
1 / 64

Case Studies

Lecture 10: Case Studies



2 / 64

Case Studies

Crash Recovery

• Recovery algorithms are techniques to ensure database consistency, transaction
atomicity, and durability despite failures.

• Recovery algorithms have two parts:
▶ Actions during normal txn processing to ensure that the DBMS can recover from a failure.
▶ Actions after a failure to recover the database to a state that ensures atomicity, consistency,

and durability.



3 / 64

Case Studies

Observation

• Many of the early papers (1980s) on recovery for in-memory DBMSs assume that there
is non-volatile memory.
▶ Reference
▶ Battery-backed DRAM is large / finnicky
▶ Real NVM is finally here as of 2019!

• This hardware is still not widely available, so we want to use existing SSD/HDDs.

https://dl.acm.org/doi/10.1145/38713.38730


4 / 64

Case Studies

In-Memory Database Systems: Recovery

• Slightly easier than in a disk-oriented DBMS because the system must do less work:
▶ Do not track dirty pages in case of crash during recovery.
▶ Do not store undo records (only need redo).
▶ Do not log changes to indexes.

• But the DBMS is still stymied by the slow sync time of non-volatile storage.



5 / 64

Case Studies

Today’s Agenda

• Logging Schemes
• Case Study: Microsoft Azure SQL
• Case Study: SiloR
• Checkpoint Protocols
• Case Study: Facebook Scuba



6 / 64

Case Studies Logging Schemes

Logging Schemes



7 / 64

Case Studies Logging Schemes

Logging Schemes

• Physical Logging
▶ Record the changes made to a specific location in the database.
▶ Example: git diff

• Logical Logging
▶ Record the high-level operations executed by txns.
▶ Not necessarily restricted to single page.
▶ Example: The UPDATE, DELETE, and INSERT queries invoked by a txn.



8 / 64

Case Studies Logging Schemes

Physical vs. Logical Logging

• Logical logging requires less data written in each log record than physical logging.
• Difficult to implement recovery with logical logging if you have concurrent txns.

▶ Hard to determine which parts of the database may have been modified by a query before
crash.

▶ Also takes longer to recover because you must re-execute every txn all over again.



9 / 64

Case Studies Logging Schemes

Log Flushing

• Approach 1: All-at-Once Flushing
▶ Wait until a txn has fully committed before writing out log records to disk.
▶ Do not need to store abort records because uncommitted changes are never written to disk.

• Approach 2: Incremental Flushing
▶ Allow the DBMS to write a txn’s log records to disk before it has committed.



10 / 64

Case Studies Logging Schemes

Group Commit Optimization

• Batch together log records from multiple txns and flush them together with a single
fsync.
▶ Logs are flushed either after a timeout or when the buffer gets full.
▶ Originally developed in IBM IMS FastPath in the 1980s

• This amortizes the cost of I/O over several txns.

https://en.wikipedia.org/wiki/IBM_Information_Management_System#.22Fast_Path.22_databases


11 / 64

Case Studies Logging Schemes

Early Lock Release Optimization

• A txn’s locks can be released before its commit record is written to disk if it does not
return results to the client before becoming durable.

• Other txns that speculatively read data updated by a pre-committed txn become
dependent on it and must wait for their predecessor’s log records to reach disk.



12 / 64

Case Studies Case Study: Microsoft Azure SQL

Case Study: Microsoft Azure SQL



13 / 64

Case Studies Case Study: Microsoft Azure SQL

Observation

• The delta records in a DBMS that uses a n multi-versioned concurrency control
(MVCC) protocol are like the log records generated in physical logging.

• Instead of generating separate data structures for MVCC and logging, what if the
DBMS could use the same information?



14 / 64

Case Studies Case Study: Microsoft Azure SQL

MSSQL: Constant-Time Recovery

• Physical logging protocol that uses the DBMS’s MVCC time-travel table as the
recovery log.

• Reference
▶ The version store is a persistent append-only storage area that is flushed to disk.
▶ Leverage versions meta-data to "undo" updates without having to process undo records

in WAL.

• Recovery time is measured based on the number of version store records that must be
read from disk.

https://www.microsoft.com/en-us/research/uploads/prod/2019/06/p700-antonopoulos.pdf


15 / 64

Case Studies Case Study: Microsoft Azure SQL

MSSQL: Version Store



16 / 64

Case Studies Case Study: Microsoft Azure SQL

MSSQL: Version Store



17 / 64

Case Studies Case Study: Microsoft Azure SQL

MSSQL: Version Store



18 / 64

Case Studies Case Study: Microsoft Azure SQL

MSSQL CTR: Persistent Version Store

• Approach 1: In-row Versioning
▶ Store small updates to a tuple as a delta record embedded with the latest version in the

main table.
▶ "best-effort in-lining" technique.

• Approach 2: Off-row Versioning
▶ Specialized data table to store the old versions that is optimized for concurrent inserts.
▶ Versions from all tables are stored in a single table.
▶ Store redo records for inserts on this table in WAL.



19 / 64

Case Studies Case Study: Microsoft Azure SQL

MSSQL CTR: In-row Versioning

• Store small updates to a tuple as a delta record
embedded with the latest version in the main
table.

• The delta record space is not pre-allocated per
tuple in a disk-oriented DBMS.



20 / 64

Case Studies Case Study: Microsoft Azure SQL

MSSQL CTR: In-row Versioning

• Store small updates to a tuple as a delta record
embedded with the latest version in the main
table.

• The delta record space is not pre-allocated per
tuple in a disk-oriented DBMS.



21 / 64

Case Studies Case Study: Microsoft Azure SQL

MSSQL CTR: In-row Versioning

• Store small updates to a tuple as a delta record
embedded with the latest version in the main
table.

• The delta record space is not pre-allocated per
tuple in a disk-oriented DBMS.



22 / 64

Case Studies Case Study: Microsoft Azure SQL

MSSQL CTR: Recovery Protocol

• Phase 1: Analysis
▶ Identify the sate of every txn in the log.

• Phase 2: Redo
▶ Recover the main table and version store to their state at the time of the crash.
▶ The database is available and online after this phase.

• Phase 3: Undo
▶ Mark uncommitted txns as aborted in a global txn state map so that future txns ignore

their versions.
▶ Incrementally remove older versions via logical revert.



23 / 64

Case Studies Case Study: Microsoft Azure SQL

MSSQL CTR: Logical Revert

• Approach 1: Background Cleanup
▶ GC thread scans all blocks and removes reclaimable versions.
▶ If latest version in main table is from an aborted txn, then it will move the committed

version back to main table.
• Approach 2: Aborted Version Overwrite

▶ Txns can overwrite the latest version in the main table if that version is from an aborted
txn.



24 / 64

Case Studies Case Study: SiloR

Case Study: SiloR



25 / 64

Case Studies Case Study: SiloR

Silo

• In-memory OLTP DBMS from Harvard/MIT.
▶ Single-versioned OCC with epoch-based GC.
▶ Same authors of the Masstree (Eddie Kohler et al.).

• SiloR uses physical logging + checkpoints to ensure durability of txns.
▶ Reference
▶ It achieves high performance by parallelizing all aspects of logging, checkpointing, and

recovery.

https://dl.acm.org/doi/10.5555/2685048.2685085


26 / 64

Case Studies Case Study: SiloR

SiloR: Logging Protocol

• The DBMS assumes that there is one storage device per CPU socket.
▶ Assigns one logger thread per device.
▶ Worker threads are grouped per CPU socket.

• As the worker executes a txn, it creates new log records that contain the values that
were written to the database (i.e.,, REDO).



27 / 64

Case Studies Case Study: SiloR

SiloR: Logging Protocol

• Each logger thread maintains a pool of log buffers that are given to its worker threads.
• When a worker’s buffer is full, it gives it back to the logger thread to flush to disk and

attempts to acquire a new one.
▶ If there are no available buffers, then it stalls.



28 / 64

Case Studies Case Study: SiloR

SiloR: Log Files

• The logger threads write buffers out to files:
▶ After 100 epochs, it creates a new file.
▶ The old file is renamed with a marker indicating the max epoch of records that it contains.

• Log record format:
▶ Id of the txn that modified the record (TID).
▶ A set of value log triplets (Table, Key, Value).
▶ The value can be a list of attribute + value pairs.

UPDATE employees
SET salary = 1000
WHERE name IN ('Mozart', 'Beethoven')



29 / 64

Case Studies Case Study: SiloR

SiloR: Architecture



30 / 64

Case Studies Case Study: SiloR

SiloR: Architecture



31 / 64

Case Studies Case Study: SiloR

SiloR: Architecture



32 / 64

Case Studies Case Study: SiloR

SiloR: Architecture



33 / 64

Case Studies Case Study: SiloR

SiloR: Architecture



34 / 64

Case Studies Case Study: SiloR

SiloR: Architecture



35 / 64

Case Studies Case Study: SiloR

SiloR: Architecture



36 / 64

Case Studies Case Study: SiloR

SiloR: Architecture



37 / 64

Case Studies Case Study: SiloR

SiloR: Architecture



38 / 64

Case Studies Case Study: SiloR

SiloR: Architecture



39 / 64

Case Studies Case Study: SiloR

SiloR: Persistent Epoch

• A special logger thread keeps track of the current persistent epoch (pepoch)
▶ Special log file that maintains the highest epoch that is durable across all loggers.

• Txns that executed in epoch e can only release their results when the pepoch is
durable on non-volatile storage.



40 / 64

Case Studies Case Study: SiloR

SiloR: Architecture



41 / 64

Case Studies Case Study: SiloR

SiloR: Recovery Protocol

• Phase 1: Load Last Checkpoint
▶ Install the contents of the last checkpoint that was saved into the database.
▶ All indexes must be rebuilt from checkpoint.

• Phase 2: Log Replay
▶ Process logs in reverse order to reconcile the latest version of each tuple.
▶ The txn ids generated at runtime are enough to determine the serial order on recovery.



42 / 64

Case Studies Case Study: SiloR

SiloR: Log Replay

• First check the pepoch file to determine the most recent persistent epoch.
▶ Any log record from after the pepoch is ignored.

• Log files are processed from newest to oldest.
▶ Value logging can be replayed in any order.
▶ For each log record, the thread checks to see whether the tuple already exists.
▶ If it does not, then it is created with the value.
▶ If it does, then the tuple’s value is overwritten only if the log TID is newer than tuple’s

TID.



43 / 64

Case Studies Checkpoint Protocols

Checkpoint Protocols



44 / 64

Case Studies Checkpoint Protocols

Observation

• Logging allows the DBMS to recover the database after a crash/restart. But this system
will have to replay the entire log each time.

• Checkpoints allows the systems to ignore large segments of the log to reduce recovery
time.



45 / 64

Case Studies Checkpoint Protocols

In-Memory Checkpoints

• The different approaches for how the DBMS can create a new checkpoint for an
in-memory database are tightly coupled with its concurrency control scheme.

• The checkpoint thread(s) scans each table and writes out data asynchronously to disk.



46 / 64

Case Studies Checkpoint Protocols

Ideal Checkpoint Properties

• Do not slow down regular txn processing.
• Do not introduce unacceptable latency spikes.
• Do not require excessive memory overhead.
• Reference

https://dl.acm.org/doi/10.1145/2882903.2915966


47 / 64

Case Studies Checkpoint Protocols

Consistent vs. Fuzzy Checkpoints

• Approach 1: Consistent Checkpoints
▶ Represents a consistent snapshot of the database at some point in time. No uncommitted

changes.
▶ No additional processing during recovery.

• Approach 2: Fuzzy Checkpoints
▶ The snapshot could contain records updated from transactions that committed after the

checkpoint started.
▶ Must do additional processing to figure out whether the checkpoint contains all updates

from those txns.



48 / 64

Case Studies Checkpoint Protocols

Checkpoint Mechanism

• Approach 1: Do It Yourself
▶ The DBMS is responsible for creating a snapshot of the database in memory.
▶ Can leverage multi-versioned storage to find snapshot.

• Approach 2: OS Fork Snapshots
▶ Fork the process and have the child process write out the contents of the database to disk.
▶ This copies everything in memory.
▶ Requires extra work to remove uncommitted changes.



49 / 64

Case Studies Checkpoint Protocols

HYPER – OS Fork Snapshots

• Create a snapshot of the database by forking the DBMS process.
▶ Child process contains a consistent checkpoint if there are not active txns.
▶ Otherwise, use the in-memory undo log to roll back txns in the child process.

• Continue processing txns in the parent process.
• Reference

https://dl.acm.org/doi/10.1109/ICDE.2011.5767867


50 / 64

Case Studies Checkpoint Protocols

Checkpoint Contents

• Approach 1: Complete Checkpoint
▶ Write out every tuple in every table regardless of whether were modified since the last

checkpoint.
• Approach 2: Delta Checkpoint

▶ Write out only the tuples that were modified since the last checkpoint.
▶ Can merge checkpoints together in the background.



51 / 64

Case Studies Checkpoint Protocols

Checkpoint Frequency

• Approach 1: Time-based
▶ Wait for a fixed period of time after the last checkpoint has completed before starting a

new one.
• Approach 2: Log File Size Threshold

▶ Begin checkpoint after a certain amount of data has been written to the log file.
• Approach 3: On Shutdown (Mandatory)

▶ Perform a checkpoint when the DBA instructs the system to shut itself down. Every
DBMS (hopefully) does this.



52 / 64

Case Studies Checkpoint Protocols

Checkpoint Implementations

Type Contents Frequency

MemSQL Consistent Complete Log Size
VoltDB Consistent Complete Time-Based
Altibase Fuzzy Complete Time-based
TimesTen Consistent (Blocking) Complete On Shutdown
“ Fuzzy (Non-Blocking) Complete Time-Based
Hekaton Consistent Delta Log Size
SAP HANA Fuzzy Complete Time-Based



53 / 64

Case Studies Case Study: Facebook Scuba

Case Study: Facebook Scuba



54 / 64

Case Studies Case Study: Facebook Scuba

Observation

• Not all DBMS restarts are due to crashes.
▶ Updating OS libraries
▶ Hardware upgrades/fixes
▶ Updating DBMS software

• Need a way to be able to quickly restart the DBMS without having to re-read the entire
database from disk again.



55 / 64

Case Studies Case Study: Facebook Scuba

Facebook Scuba: Fast Restarts

• Decouple the in-memory database lifetime from the process lifetime.
• By storing the database in shared memory, the DBMS process can restart, and the

memory contents will survive without having to reload from disk.



56 / 64

Case Studies Case Study: Facebook Scuba

Facebook Scuba

• Distributed, in-memory DBMS for time-series event analysis and anomaly detection.
• Heterogeneous architecture

▶ Leaf Nodes: Execute scans/filters on in-memory data
▶ Aggregator Nodes: Combine results from leaf nodes

• Reference

https://dl.acm.org/doi/10.1145/2588555.2595642


57 / 64

Case Studies Case Study: Facebook Scuba

Facebook Scuba: Architecture



58 / 64

Case Studies Case Study: Facebook Scuba

Facebook Scuba: Architecture



59 / 64

Case Studies Case Study: Facebook Scuba

Facebook Scuba: Architecture



60 / 64

Case Studies Case Study: Facebook Scuba

SHARED MEMORY RESTARTS

• Approach 1: Shared Memory Heaps
▶ All data is allocated in SM during normal operations.
▶ Have to use a custom allocator to subdivide memory segments for thread safety and

scalability.
▶ Can use lazy allocation of backing pages with SM.

• Approach 2: Copy on Shutdown
▶ All data is allocated in local memory during normal operations.
▶ On shutdown, copy data from heap to SM.



61 / 64

Case Studies Case Study: Facebook Scuba

Facebook Scuba: Fast Restarts

• When the admin initiates restart command, the node halts ingesting updates.
• DBMS starts copying data from heap memory to shared memory.

▶ Delete blocks in heap once they are in SM.
• Once snapshot finishes, the DBMS restarts.

▶ On start up, check to see whether the there is a valid database in SM to copy into its heap.
▶ Otherwise, the DBMS restarts from disk.



62 / 64

Case Studies Conclusion

Conclusion



63 / 64

Case Studies Conclusion

Parting Thoughts

• Physical logging is a general-purpose approach that supports all concurrency control
schemes.
▶ Logical logging is faster but not universal.

• Copy-on-update checkpoints are the way to go especially if you are using MVCC
• Non-volatile memory is here!



64 / 64

Case Studies Conclusion

Next Class

• Non-Volatile Memory Database Systems


	Case Studies
	Logging Schemes
	Case Study: Microsoft Azure SQL
	Case Study: SiloR
	Checkpoint Protocols
	Case Study: Facebook Scuba
	Conclusion


