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Query Plan
¢ The operators are arranged in a tree. TC 71, B.value
e Data flows from the leaves of the tree T
up towards the root. M A.id=B.1id
e The output of the root node is the ™~
result of the query. cyv"\al”e” oo
SELECT A.id, B.value
FROM A, B A B
WHERE A.id = B.id AND B.value > 100




Recap

Query Processing

Access methods are the alternative ways for retrieving specific tuples

Hashing is almost always better than sorting for operator execution.
Caveats:

> Sorting is better on non-uniform data.
> Sorting is better when result needs to be sorted.

Good DBMSs use either or both.



Recap

Process Models

The same query plan be executed in multiple ways.

A DBMS’s processing model defines how the system executes a query plan.

(Most) DBMSs will want to use an index scan as much as possible.

Parallel execution is important.
e (Almost) every DBMS supports this.
e This is really hard to get right.
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Anatomy of a Database System [Monologue]
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https://dsf.berkeley.edu/papers/fntdb07-architecture.pdf

Motivation
Anatomy of a Database System [Monologue]

Process Manager
> Manages client connections
Query Processor
> Parse, plan and execute queries on top of storage manager

Transactional Storage Manager
> Knits together buffer management, concurrency control, logging and recovery
Shared Utilities

> Manage hardware resources across threads


https://dsf.berkeley.edu/papers/fntdb07-architecture.pdf

Motivation
Anatomy of a Database System [Monologue]

Process Manager
> Connection Manager + Admission Control
Query Processor
> Query Parser
> Query Optimizer (a.k.a., Query Planner)
> Query Executor
Transactional Storage Manager
> Lock Manager
> Access Methods (a.k.a., Indexes)
> Buffer Pool Manager
> Log Manager
Shared Utilities

> Memory, Disk, and Networking Manager


https://dsf.berkeley.edu/papers/fntdb07-architecture.pdf
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Motivation
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IGEEESN  Motivation

Crash Recovery

e Recovery algorithms are techniques to ensure database consistency, transaction
atomicity, and durability despite failures.

e Recovery algorithms have two parts:

> Actions during normal txn processing to ensure that the DBMS can recover from a failure.
> Actions after a failure to recover the database to a state that ensures atomicity, consistency,
and durability.



il Failure Classification

Failure Classification



Crash Recovery

e DBMS is divided into different components based on the underlying storage device.
e We must also classify the different types of failures that the DBMS needs to handle.




Failure Classfcaton
Storage Types

¢ Volatile Storage

> Data does not persist after power loss or program exit.
> Examples: DRAM, SRAM

e Non-volatile Storage

> Data persists after power loss and program exit.
> Examples: HDD, SDD

e Stable Storage

> A non-existent form of non-volatile storage that survives all possible failures scenarios.
> Approximated using a collection of storage devices.



Logging

Failure Classification

e Type 1 - Transaction Failures

e Type 2 — System Failures

e Type 3 — Storage Media Failures

Failure Classification



Transaction Failures

e Logical Errors:

> Transaction cannot complete due to some internal error condition (e.g., integrity constraint
violation).

e Internal State Errors:
> DBMS must terminate an active transaction due to an error condition (e.g., deadlock).




System Failures

e Software Failure:
> Problem with the DBMS implementation (e.g., uncaught divide-by-zero exception).

e Hardware Failure:
» The computer hosting the DBMS crashes (e.g., power plug gets pulled).
> Fail-stop Assumption: Non-volatile storage contents are assumed to not be corrupted by
system crash.




Failure Classification
Storage Media Failure

e Non-Repairable Hardware Failure:

> A head crash or similar disk failure destroys all or part of non-volatile storage.
> Destruction is assumed to be detectable (e.g., disk controller use checksums to detect
failures).

e No DBMS can recover from this! Database must be restored from archived version.



Observation

e The primary storage location of the database is on non-volatile storage, but this is
much slower than volatile storage.
e Use volatile memory for faster access:

> First copy target record into memory.
» Perform the writes in memory.
> Write dirty records back to disk.



Observation

e The DBMS needs to ensure the following guarantees:

> The changes for any txn are durable once the DBMS has told somebody that it committed.
> No partial changes are durable if the txn aborted.



INerfaiial  Buffer Pool Policies
g&mng

Buffer Pool Policies



Buffer Pool Policies
Undo vs. Redo

e Undo: The process of removing the effects of an incomplete or aborted txn.
e Redo: The process of re-instating the effects of a committed txn for durability.

e How the DBMS supports this functionality depends on how it manages the buffer
pool. ..
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Buffer Pool
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Buffer Pool
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Buffer Pool
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Logging

Buffer Pool

COMMIT
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Buffer Pool Policies
Steal Policy

e Whether the DBMS allows an uncommitted txn to overwrite the most recent
committed value of an object in non-volatile storage.

e STEAL: Is allowed.
e NO-STEAL.: Is not allowed.



Buffer Pool Policies
Force Policy

e Whether the DBMS requires that all updates made by a txn are reflected on
non-volatile storage before the txn is allowed to commit.

e FORCE: Is required.
e NO-FORCE: Is not required.
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NO-STEAL + FORCE

Schedule

't """"""" ~\
1 T1 Tz 1
1 | BEGIN i
1R 1 [ Buffer Pool
() |
H BEGIN '
: R(B) 1
: W(B) 1
! COMMIT |}
1 : 1
1 | ABORT H
H 1
H 1
1 1
i i
' ]
(S —— 7’

Do 32/59



Logging

NO-STEAL + FORCE
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Logging

NO-STEAL + FORCE
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NO-STEAL + FORCE
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NO-STEAL + FORCE

e This approach is the easiest to implement:
> Never have to undo changes of an aborted txn because the changes were not written to
disk.
> Never have to redo changes of a committed txn because all the changes are guaranteed to
be written to disk at commit time (assuming atomic hardware writes).
e Previous example cannot support write sets that exceed the amount of physical
memory available.
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Shadow Paging
Shadow Paging

Maintain two separate copies of the database:

> Master: Contains only changes from committed txns.
> Shadow: Temporary database with changes made from uncommitted txns.

Txns only make updates in the shadow copy.

When a txn commits, atomically switch the shadow to become the new master.
Buffer Pool Policy: NO-STEAL + FORCE




Shadow Paging
Shadow Paging

e Instead of copying the entire database, the DBMS copies pages on write.
e Organize the database pages in a tree structure where the root is a single disk page.

e There are two copies of the tree, the master and shadow

> The root points to the master copy.
> Updates are applied to the shadow copy.



Shadow Paging — Example

INfsial  Shadow Paging
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Shadow Paging
Shadow Paging

e To install the updates, overwrite the root so it points to the shadow, thereby swapping
the master and shadow:
> Before overwriting the root, none of the txn’s updates are part of the disk-resident
database
> After overwriting the root, all the txn’s updates are part of the disk-resident database.
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Shadow Paging — Example
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Shadow Paging — Example

Read-only txns access the -
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Shadow Paging — Example

Read-only txns access the
current master.
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Shadow Paging — Example

Logging
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Shadow Paging — Example
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Shadow Paging — Example
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Shadow Paging
Shadow Paging — Example
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Shadow Paging
Shadow Paging — Undo/Redo

e Supporting rollbacks and recovery is easy.
e Undo: Remove the shadow pages. Leave the master and the DB root pointer alone.
e Redo: Not needed at all.



Shadow Paging
Shadow Paging — Disadvantages

e Copying the entire page table is expensive:
> Use a page table structured like a B+tree.
> No need to copy entire tree, only need to copy paths in the tree that lead to updated leaf
nodes.
e Commit overhead is high:
> Flush every updated page, page table, and root.
> Data gets fragmented.
> Need garbage collection.
> Only supports one writer txn at a time or txns in a batch.



Shadow Paging
SQLITE (PRE-2010)

e When a txn modifies a page, the DBMS copies the original page to a separate
journal file before overwriting master version.

e After restarting, if a journal file exists, then the DBMS restores it to undo changes from
uncommitted txns.



SQLITE (PRE-2010)
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Loggir

SQLITE (PRE-2010)
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Loggir

SQLITE (PRE-2010)
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SQLITE (PRE-2010)
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Observation

e Shadowing page requires the DBMS to perform writes to random non-contiguous
pages on disk.

e We need a way for the DBMS convert random writes into sequential writes.
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Conclusion
Parting Thoughts

Recovery algorithms are techniques to ensure database consistency, transaction
atomicity, and durability despite failures.

Recovery algorithms have two parts:

> Actions during normal txn processing to ensure that the DBMS can recover from a failure.
> Actions after a failure to recover the database to a state that ensures atomicity, consistency,
and durability.

Three types of failures: transaction, system, and hardware failures
Buffer policies: NO-STEAL + FORCE
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« Write Ahead Logging
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