
1 / 49

Logging (Part 2)

Lecture 6: Logging (Part 2)

JA



2 / 49

Logging (Part 2) Recap

Recap



3 / 49

Logging (Part 2) Recap

Crash Recovery

• Recovery algorithms are techniques to ensure database consistency, transaction
atomicity, and durability despite failures.

• Recovery algorithms have two parts:
▶ Actions during normal txn processing to ensure that the DBMS can recover from a failure.
▶ Actions after a failure to recover the database to a state that ensures atomicity, consistency,

and durability.

JA

JA

JA

JA

JA

JA



4 / 49

Logging (Part 2) Recap

Failure Classification

• Type 1 – Transaction Failures
• Type 2 – System Failures
• Type 3 – Storage Media Failures

JA

JA

JA



5 / 49

Logging (Part 2) Recap

Undo vs. Redo

• Undo: The process of removing the effects of an incomplete or aborted txn.
• Redo: The process of re-instating the effects of a committed txn for durability.
• How the DBMS supports this functionality depends on how it manages the buffer

pool. . .

JA

JA

JA

JA

JA



6 / 49

Logging (Part 2) Recap

NO-STEAL + FORCE

• This approach is the easiest to implement:
▶ Never have to undo changes of an aborted txn because the changes were not written to

disk.
▶ Never have to redo changes of a committed txn because all the changes are guaranteed to

be written to disk at commit time (assuming atomic hardware writes).

• Cannot support write sets that exceed the amount of physical memory available.

JA

JA

JA

JA

JA

JA

JA

JA

JA

JA



7 / 49

Logging (Part 2) Recap

Shadow Paging

• Maintain two separate copies of the database:
▶ Master: Contains only changes from committed txns.
▶ Shadow: Temporary database with changes made from uncommitted txns.

• Txns only make updates in the shadow copy.
• When a txn commits, atomically switch the shadow to become the new master.
• Buffer Pool Policy: NO-STEAL + FORCE

JA

JA



8 / 49

Logging (Part 2) Recap

Shadow Paging – Example

JA

JA

JA

JA

JA

JA

JA

JA

JA

JA

JA

JA

JA

JA

JA

JA

JA

JA

JA

JA

JA



9 / 49

Logging (Part 2) Recap

Shadow Paging – Disadvantages

• Copying the entire page table is expensive:
▶ Use a page table structured like a B+tree.
▶ No need to copy entire tree, only need to copy paths in the tree that lead to updated leaf

nodes.
• Commit overhead is high:

▶ Flush every updated page, page table, and root.
▶ Data gets fragmented.
▶ Need garbage collection.
▶ Only supports one writer txn at a time or txns in a batch.

JA

JA

JA

JA

JA



10 / 49

Logging (Part 2) Recap

Observation

• Shadowing page requires the DBMS to perform writes to random non-contiguous
pages on disk.

• We need a way for the DBMS convert random writes into sequential writes.

JA



11 / 49

Logging (Part 2) Recap

Today’s Agenda

• Write-Ahead Logging
• Logging Schemes
• Checkpoints

JA



12 / 49

Logging (Part 2) Write-Ahead Logging

Write-Ahead Logging



13 / 49

Logging (Part 2) Write-Ahead Logging

Write-Ahead Logging (WAL) Protocol

• Maintain a log file separate from data files that contains the changes that txns make to
database.
▶ Assume that the log is on stable storage.
▶ Log contains enough information to perform the necessary undo and redo actions to

restore the database.

JA

JA

JA

JA

JA

JA

JA

JA

JA

JA

JA

JA



14 / 49

Logging (Part 2) Write-Ahead Logging

WAL Protocol

• DBMS must write to disk the log file records that correspond to changes made to a
database object before it can flush that object to disk.

• Buffer Pool Policy: STEAL + NO-FORCE
▶ This decouples writing a transaction’s dirty pages to database on disk from committing

the transaction.
▶ We only need to write its corresponding log records.
▶ If a txn updates a 100 tuples stored in 100 pages, we only need to write 100 log records

(which could be a few pages) instead of 100 dirty pages.

JA

JA

JA

JA

JA

JA

JA

JA

JA

JA

JA



15 / 49

Logging (Part 2) Write-Ahead Logging

WAL Protocol

• The DBMS stages all a txn’s log records in volatile storage (usually backed by buffer
pool).

• All log records pertaining to an updated page are written to non-volatile storage before
the page itself is over-written in non-volatile storage.

• A txn is not considered committed until all its log records have been written to stable
storage.

JA

JA

JA

JA

JA

JA



16 / 49

Logging (Part 2) Write-Ahead Logging

WAL Protocol

• Write a <BEGIN> record to the log for each txn to mark its starting point.
• When a txn finishes, the DBMS will:

▶ Write a <COMMIT> record on the log
▶ Make sure that all log records are flushed before it returns an acknowledgement to

application.
▶ This allows us to later redo the changes of the committed txns by replaying the log

records.

JA

JA

JA

JA

JA

JA

JA

JA



17 / 49

Logging (Part 2) Write-Ahead Logging

WAL Protocol

• Each log entry contains information about the change to a single object:
▶ Transaction Id
▶ Object Id
▶ Before Value (UNDO)
▶ After Value (REDO)

JA

JA

JA

JA

JA

JA

JA

JA

JA

JA

JA

JA



18 / 49

Logging (Part 2) Write-Ahead Logging

WAL – Example

JA

JA

JA

JA

JA



19 / 49

Logging (Part 2) Write-Ahead Logging

WAL – Example

JA

JA

JA

JA

JA



20 / 49

Logging (Part 2) Write-Ahead Logging

WAL – Example

JA

JA

JA

JA

JA

JA

JA

JA

JA

JA

JA

JA

JA

JA



21 / 49

Logging (Part 2) Write-Ahead Logging

WAL – Example

JA



22 / 49

Logging (Part 2) Write-Ahead Logging

WAL – Implementation

• When should the DBMS write log entries to disk?
▶ When the transaction commits.
▶ Can use group commit to batch multiple log flushes together to amortize overhead.

JA

JA

JA

JA

JA

JA

JA

JA



23 / 49

Logging (Part 2) Write-Ahead Logging

WAL – Group Commit

JA



24 / 49

Logging (Part 2) Write-Ahead Logging

WAL – Group Commit

JA

JA

JA



25 / 49

Logging (Part 2) Write-Ahead Logging

WAL – Group Commit

JA

JA

JA

JA



26 / 49

Logging (Part 2) Write-Ahead Logging

WAL – Group Commit



27 / 49

Logging (Part 2) Write-Ahead Logging

WAL – Implementation

• When should the DBMS write log entries to disk?
▶ When the transaction commits.
▶ Can use group commit to batch multiple log flushes together to amortize overhead.

• When should the DBMS write dirty records to disk?
▶ Every time the txn executes an update?
▶ Once when the txn commits?

JA

JA



28 / 49

Logging (Part 2) Write-Ahead Logging

WAL – Deferred Updates

• If we prevent the DBMS from writing dirty records to disk until the txn commits, then
the DBMS does not need to store their original values.

JA

JA

JA

JA

JA

JA

JA

JA

JA

JA



29 / 49

Logging (Part 2) Write-Ahead Logging

WAL – Deferred Updates

• This won’t work if the change set of a txn is larger than the amount of memory
available.

• The DBMS cannot undo changes for an aborted txn if it doesn’t have the original
values in the log.

• We need to use the STEAL policy.

JA



30 / 49

Logging (Part 2) Write-Ahead Logging

Buffer Pool Policies

• Almost every DBMS uses NO-FORCE + STEAL

JA

JA

JA

JA

JA

JA

JA

JA



31 / 49

Logging (Part 2) Write-Ahead Logging

Buffer Pool Policies

• Almost every DBMS uses NO-FORCE + STEAL

JA

JA



32 / 49

Logging (Part 2) Logging Schemes

Logging Schemes



33 / 49

Logging (Part 2) Logging Schemes

Logging Schemes

• Physical Logging
▶ Record the changes made to a specific location in the database.
▶ Example: git diff

• Logical Logging
▶ Record the high-level operations executed by txns.
▶ Not necessarily restricted to single page.
▶ Example: The UPDATE, DELETE, and INSERT queries invoked by a txn.

JA

JA

JA

JA

JA

JA

JA

JA



34 / 49

Logging (Part 2) Logging Schemes

Physical vs. Logical Logging

• Logical logging requires less data written in each log record than physical logging.
• Difficult to implement recovery with logical logging if you have concurrent txns.

▶ Hard to determine which parts of the database may have been modified by a query before
crash.

▶ Also takes longer to recover because you must re-execute every txn all over again.

JA

JA

JA



35 / 49

Logging (Part 2) Logging Schemes

Physiological Logging

• Hybrid approach where log records target a single page but do not specify data
organization of the page.

• This is the most popular approach.

JA

JA

JA

JA



36 / 49

Logging (Part 2) Logging Schemes

Logging Schemes

UPDATE foo SET val = XYZ WHERE id = 1;

JA

JA

JA

JA

JA

JA

JA

JA

JA

JA

JA

JA

JA



37 / 49

Logging (Part 2) Logging Schemes

Log Flushing

• Approach 1: All-at-Once Flushing
▶ Wait until a txn has fully committed before writing out log records to disk.
▶ Do not need to store abort records because uncommitted changes are never written to disk.

• Approach 2: Incremental Flushing
▶ Allow the DBMS to write a txn’s log records to disk before it has committed.

JA

JA

JA

JA

JA

JA

JA



38 / 49

Logging (Part 2) Logging Schemes

Group Commit Optimization

• Batch together log records from multiple txns and flush them together with a single
fsync.
▶ Logs are flushed either after a timeout or when the buffer gets full.
▶ Originally developed in IBM IMS FastPath in the 1980s

• This amortizes the cost of I/O over several txns.

https://en.wikipedia.org/wiki/IBM_Information_Management_System#.22Fast_Path.22_databases
JA

JA

JA

JA

JA

JA



39 / 49

Logging (Part 2) Logging Schemes

Early Lock Release Optimization

• A txn’s locks can be released before its commit record is written to disk if it does not
return results to the client before becoming durable.

• Other txns that speculatively read data updated by a pre-committed txn become
dependent on it and must wait for their predecessor’s log records to reach disk.

JA



40 / 49

Logging (Part 2) Checkpoints

Checkpoints



41 / 49

Logging (Part 2) Checkpoints

Checkpoints

• The WAL will grow forever.
• After a crash, the DBMS has to replay the entire log which will take a long time.
• The DBMS periodically takes a checkpoint where it flushes all buffers out to disk.

JA

JA



42 / 49

Logging (Part 2) Checkpoints

Checkpoints

• Output onto stable storage all log records currently residing in main memory.
• Output to the disk all modified blocks.
• Write a <CHECKPOINT> entry to the log and flush to stable storage.

JA

JA

JA



43 / 49

Logging (Part 2) Checkpoints

Checkpoints

• Any txn that committed before the checkpoint is
ignored (T1).

JA

JA

JA



44 / 49

Logging (Part 2) Checkpoints

Checkpoints

• T2 + T3 did not commit before the last
checkpoint.
▶ Need to redo T2 because it committed after

checkpoint.
▶ Need to undo T3 because it did not commit

before the crash.

JA

JA

JA

JA

JA

JA

JA

JA



45 / 49

Logging (Part 2) Checkpoints

Checkpoints – Challenges

• We have to stall all txns when take a checkpoint to ensure a consistent snapshot.
• Scanning the log to find uncommitted txns can take a long time.
• Not obvious how often the DBMS should take a checkpoint. . .

JA

JA



46 / 49

Logging (Part 2) Checkpoints

Checkpoints – Frequency

• Checkpointing too often causes the runtime performance to degrade.
▶ System spends too much time flushing buffers.

• But waiting a long time is just as bad:
▶ The checkpoint will be large and slow.
▶ Makes recovery time much longer.

JA

JA

JA



47 / 49

Logging (Part 2) Conclusion

Conclusion



48 / 49

Logging (Part 2) Conclusion

Parting Thoughts

• Write-Ahead Logging is (almost) always the best approach to handle loss of volatile
storage.
▶ Use incremental updates (STEAL + NO-FORCE) with checkpoints.
▶ On recovery: undo uncommitted txns + redo committed txns.

JA

JA

JA



49 / 49

Logging (Part 2) Conclusion

Next Class

• Recovery with ARIES protocol.

JA


	Logging (Part 2)
	Recap
	Write-Ahead Logging
	Logging Schemes
	Checkpoints
	Conclusion


