
COMMIT

ABORT FORCE means that T, changes must be

written to disk at this point. a

| [et

o o o o o e

Do 34 /59

Logging

NO-STEAL + FORCE

Schedule

Ay
1
1
1
1
1
1
1
1
1
1
1
1
1
1
U

Buffer Pool

Now it's trivial to
rollback T,

N e e

(o8]

5/59

A

NO-STEAL + FORCE

e This approach is the easiest to implement:
> Never have to undo changes of an aborted txn because the changes were not written to
disk.
> Never have to redo changes of a committed txn because all the changes are guaranteed to
be written to disk at commit time (assuming atomic hardware writes).
e Previous example cannot support write sets that exceed the amount of physical
memory available.

INfsial Shadow Paging

Shadow Paging

Shadow Paging
Shadow Paging

Maintain two separate copies of the database:

> Master: Contains only changes from committed txns.
> Shadow: Temporary database with changes made from uncommitted txns.

Txns only make updates in the shadow copy.

When a txn commits, atomically switch the shadow to become the new master.
Buffer Pool Policy: NO-STEAL + FORCE

Shadow Paging
Shadow Paging

e Instead of copying the entire database, the DBMS copies pages on write.
e Organize the database pages in a tree structure where the root is a single disk page.

e There are two copies of the tree, the master and shadow

> The root points to the master copy.
> Updates are applied to the shadow copy.

Shadow Paging — Example

INfsial Shadow Paging

~
Memory
1
2
3
4 =
Master
Page Table
DB Root
_ J/

=

LI

Disk

e
o —
o
o —

C.

Shadow Paging
Shadow Paging

e To install the updates, overwrite the root so it points to the shadow, thereby swapping
the master and shadow:
> Before overwriting the root, none of the txn’s updates are part of the disk-resident
database
> After overwriting the root, all the txn’s updates are part of the disk-resident database.

IS EE Shadow Paging

Shadow Paging — Example

Memory Disk

o

||

B W N =

Master S
Page Table

DB Root

Txn T,

”&

1
2
3
4

Shadow
Page Table
J

) C

Logging

Shadow Paging — Example

Read-only txns access the -
current master. Disk
1
2 S
3 —
4 -
Master
Page Table
DB Root
1 -
Txn T, 2 —
3 -
4 -
Shadow

le

|

Active modifying txn
updates shadow pages. ﬂ

Da

43/59

Logging

Shadow Paging — Example

Read-only txns access the
current master.

>

Disk

E

Master
Page Table

Txn T, |

S

1
2
3 —
4

Shadow

PggeRghle
Active modifying txn
updates shadow pages.

A

44 /59

Shadow Paging — Example

Logging

Read-only txns access the
current master. Disk
1
2 LN
3 —
4 L >
Master \
Page Table
DB Root
! >
T™xn T,—p—>= —
3 = Cd
4 -~
Shadow
| Peele |
.

Active modifying txn
updates shadow pages.

C.

Da

45/59

IS EE Shadow Paging

Shadow Paging — Example

[Read-(mly txns access the

current master. Disk

> I

S

5

1]

/\
\
\
\ o
1
\
H

~

- Yas
==="Page Table
DB Rooi

— >]
ngn%le
.

J
Active modifying txn
updates shadow pages. ﬂ

v

Txn T,
COMMIT

s w N =
1
\

Logging

Shadow Paging — Example

Txn T,
COMMIT

p
Read-only txns access the
current master.

==="Page Table
DB Root

A w N o
AY

Update

-

Disk

>

s W o
|

Shadow

Pg,«n%le

Active modifying txn
updates shadow pages.

[X]
[X |

L X

y \ Vi Yy V v

-

C

D Qv

47 /59

Shadow Paging
Shadow Paging — Example

p
Memory Disk

-
-

- >]
DBRaa;\ /

— >]

Page Table
g J

g C

A 4

Txn T,
COMMIT

A w N o
1
\

Shadow Paging
Shadow Paging — Undo/Redo

e Supporting rollbacks and recovery is easy.
e Undo: Remove the shadow pages. Leave the master and the DB root pointer alone.
e Redo: Not needed at all.

Shadow Paging
Shadow Paging — Disadvantages

e Copying the entire page table is expensive:
> Use a page table structured like a B+tree.
> No need to copy entire tree, only need to copy paths in the tree that lead to updated leaf
nodes.
e Commit overhead is high:
> Flush every updated page, page table, and root.
> Data gets fragmented.
> Need garbage collection.
> Only supports one writer txn at a time or txns in a batch.

Shadow Paging
SQLITE (PRE-2010)

e When a txn modifies a page, the DBMS copies the original page to a separate
journal file before overwriting master version.

e After restarting, if a journal file exists, then the DBMS restores it to undo changes from
uncommitted txns.

SQLITE (PRE-2010)

Memory

IPage1 II Page 2 || Page3|

IPage1 IIPagez,II p— I
J . \ J
Disk

<
Disk
Journal File

e

Ipagezllpageslg IF'ageZl

\

|Page2||Page5|§ [aze 2 |

.

DA 52 /59

Loggir

SQLITE (PRE-2010)

Memory

I Page 1 IIPage 2’ IIPage 3’ I

Disk
|

| Page 2 || Page 5

Journal File

| Page 2 |

IPageaIIPageslg IPage3|

ole Memory

I Page 1 IIPage 2' IIPage 3’ I

1 4

/

Disk
| Pagf 1| © Journal File

IPageZ’IIPageSIE IPageZl

IPage3||Page6|§ | Page 3 |

a1

@

(€1
O

Loggir

SQLITE (PRE-2010)

) r |
. o Memory
Page 2
J L \ J
) s \
Disk E
-Page1 -Fage 4 Journal File -Page1 | e
IPagez,IIPageslélPagEZI IPageZ’IIPageSIE Pagezl
IPageSIIPageGI%IPage3I kIF’age3||PageﬁléIp_a;e,a J
J

SQLITE (PRE-2010)

Logging

Memory

i

~

= »
’,‘ Journal File

\

E I Page 5 I | — I

IPage3||Page6|§ Ipage3|

+—

Q>

55/59

Observation

e Shadowing page requires the DBMS to perform writes to random non-contiguous
pages on disk.

e We need a way for the DBMS convert random writes into sequential writes.

I tas Conclusion

Conclusion

Conclusion
Parting Thoughts

Recovery algorithms are techniques to ensure database consistency, transaction
atomicity, and durability despite failures.

Recovery algorithms have two parts:

> Actions during normal txn processing to ensure that the DBMS can recover from a failure.
> Actions after a failure to recover the database to a state that ensures atomicity, consistency,
and durability.

Three types of failures: transaction, system, and hardware failures
Buffer policies: NO-STEAL + FORCE

Next Class

Logging

« Write Ahead Logging

Hao

59 /59

	Logging
	Recap
	Motivation
	Failure Classification
	Buffer Pool Policies
	Shadow Paging
	Conclusion

