Lecture 6: Logging (Part 2)

Logging (Part 2)

Recap

2/49

Logging (Part2) EIETe)

Crash Recovery

e Recovery algorithms are techniques to ensure database consistency, transaction
atomicity, and durability despite failures.

e Recovery algorithms have two parts:

> Actions during normal txn processing to ensure that the DBMS can recover from a failure.
> Actions after a failure to recover the database to a state that ensures atomicity, consistency,
and durability.

Logging (Part2) EIETe)

Failure Classification

e Type 1 - Transaction Failures

e Type 2 — System Failures

e Type 3 — Storage Media Failures

Recap
Undo vs. Redo

e Undo: The process of removing the effects of an incomplete or aborted txn.
e Redo: The process of re-instating the effects of a committed txn for durability.

e How the DBMS supports this functionality depends on how it manages the buffer
pool. ..

Recap
NO-STEAL + FORCE

e This approach is the easiest to implement:

> Never have to undo changes of an aborted txn because the changes were not written to
disk.

> Never have to redo changes of a committed txn because all the changes are guaranteed to
be written to disk at commit time (assuming atomic hardware writes).

e Cannot support write sets that exceed the amount of physical memory available.

Recap
Shadow Paging

Maintain two separate copies of the database:

> Master: Contains only changes from committed txns.
> Shadow: Temporary database with changes made from uncommitted txns.

Txns only make updates in the shadow copy.

When a txn commits, atomically switch the shadow to become the new master.
Buffer Pool Policy: NO-STEAL + FORCE

Logging (Part2) RN

Shadow Paging — Example

Read-only txns access the
current master.

Disk

e L > W

LY

5

W N =
|
/\

- Yas
==="Page Table
DB Rooi

Txn T, % i
COMMIT : g D—
Shadow

Pggegble
.

J
Active modifying txn
updates shadow pages. ﬂ

Recap
Shadow Paging — Disadvantages

e Copying the entire page table is expensive:
> Use a page table structured like a B+tree.
> No need to copy entire tree, only need to copy paths in the tree that lead to updated leaf
nodes.
e Commit overhead is high:
> Flush every updated page, page table, and root.
> Data gets fragmented.
> Need garbage collection.
> Only supports one writer txn at a time or txns in a batch.

Logging (Part2) EIETe)

Observation

e Shadowing page requires the DBMS to perform writes to random non-contiguous
pages on disk.

e We need a way for the DBMS convert random writes into sequential writes.

Logging (Part 2)

Today’s Agenda

e Write-Ahead Logging
e Logging Schemes
e Checkpoints

Recap

IS IE AN Write-Ahead Logging

Write-Ahead Logging

el
Write-Ahead Logging (WAL) Protocol

e Maintain a log file separate from data files that contains the changes that txns make to
database.

> Assume that the log is on stable storage.
> Log contains enough information to perform the necessary undo and redo actions to
restore the database.

Write-Ahead Logging
WAL Protocol

e DBMS must write to disk the log file records that correspond to changes made to a
database object before it can flush that object to disk.

e Buffer Pool Policy: STEAL + NO-FORCE

> This decouples writing a transaction’s dirty pages to database on disk from committing
the transaction.

> We only need to write its corresponding log records.

> If a txn updates a 100 tuples stored in 100 pages, we only need to write 100 log records
(which could be a few pages) instead of 100 dirty pages.

Write-Ahead Logging
WAL Protocol

e The DBMS stages all a txn’s log records in volatile storage (usually backed by buffer
pool).

e All log records pertaining to an updated page are written to non-volatile storage before
the page itself is over-written in non-volatile storage.

e A txn is not considered committed until all its log records have been written to stable
storage.

Write-Ahead Logging
WAL Protocol

e Write a <BEGIN> record to the log for each txn to mark its starting point.
e When a txn finishes, the DBMS will:

> Write a <COMMIT> record on the log

> Make sure that all log records are flushed before it returns an acknowledgement to
application.

> This allows us to later redo the changes of the committed txns by replaying the log
records.

Write-Ahead Logging
WAL Protocol

e Each log entry contains information about the change to a single object:

» Transaction Id

> Object Id

» Before Value (UNDO)
> After Value (REDO)

Logging (Part 2)

WAL - Example

Schedule
e
] T
H BEGIN
1 W(A)

H W(B)

1 H

]

H COMMIT
1

1

1

1

1

1

1

]

]

1

‘\ --------------

Y

S

)
WAL Buffer

)
Buffer Pool

<T, BEGIN>
<T,, A, 1, 8

A

18 /49

WAL - Example

o

Schedule

BEGIN
W(A)
W(B)

COMMIT

U

N e e

R
WAL Buffer
<T, BEGIN>
<T,, A, 1, 8
<T,, B, 5, 9>

)
Buffer Pool

A

19/ 49

WAL - Example

o e

!

Schedule

BEGIN
W(A)
WgB)

COMMIT

- —

Txn result is now safe to
return to application.
1
1
1
]
.............. ’

<T, BEGIN>
<T,, A, 1, 8
<T,, B, 5, 9
<T, COMMIT>

! S
Buffer Pool

———
WAL Buffer

<T, BEGIN>
<T, A1, 8
<T,, B, 5, 9
<1, coMMIT>

Da 20/49

WAL - Example

o o

Schedule

BEGIN
W(A)
W(B)

COMMIT

Txn result is now safe to l

[y —————

return to application.

Everything we need to
restore T, is in the log!

)
WAL Buffer

~——

)
Buffer Pool

<1,
<1,
<1,
<7,

Da 21/49

Wite-Ancad Logging
WAL — Implementation

e When should the DBMS write log entries to disk?

> When the transaction commits.
> Can use group commit to batch multiple log flushes together to amortize overhead.

Logging (Part 2)

WAL - Group Commit

Schedule Flush the buffer
e ——————————— when it is full.
A SN
i <T, BEGIN>
i Sif)m ! <T,, A, 1, 8>
H NGB) ! | <11, B, 5, 9
I (b
: ‘W(C) H 2 G 1,
H W(D) i
1 : H
! I
! I
! I
i I L7
I | COMMIT :
' COMMIT H
! H e
‘s ______________ 7’ ~—

23/49

I

il
it
S
el
Q

WAL - Group Commit

Schedule Flush the buffer
pmm—m——————————— when it is full.
| h = 1 <, BEGIN.
1 <T, >
1 SE(ESN : <7y, A, 1, 8
H NGE) 1 [l<m. 8,5 9 4
! BEGIN// :12 BEGI:b .,
: -W(C) H 2 G, 1,
1 W(D) :
1 : H
! 1
! 1
! 1
H 1
1 | COMMIT !
: COMMIT 1
! P\
‘~ ______________ 4 ———

<T, BEGIN>

A

24 /49

WAL - Group Commit

% =

COMMIT

e

WAL Buffers

<T, BEGIN>
<Ty, A, 1, 8
<T;, B, 5, 9>

_Schedule _
T T,
BEGIN
W(A)
W(B)
BEGIN
W(C)

W(?) \
X

COMMIT

o o e o o o

!

Flush after an elapsed

amount of time.

<T,, D, 3, 4>

\

<T, BEGIN>
<, A1, 8

<7y, B, 5, 9
PN
DA

25/49

Logging (Part 2)

WAL - Group Commit

Schedule

)
goTTITTTT T \ WAL Buffers SN e
H T T, ! Srees
1 | BEGIN 1 @iy
1| WA H
1w 1
H 3'5?1" Flush after an elapsed E
1 w(D) amount of time.
1 . (,) \ﬁ\ E
] H :
! <T,, D, 3, 4>
| X=X /
1 L7
1 | COMMIT
: COMMIT
1
| | N —

Da 26 /49

Wite-Ancad Logging
WAL — Implementation

e When should the DBMS write log entries to disk?

> When the transaction commits.

> Can use group commit to batch multiple log flushes together to amortize overhead.
e When should the DBMS write dirty records to disk?

> Every time the txn executes an update?
> Once when the txn commits?

IF-Cel CAUEW NS Write-Ahead Logging

WAL - Deferred Updates

e If we prevent the DBMS from writing dirty records to disk until the txn commits, then
the DBMS does not need to store their original values.

p
Replay the log and redo Simply ignore all of T/'s
each update. updates.

<T, BEGIN> <T, BEGIN>

<T,, A, 8 <T,, A, 8

<T,, B, 9 <T,, B, 9>

<T, COMMIT> CRASH!

CRASH!

Wite-Ahead Loging
WAL - Deferred Updates

e This won’t work if the change set of a txn is larger than the amount of memory
available.

e The DBMS cannot undo changes for an aborted txn if it doesn’t have the original
values in the log.

e We need to use the STEAL policy.

IF-Cel CAUEW NS Write-Ahead Logging

Buffer Pool Policies

e Almost every DBMS uses NO-FORCE + STEAL

Runtime Performance Recovery Performance

NO-STEAL STEAL NO-STEAL STEAL

NO-FORCE - Fastest NO-FORCE - Slowest

FORCE | Fastest -

Buffer Pool Policies

NO-STEAL

Logging (Part 2)

e Almost every DBMS uses NO-FORCE + STEAL

Runtime Performance

STEAL

Fastest

Slowest

| No Undo + No Rem

JICEEIESIEHMANN Logging Schemes

Logging Schemes

Logging Schemes
Logging Schemes

e Physical Logging

> Record the changes made to a specific location in the database.
> Example: git diff

e Logical Logging

> Record the high-level operations executed by txns.
> Not necessarily restricted to single page.
> Example: The UPDATE, DELETE, and INSERT queries invoked by a txn.

Logging Schemes
Physical vs. Logical Logging

 Logical logging requires less data written in each log record than physical logging.
e Difficult to implement recovery with logical logging if you have concurrent txns.

> Hard to determine which parts of the database may have been modified by a query before
crash.
> Also takes longer to recover because you must re-execute every txn all over again.

Logging Schemes
Physiological Logging

e Hybrid approach where log records target a single page but do not specify data
organization of the page.

e This is the most popular approach.

Logging (Part 2)

Logging Schemes

UPDATE foo SET val = XYZ WHERE id = 1;

Physical Logical Physiological

f-_-___-__-___--‘ I'__--_---_---_-..l |' ______________ -

1 1 1
1| < 1 1| <Ty, 1 1| <Ny, 1
1| Table=X, 1 1| Query="UPDATE foo 1 1| Table=X, 1
1| Page=99, 1 1 SET val=xyz | I 1| Page=99, 1
: offset=4, 1 : WHERE id=1"> | | 1| objectrd=1, H
j | Before=aBC, Vo I 1| Before=agC, H
1| After=xyz> i 1 1 1| After=xyz> 1
1<, 1 1 1 1<, 1
: Index=X_PKEY, : : : : Index=X_PKEY, :
1 | Page=45, 1 1 1 1| IndexPage=45, 1
1| Offset=9, 1 1 1 1| Key=(1,Recordl)> 1
1| Key=(1,Recordl)> 1 1 1 1 1
1 1 : 1 1 1
I\ ______________ -ol N\ o' I_______--------'I

36/49

I

il
it
S
el
Q

Logging Schemes
Log Flushing

e Approach 1: All-at-Once Flushing

> Wait until a txn has fully committed before writing out log records to disk.
> Do not need to store abort records because uncommitted changes are never written to disk.

e Approach 2: Incremental Flushing

> Allow the DBMS to write a txn’s log records to disk before it has committed.

I AW Logging Schemes

Group Commit Optimization

e Batch together log records from multiple txns and flush them together with a single
fsync.

> Logs are flushed either after a timeout or when the buffer gets full.
> Originally developed in IBM IMS FastPath in the 1980s

e This amortizes the cost of I/O over several txns.

https://en.wikipedia.org/wiki/IBM_Information_Management_System#.22Fast_Path.22_databases

Loggin Schemes
Early Lock Release Optimization

e A txn’s locks can be released before its commit record is written to disk if it does not
return results to the client before becoming durable.

e Other txns that speculatively read data updated by a pre-committed txn become
dependent on it and must wait for their predecessor’s log records to reach disk.

Logging (Part 2) EN@:EESTE

Checkpoints

Checkpoints
Checkpoints

e The WAL will grow forever.
e After a crash, the DBMS has to replay the entire log which will take a long time.
e The DBMS periodically takes a checkpoint where it flushes all buffers out to disk.

Checkpoints
Checkpoints

e Output onto stable storage all log records currently residing in main memory.
e Output to the disk all modified blocks.
e Write a <CHECKPOINT> entry to the log and flush to stable storage.

Checkpoints

¢ Any txn that committed before the checkpoint is
ignored (T1).

.)
WAL

<T1 BEGIN>
<T1, A, 1, 2>
P <T1 COMMIT>
<T2 BEGIN>

<T2, A, 2, 3>
<T3 BEGIN>
<CHECKPOINT>
<T2 COMMIT>
<T3, A, 3, 4>

~——

T 9ac

43/49

Checkpoints
Checkpoints

e T2 + T3 did not commit before the last
checkpoint.

»> Need to redo T2 because it committed after
checkpoint.

> Need to undo T3 because it did not commit
before the crash.

)
WAL

<T1 BEGIN>
<T1, A, 1, 2>
<T1 COMMIT>
<T2 BEGIN>
<T2, A, 2, 3>
<T3 BEGIN>
<CHECKPOINT>
<T2 COMMIT>
<T3, A, 3, 4>

~——o

Checkpoints
Checkpoints — Challenges

e We have to stall all txns when take a checkpoint to ensure a consistent snapshot.
e Scanning the log to find uncommitted txns can take a long time.
e Not obvious how often the DBMS should take a checkpoint. . .

Checkpoints
Checkpoints — Frequency

e Checkpointing too often causes the runtime performance to degrade.
> System spends too much time flushing buffers.
e But waiting a long time is just as bad:

> The checkpoint will be large and slow.
> Makes recovery time much longer.

ICEEIESIENANN Conclusion

Conclusion

Conclusion
Parting Thoughts

e Write-Ahead Logging is (almost) always the best approach to handle loss of volatile
storage.
> Use incremental updates (STEAL + NO-FORCE) with checkpoints.
> On recovery: undo uncommitted txns + redo committed txns.

Next Class

e Recovery with ARIES protocol.

Da 49 /49

	Logging (Part 2)
	Recap
	Write-Ahead Logging
	Logging Schemes
	Checkpoints
	Conclusion

