
1 / 59

Logging

Lecture 5: Logging (Part 1)



2 / 59

Logging Recap

Recap



3 / 59

Logging Recap

Query Plan

• The operators are arranged in a tree.
• Data flows from the leaves of the tree

up towards the root.
• The output of the root node is the

result of the query.

SELECT A.id, B.value
FROM A, B
WHERE A.id = B.id AND B.value > 100



4 / 59

Logging Recap

Query Processing

• Access methods are the alternative ways for retrieving specific tuples
• Hashing is almost always better than sorting for operator execution.
• Caveats:

▶ Sorting is better on non-uniform data.
▶ Sorting is better when result needs to be sorted.

• Good DBMSs use either or both.



5 / 59

Logging Recap

Process Models

• The same query plan be executed in multiple ways.
• A DBMS’s processing model defines how the system executes a query plan.
• (Most) DBMSs will want to use an index scan as much as possible.
• Parallel execution is important.
• (Almost) every DBMS supports this.
• This is really hard to get right.



6 / 59

Logging Recap

Today’s Agenda

• Motivation
• Failure Classification
• Buffer Pool Policies
• Shadow Paging



7 / 59

Logging Motivation

Motivation



8 / 59

Logging Motivation

Anatomy of a Database System [Monologue]

https://dsf.berkeley.edu/papers/fntdb07-architecture.pdf


9 / 59

Logging Motivation

Anatomy of a Database System [Monologue]

• Process Manager
▶ Manages client connections

• Query Processor
▶ Parse, plan and execute queries on top of storage manager

• Transactional Storage Manager
▶ Knits together buffer management, concurrency control, logging and recovery

• Shared Utilities
▶ Manage hardware resources across threads

https://dsf.berkeley.edu/papers/fntdb07-architecture.pdf


10 / 59

Logging Motivation

Anatomy of a Database System [Monologue]

• Process Manager
▶ Connection Manager + Admission Control

• Query Processor
▶ Query Parser
▶ Query Optimizer (a.k.a., Query Planner)
▶ Query Executor

• Transactional Storage Manager
▶ Lock Manager
▶ Access Methods (a.k.a., Indexes)
▶ Buffer Pool Manager
▶ Log Manager

• Shared Utilities
▶ Memory, Disk, and Networking Manager

https://dsf.berkeley.edu/papers/fntdb07-architecture.pdf


11 / 59

Logging Motivation

Motivation



12 / 59

Logging Motivation

Motivation



13 / 59

Logging Motivation

Motivation



14 / 59

Logging Motivation

Crash Recovery

• Recovery algorithms are techniques to ensure database consistency, transaction
atomicity, and durability despite failures.

• Recovery algorithms have two parts:
▶ Actions during normal txn processing to ensure that the DBMS can recover from a failure.
▶ Actions after a failure to recover the database to a state that ensures atomicity, consistency,

and durability.



15 / 59

Logging Failure Classification

Failure Classification



16 / 59

Logging Failure Classification

Crash Recovery

• DBMS is divided into different components based on the underlying storage device.
• We must also classify the different types of failures that the DBMS needs to handle.



17 / 59

Logging Failure Classification

Storage Types

• Volatile Storage
▶ Data does not persist after power loss or program exit.
▶ Examples: DRAM, SRAM

• Non-volatile Storage
▶ Data persists after power loss and program exit.
▶ Examples: HDD, SDD

• Stable Storage
▶ A non-existent form of non-volatile storage that survives all possible failures scenarios.
▶ Approximated using a collection of storage devices.



18 / 59

Logging Failure Classification

Failure Classification

• Type 1 – Transaction Failures
• Type 2 – System Failures
• Type 3 – Storage Media Failures



19 / 59

Logging Failure Classification

Transaction Failures

• Logical Errors:
▶ Transaction cannot complete due to some internal error condition (e.g., integrity constraint

violation).
• Internal State Errors:

▶ DBMS must terminate an active transaction due to an error condition (e.g., deadlock).



20 / 59

Logging Failure Classification

System Failures

• Software Failure:
▶ Problem with the DBMS implementation (e.g., uncaught divide-by-zero exception).

• Hardware Failure:
▶ The computer hosting the DBMS crashes (e.g., power plug gets pulled).
▶ Fail-stop Assumption: Non-volatile storage contents are assumed to not be corrupted by

system crash.



21 / 59

Logging Failure Classification

Storage Media Failure

• Non-Repairable Hardware Failure:
▶ A head crash or similar disk failure destroys all or part of non-volatile storage.
▶ Destruction is assumed to be detectable (e.g., disk controller use checksums to detect

failures).

• No DBMS can recover from this! Database must be restored from archived version.



22 / 59

Logging Failure Classification

Observation

• The primary storage location of the database is on non-volatile storage, but this is
much slower than volatile storage.

• Use volatile memory for faster access:
▶ First copy target record into memory.
▶ Perform the writes in memory.
▶ Write dirty records back to disk.



23 / 59

Logging Failure Classification

Observation

• The DBMS needs to ensure the following guarantees:
▶ The changes for any txn are durable once the DBMS has told somebody that it committed.
▶ No partial changes are durable if the txn aborted.



24 / 59

Logging Buffer Pool Policies

Buffer Pool Policies



25 / 59

Logging Buffer Pool Policies

Undo vs. Redo

• Undo: The process of removing the effects of an incomplete or aborted txn.
• Redo: The process of re-instating the effects of a committed txn for durability.
• How the DBMS supports this functionality depends on how it manages the buffer

pool. . .



26 / 59

Logging Buffer Pool Policies

Buffer Pool



27 / 59

Logging Buffer Pool Policies

Buffer Pool



28 / 59

Logging Buffer Pool Policies

Buffer Pool



29 / 59

Logging Buffer Pool Policies

Buffer Pool



30 / 59

Logging Buffer Pool Policies

Steal Policy

• Whether the DBMS allows an uncommitted txn to overwrite the most recent
committed value of an object in non-volatile storage.

• STEAL: Is allowed.
• NO-STEAL: Is not allowed.



31 / 59

Logging Buffer Pool Policies

Force Policy

• Whether the DBMS requires that all updates made by a txn are reflected on
non-volatile storage before the txn is allowed to commit.

• FORCE: Is required.
• NO-FORCE: Is not required.



32 / 59

Logging Buffer Pool Policies

NO-STEAL + FORCE



33 / 59

Logging Buffer Pool Policies

NO-STEAL + FORCE



34 / 59

Logging Buffer Pool Policies

NO-STEAL + FORCE



35 / 59

Logging Buffer Pool Policies

NO-STEAL + FORCE



36 / 59

Logging Buffer Pool Policies

NO-STEAL + FORCE

• This approach is the easiest to implement:
▶ Never have to undo changes of an aborted txn because the changes were not written to

disk.
▶ Never have to redo changes of a committed txn because all the changes are guaranteed to

be written to disk at commit time (assuming atomic hardware writes).

• Previous example cannot support write sets that exceed the amount of physical
memory available.



37 / 59

Logging Shadow Paging

Shadow Paging



38 / 59

Logging Shadow Paging

Shadow Paging

• Maintain two separate copies of the database:
▶ Master: Contains only changes from committed txns.
▶ Shadow: Temporary database with changes made from uncommitted txns.

• Txns only make updates in the shadow copy.
• When a txn commits, atomically switch the shadow to become the new master.
• Buffer Pool Policy: NO-STEAL + FORCE



39 / 59

Logging Shadow Paging

Shadow Paging

• Instead of copying the entire database, the DBMS copies pages on write.
• Organize the database pages in a tree structure where the root is a single disk page.
• There are two copies of the tree, the master and shadow

▶ The root points to the master copy.
▶ Updates are applied to the shadow copy.



40 / 59

Logging Shadow Paging

Shadow Paging – Example



41 / 59

Logging Shadow Paging

Shadow Paging

• To install the updates, overwrite the root so it points to the shadow, thereby swapping
the master and shadow:
▶ Before overwriting the root, none of the txn’s updates are part of the disk-resident

database
▶ After overwriting the root, all the txn’s updates are part of the disk-resident database.



42 / 59

Logging Shadow Paging

Shadow Paging – Example



43 / 59

Logging Shadow Paging

Shadow Paging – Example



44 / 59

Logging Shadow Paging

Shadow Paging – Example



45 / 59

Logging Shadow Paging

Shadow Paging – Example



46 / 59

Logging Shadow Paging

Shadow Paging – Example



47 / 59

Logging Shadow Paging

Shadow Paging – Example



48 / 59

Logging Shadow Paging

Shadow Paging – Example



49 / 59

Logging Shadow Paging

Shadow Paging – Undo/Redo

• Supporting rollbacks and recovery is easy.
• Undo: Remove the shadow pages. Leave the master and the DB root pointer alone.
• Redo: Not needed at all.



50 / 59

Logging Shadow Paging

Shadow Paging – Disadvantages

• Copying the entire page table is expensive:
▶ Use a page table structured like a B+tree.
▶ No need to copy entire tree, only need to copy paths in the tree that lead to updated leaf

nodes.
• Commit overhead is high:

▶ Flush every updated page, page table, and root.
▶ Data gets fragmented.
▶ Need garbage collection.
▶ Only supports one writer txn at a time or txns in a batch.



51 / 59

Logging Shadow Paging

SQLITE (PRE-2010)

• When a txn modifies a page, the DBMS copies the original page to a separate
journal file before overwriting master version.

• After restarting, if a journal file exists, then the DBMS restores it to undo changes from
uncommitted txns.



52 / 59

Logging Shadow Paging

SQLITE (PRE-2010)



53 / 59

Logging Shadow Paging

SQLITE (PRE-2010)



54 / 59

Logging Shadow Paging

SQLITE (PRE-2010)



55 / 59

Logging Shadow Paging

SQLITE (PRE-2010)



56 / 59

Logging Shadow Paging

Observation

• Shadowing page requires the DBMS to perform writes to random non-contiguous
pages on disk.

• We need a way for the DBMS convert random writes into sequential writes.



57 / 59

Logging Conclusion

Conclusion



58 / 59

Logging Conclusion

Parting Thoughts

• Recovery algorithms are techniques to ensure database consistency, transaction
atomicity, and durability despite failures.

• Recovery algorithms have two parts:
▶ Actions during normal txn processing to ensure that the DBMS can recover from a failure.
▶ Actions after a failure to recover the database to a state that ensures atomicity, consistency,

and durability.

• Three types of failures: transaction, system, and hardware failures
• Buffer policies: NO-STEAL + FORCE



59 / 59

Logging Conclusion

Next Class

• Write Ahead Logging


	Logging
	Recap
	Motivation
	Failure Classification
	Buffer Pool Policies
	Shadow Paging
	Conclusion


