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Larger-than-Memory Databases

• Allow an in-memory DBMS to store/access data on disk without bringing back all the
slow parts of a disk-oriented DBMS.
▶ Minimize the changes that we make to the DBMS that are required to deal with

disk-resident data.
▶ It is better to have only the buffer manager deal with moving data around
▶ Rest of the DBMS can assume that data is in DRAM.

• Need to be aware of hardware access methods
▶ In-memory Access = Tuple-Oriented.
▶ Disk Access = Block-Oriented.
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Today’s Agenda

• Disk-oriented vs In-Memory DBMSs
• Persistent Memory DBMSs
• Storage Engine Architectures
• Write-Behind Logging
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Background

• Much of the development history of DBMSs is about dealing with the limitations of
hardware.

• Hardware was much different when the original DBMSs were designed in 1970s:
▶ Uniprocessor (single-core CPU)
▶ DRAM capacity was very limited.
▶ The database had to be stored on disk.
▶ Disks were even slower than they are now.

JA

JA



7 / 84

Persistent Memory Databases Disk-oriented vs In-Memory DBMSs

Background

• But now DRAM capacities are large enough that most databases can fit in memory.
▶ Structured data sets are smaller.

• We need to understand why we can’t always use a "traditional" disk-oriented DBMS
with a large cache to get the best performance.
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Disk-Oriented DBMS

• The primary storage location of the database is on non-volatile storage (e.g., HDD,
SSD).

• The database is organized as a set of fixed-length pages (aka blocks).
• The system uses an in-memory buffer pool to cache pages fetched from disk.

▶ Its job is to manage the movement of those pages back and forth between disk and
memory.
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Buffer Pool

• When a query accesses a page, the DBMS checks to see if that page is already in
memory:
▶ If it’s not, then the DBMS must retrieve it from disk and copy it into a frame in its buffer

pool.
▶ If there are no free frames, then find a page to evict.
▶ If the page being evicted is dirty, then the DBMS must write it back to disk.

• Once the page is in memory, the DBMS translates any on-disk addresses to their
in-memory addresses.
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Disk-oriented DBMS: Data Organization
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Disk-oriented DBMS: Data Organization
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Buffer Pool

• Every tuple access goes through the buffer pool manager regardless of whether that
data will always be in memory.
▶ Always translate a tuple’s record id to its memory location.
▶ Worker thread must pin pages that it needs to make sure that they are not

swapped to disk.
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Disk-Oriented DBMS Overhead

Reference

https://dl.acm.org/doi/10.1145/1376616.1376713
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In-memory DBMS

• Assume that the primary storage location of the database is permanently in memory.
• Early ideas proposed in the 1980s but it is now feasible because DRAM prices are low

and capacities are high.
• First commercial in-memory DBMSs were released in the 1990s.

▶ Examples: TimesTen, DataBlitz, Altibase

https://www.oracle.com/database/technologies/related/timesten.html
https://dbdb.io/db/datablitz
http://altibase.com/
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Storage Access Latencies

L3 DRAM SSD HDD

Read Latency 20 ns 60 ns 25,000 ns 10,000,000 ns
Write Latency 20 ns 60 ns 300,000 ns 10,000,000 ns

Reference

https://dl.acm.org/doi/10.1145/2723372.2749441
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In-Memory DBMS: Data Organization

• An in-memory DBMS does not need to store the database in slotted pages but it will
still organize tuples in pages:
▶ Direct memory pointers vs. record ids
▶ Fixed-length vs. variable-length data memory pools
▶ Use checksums to detect software errors from trashing the database.

• The OS organizes memory in pages too. We already covered this.
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Importance of Hardware

• People have been thinking about using hardware to accelerate DBMSs for decades.
• 1980s: Database Machines
• 2000s: FPGAs + Appliances
• 2010s: FPGAs + GPUs
• 2020s: PM + FPGAs + GPUs + CSAs +More! Reference

https://en.wikichip.org/wiki/intel/configurable_spatial_accelerator
https://minds.wisconsin.edu/bitstream/handle/1793/58446/TR504.pdf?sequence=1&isAllowed=y
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Persistent Memory

• Emerging storage technology that provide low latency read/writes like DRAM, but
with persistent writes and large capacities like SSDs.
▶ a.k.a., Non-Volatile Memory, Storage-class Memory

• First-generation devices were block-addressable
• Second-generation devices are byte-addressable
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Persistent Memory

• Block-addressable Optane SSD
▶ NVM Express works with PCI Express to transfer data to and from Optane SSDs
▶ NVMe enables rapid storage in SSDs and is an improvement over older HDD-related

interfaces (e.g., Serial Attached SCSI (SAS) and Serial ATA (SATA))
• Byte-addressable Optane DIMMs

▶ New assembly instructions and hardware support

https://en.wikipedia.org/wiki/NVM_Express
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Fundamental Elements of Circuits
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Fundamental Elements of Circuits

• In 1971, Leon Chua at Berkeley predicted the existence of a fourth fundamental
element.

• A two-terminal device whose resistance depends on the voltage applied to it, but
when that voltage is turned off it permanently remembers its last resistive state.

• Reference

https://www.nature.com/articles/nmat3338
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Fundamental Elements of Circuits
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Memristors

• A team at HP Labs led by Stanley Williams stumbled upon a nano-device that had
weird properties that they could not understand.

• It wasn’t until they found Chua’s 1971 paper that they realized what they had invented.
• Reference
• Video

https://ieeexplore.ieee.org/document/4687366
https://www.youtube.com/watch?v=bKGhvKyjgLY
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NVM Technologies

• Phase-Change Memory (PRAM)
• Resistive RAM (ReRAM)
• Magnetoresistive RAM (MRAM)
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Phase-Change Memory

• Storage cell is comprised of two metal
electrodes separated by a resistive heater and
the phase change material (chalcogenide).

• The value of the cell is changed based on how
the material is heated.
▶ A short pulse changes the cell to a ‘0’.
▶ A long, gradual pulse changes the cell to a ‘1’.

• Reference

https://dl.acm.org/doi/10.1145/1785414.1785441
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Resistive RAM

• Two metal layers with two TiO2 layers in
between.

• Running a current one direction moves
electrons from the top TiO2 layer to the bottom,
thereby changing the resistance.

• Potential programmable storage fabric. . .
▶ Bertrand Russell’s Material Implication Logic

• Reference

https://ieeexplore.ieee.org/document/4687366
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Magnetoresistive RAM

• Stores data using magnetic storage elements
instead of electric charge or current flows.

• Spin-Transfer Torque (STT-MRAM) is the
leading technology for this type of PM.
▶ Supposedly able to scale to very smallsizes

(10nm) and have SRAM-like latencies. What is
SRAM used for?

Reference

https://spectrum.ieee.org/semiconductors/memory/spin-memory-shows-its-might
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Why This is for Real

• Industry has agreed to standard technologies
and form factors (JDEC).

• Linux and Microsoft added support for PM in
their kernels (DAX).

• Intel added new instructions for flushing cache
lines to PM (CLFLUSH, CLWB).
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PM Configurations

Reference

http://sigmod2017.org/wp-content/uploads/2017/05/06-Data-Structures-Engineering-For-Byte-Addressable-Non-Volatile-Memory.pdf
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PM for Database Systems

• Block-addressable PM is not that interesting.
• Byte-addressable PM will be a game changer but will require some work to use

correctly.
▶ In-memory DBMSs will be better positioned to use byte-addressable PM.
▶ Disk-oriented DBMSs will initially treat PM as just a faster SSD.
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Storage & Recovery Methods

• Understand how a DBMS will behave on a system that only has byte-addressable PM.
• Develop PM-optimized implementations of standard DBMS architectures.
• Based on the N-Store prototype DBMS.
• Reference

https://github.com/jarulraj/storage
https://dl.acm.org/doi/10.1145/2723372.2749441
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Synchronization

• Existing programming models assume that any write to memory is non-volatile.
▶ CPU decides when to move data from caches to DRAM.

• The DBMS needs a way to ensure that data is flushed from caches to PM.
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Synchronization
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Synchronization

• Cache-line Flush (CLFLUSH)
▶ This instruction allows the DBMS to flush a cache-line out to memory.
▶ If that cache line contains modified data at any level of the cache hierarchy, that data is

written back to memory.
• Cache-line Write Back (CLWB)

▶ Writes back the cache line (if modified) to memory
▶ The cache line may be retained in the cache hierarchy in non-modified state
▶ Improves performance by reducing cache misses
▶ CLWB instruction is ordered only by store-fencing (SFENCE) operation.

• Asynchronous DRAM Refresh (ADR)
▶ In case of a power loss, there is sufficient reserve power to flush the stores pending in the

memory controller back to Optane DIMM.
▶ Stores are posted to the Write Pending Queue (WPQ) in the memory controller

Reference

https://www.usenix.org/system/files/login/articles/login_summer17_07_rudoff.pdf
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Naming

• If the DBMS process restarts, we need to make sure that all the pointers for in-memory
data point to the same data.
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Naming

• If the DBMS process restarts, we need to make sure that all the pointers for in-memory
data point to the same data.
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PM-Aware Memory Allocator

• Feature 1: Synchronization
▶ The allocator writes back CPU cache lines to PM using the CLFLUSH instruction.
▶ It then issues a SFENCE instruction to wait for the data to become durable on PM.

• Feature 2: Naming
▶ The allocator ensures that virtual memory addresses assigned to a memory-mapped

region never change even after the OS or DBMS restarts.
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Storage Engine Architectures

• Choice 1: In-place Updates
▶ Table heap with a write-ahead log + snapshots.
▶ Example: VoltDB

• Choice 2: Copy-on-Write
▶ Create a shadow copy of the table when updated.
▶ No write-ahead log.
▶ Example: LMDB

• Choice 3: Log-structured
▶ All writes are appended to log. No table heap.
▶ Example: RocksDB
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In-place Updates Engine
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In-place Updates Engine

JA

JA

JA

JA



50 / 84

Persistent Memory Databases Storage Engine Architectures

In-place Updates Engine

• Limitations
▶ Duplicate Data
▶ Recovery Latency
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PM-Aware Architectures

• Leverage the allocator’s non-volatile pointers to only record what changed rather
than how it changed.

• The DBMS only must maintain a transient UNDO log for a txn until it commits.
▶ Dirty cache lines from an uncommitted txn can be flushed by hardware to the memory

controller.
▶ No REDO log because we flush all the changes to PM at the time of commit.
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PM-Aware In-place Updates Engine
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Copy-On-Write Engine

JA

JA



56 / 84

Persistent Memory Databases Storage Engine Architectures

Copy-On-Write Engine

JA

JA

JA



57 / 84

Persistent Memory Databases Storage Engine Architectures

Copy-On-Write Engine

JA



58 / 84

Persistent Memory Databases Storage Engine Architectures

Copy-On-Write Engine

JA

JA

JA

JA

JA

JA



59 / 84

Persistent Memory Databases Storage Engine Architectures

Copy-On-Write Engine

• Limitations
▶ Expensive Copies
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PM-Aware Copy-On-Write Engine
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PM-Aware Copy-On-Write Engine
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Log-Structured Engine

• Limitations
▶ Duplicate Data
▶ Compactions
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PM-Aware Log-Structured Engine
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PM-Aware Log-Structured Engine
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Observation

• WAL serves two purposes
▶ Transform random writes into sequential log writes.
▶ Support transaction rollback.
▶ Design makes sense for disks with slow random writes.

• But PM supports fast random writes
▶ Directly write data to the multi-versioned database.
▶ Only record meta-data about committed txns in log.
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Write-Behind Logging

• PM-centric logging protocol that provides instant recovery and minimal duplication
overhead.
▶ Directly propagate changes to the database.
▶ Only record meta-data in log.
▶ Reference

• Recover the database almost instantaneously.
▶ Need to record meta-data about in-flight transactions.
▶ In case of failure, ignore their effects.

https://www.vldb.org/pvldb/vol10/p337-arulraj.pdf
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Write-Behind Logging

• DBMS assigns timestamps to transactions
▶ Get timestamps within same group commit timestamp range to identify and ignore effects

of in-flight txns.
• Use failed group commit timestamp range:

▶ DBMS uses range during tuple visibility checks.
▶ Ignores tuples created or updated within this range.
▶ UNDO is implicitly done via visibility checks.
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Write-Behind Logging

• Recovery consists of only analysis phase
▶ The DBMS can immediately start processing transactions after restart with explicit

UNDO/REDO phases.
• Garbage collection eventually kicks in to remove the physical versions of uncommitted

transactions.
▶ Using timestamp range information in write-behind log.
▶ After this finishes, no need to do extra visibility checks.
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Metadata for Instant Recovery

• Use group commit timestamp range to ignore effects of transactions in failed group
commit.
▶ Maintain list of failed timestamp ranges.
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Metadata for Instant Recovery
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Write-Behind Logging – Recovery

• Replay Log with 1m TPC-C Transactions
• PM 2× Latency Relative to DRAM
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Write-Behind Logging – Runtime

• TPC-C Transactions (Eight Warehouses)
• PM 2× Latency Relative to DRAM
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PM Summary

• Optimization of Storage Engine Architectures
▶ Leverage byte-addressability to avoid unnecessary data duplication.

• Optimization of Logging and Recovery Protocol
▶ PM-optimized recovery protocols avoid the overhead of processing a log.
▶ Non-volatile data structures ensure consistency.
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Parting Thoughts

• The design of a in-memory DBMS is significantly different than a disk-oriented system.
• The world has finally become comfortable with in-memory data storage and

processing.
• Byte-addressable PM is going to be a game changer.
• We are likely to see many new computational components that DBMSs can use in the

next decade.
▶ The core ideas / algorithms will still be the same.
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Next Class

• Concurrency Control
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