
1 / 84

Persistent Memory Databases

Lecture 11: Persistent Memory Databases

JA

JA

JA



2 / 84

Persistent Memory Databases Recap

Recap



3 / 84

Persistent Memory Databases Recap

Larger-than-Memory Databases

• Allow an in-memory DBMS to store/access data on disk without bringing back all the
slow parts of a disk-oriented DBMS.
▶ Minimize the changes that we make to the DBMS that are required to deal with

disk-resident data.
▶ It is better to have only the buffer manager deal with moving data around
▶ Rest of the DBMS can assume that data is in DRAM.

• Need to be aware of hardware access methods
▶ In-memory Access = Tuple-Oriented.
▶ Disk Access = Block-Oriented.

JA

JA

JA

JA

JA

JA

JA



4 / 84

Persistent Memory Databases Recap

Today’s Agenda

• Disk-oriented vs In-Memory DBMSs
• Persistent Memory DBMSs
• Storage Engine Architectures
• Write-Behind Logging

JA

JA

JA

JA

JA

JA

JA



5 / 84

Persistent Memory Databases Disk-oriented vs In-Memory DBMSs

Disk-oriented vs In-Memory DBMSs



6 / 84

Persistent Memory Databases Disk-oriented vs In-Memory DBMSs

Background

• Much of the development history of DBMSs is about dealing with the limitations of
hardware.

• Hardware was much different when the original DBMSs were designed in 1970s:
▶ Uniprocessor (single-core CPU)
▶ DRAM capacity was very limited.
▶ The database had to be stored on disk.
▶ Disks were even slower than they are now.

JA

JA



7 / 84

Persistent Memory Databases Disk-oriented vs In-Memory DBMSs

Background

• But now DRAM capacities are large enough that most databases can fit in memory.
▶ Structured data sets are smaller.

• We need to understand why we can’t always use a "traditional" disk-oriented DBMS
with a large cache to get the best performance.

JA

JA

JA



8 / 84

Persistent Memory Databases Disk-oriented vs In-Memory DBMSs

Disk-Oriented DBMS

• The primary storage location of the database is on non-volatile storage (e.g., HDD,
SSD).

• The database is organized as a set of fixed-length pages (aka blocks).
• The system uses an in-memory buffer pool to cache pages fetched from disk.

▶ Its job is to manage the movement of those pages back and forth between disk and
memory.

JA



9 / 84

Persistent Memory Databases Disk-oriented vs In-Memory DBMSs

Buffer Pool

• When a query accesses a page, the DBMS checks to see if that page is already in
memory:
▶ If it’s not, then the DBMS must retrieve it from disk and copy it into a frame in its buffer

pool.
▶ If there are no free frames, then find a page to evict.
▶ If the page being evicted is dirty, then the DBMS must write it back to disk.

• Once the page is in memory, the DBMS translates any on-disk addresses to their
in-memory addresses.



10 / 84

Persistent Memory Databases Disk-oriented vs In-Memory DBMSs

Disk-oriented DBMS: Data Organization

JA

JA



11 / 84

Persistent Memory Databases Disk-oriented vs In-Memory DBMSs

Disk-oriented DBMS: Data Organization

JA



12 / 84

Persistent Memory Databases Disk-oriented vs In-Memory DBMSs

Disk-oriented DBMS: Data Organization



13 / 84

Persistent Memory Databases Disk-oriented vs In-Memory DBMSs

Disk-oriented DBMS: Data Organization



14 / 84

Persistent Memory Databases Disk-oriented vs In-Memory DBMSs

Disk-oriented DBMS: Data Organization

JA

JA

JA

JA

JA

JA



15 / 84

Persistent Memory Databases Disk-oriented vs In-Memory DBMSs

Buffer Pool

• Every tuple access goes through the buffer pool manager regardless of whether that
data will always be in memory.
▶ Always translate a tuple’s record id to its memory location.
▶ Worker thread must pin pages that it needs to make sure that they are not

swapped to disk.

JA

JA



16 / 84

Persistent Memory Databases Disk-oriented vs In-Memory DBMSs

Disk-Oriented DBMS Overhead

Reference

https://dl.acm.org/doi/10.1145/1376616.1376713
JA

JA

JA

JA

JA

JA



17 / 84

Persistent Memory Databases Disk-oriented vs In-Memory DBMSs

In-memory DBMS

• Assume that the primary storage location of the database is permanently in memory.
• Early ideas proposed in the 1980s but it is now feasible because DRAM prices are low

and capacities are high.
• First commercial in-memory DBMSs were released in the 1990s.

▶ Examples: TimesTen, DataBlitz, Altibase

https://www.oracle.com/database/technologies/related/timesten.html
https://dbdb.io/db/datablitz
http://altibase.com/
JA

JA

JA



18 / 84

Persistent Memory Databases Disk-oriented vs In-Memory DBMSs

Storage Access Latencies

L3 DRAM SSD HDD

Read Latency 20 ns 60 ns 25,000 ns 10,000,000 ns
Write Latency 20 ns 60 ns 300,000 ns 10,000,000 ns

Reference

https://dl.acm.org/doi/10.1145/2723372.2749441
JA

JA

JA



19 / 84

Persistent Memory Databases Disk-oriented vs In-Memory DBMSs

In-Memory DBMS: Data Organization

• An in-memory DBMS does not need to store the database in slotted pages but it will
still organize tuples in pages:
▶ Direct memory pointers vs. record ids
▶ Fixed-length vs. variable-length data memory pools
▶ Use checksums to detect software errors from trashing the database.

• The OS organizes memory in pages too. We already covered this.

JA

JA

JA

JA

JA

JA

JA

JA

JA

JA



20 / 84

Persistent Memory Databases Disk-oriented vs In-Memory DBMSs

In-Memory DBMS: Data Organization

JA

JA

JA

JA



21 / 84

Persistent Memory Databases Disk-oriented vs In-Memory DBMSs

In-Memory DBMS: Data Organization

JA



22 / 84

Persistent Memory Databases Persistent Memory DBMSs

Persistent Memory DBMSs

JA

JA

JA

JA



23 / 84

Persistent Memory Databases Persistent Memory DBMSs

Importance of Hardware

• People have been thinking about using hardware to accelerate DBMSs for decades.
• 1980s: Database Machines
• 2000s: FPGAs + Appliances
• 2010s: FPGAs + GPUs
• 2020s: PM + FPGAs + GPUs + CSAs +More! Reference

https://en.wikichip.org/wiki/intel/configurable_spatial_accelerator
https://minds.wisconsin.edu/bitstream/handle/1793/58446/TR504.pdf?sequence=1&isAllowed=y
JA

JA

JA

JA

JA



24 / 84

Persistent Memory Databases Persistent Memory DBMSs

Persistent Memory

• Emerging storage technology that provide low latency read/writes like DRAM, but
with persistent writes and large capacities like SSDs.
▶ a.k.a., Non-Volatile Memory, Storage-class Memory

• First-generation devices were block-addressable
• Second-generation devices are byte-addressable

JA

JA

JA

JA

JA



25 / 84

Persistent Memory Databases Persistent Memory DBMSs

Persistent Memory

• Block-addressable Optane SSD
▶ NVM Express works with PCI Express to transfer data to and from Optane SSDs
▶ NVMe enables rapid storage in SSDs and is an improvement over older HDD-related

interfaces (e.g., Serial Attached SCSI (SAS) and Serial ATA (SATA))
• Byte-addressable Optane DIMMs

▶ New assembly instructions and hardware support

https://en.wikipedia.org/wiki/NVM_Express
JA

JA



26 / 84

Persistent Memory Databases Persistent Memory DBMSs

Fundamental Elements of Circuits

JA



27 / 84

Persistent Memory Databases Persistent Memory DBMSs

Fundamental Elements of Circuits

• In 1971, Leon Chua at Berkeley predicted the existence of a fourth fundamental
element.

• A two-terminal device whose resistance depends on the voltage applied to it, but
when that voltage is turned off it permanently remembers its last resistive state.

• Reference

https://www.nature.com/articles/nmat3338
JA

JA

JA

JA



28 / 84

Persistent Memory Databases Persistent Memory DBMSs

Fundamental Elements of Circuits

JA



29 / 84

Persistent Memory Databases Persistent Memory DBMSs

Memristors

• A team at HP Labs led by Stanley Williams stumbled upon a nano-device that had
weird properties that they could not understand.

• It wasn’t until they found Chua’s 1971 paper that they realized what they had invented.
• Reference
• Video

https://ieeexplore.ieee.org/document/4687366
https://www.youtube.com/watch?v=bKGhvKyjgLY
JA

JA

JA

JA



30 / 84

Persistent Memory Databases Persistent Memory DBMSs

NVM Technologies

• Phase-Change Memory (PRAM)
• Resistive RAM (ReRAM)
• Magnetoresistive RAM (MRAM)

JA



31 / 84

Persistent Memory Databases Persistent Memory DBMSs

Phase-Change Memory

• Storage cell is comprised of two metal
electrodes separated by a resistive heater and
the phase change material (chalcogenide).

• The value of the cell is changed based on how
the material is heated.
▶ A short pulse changes the cell to a ‘0’.
▶ A long, gradual pulse changes the cell to a ‘1’.

• Reference

https://dl.acm.org/doi/10.1145/1785414.1785441


32 / 84

Persistent Memory Databases Persistent Memory DBMSs

Resistive RAM

• Two metal layers with two TiO2 layers in
between.

• Running a current one direction moves
electrons from the top TiO2 layer to the bottom,
thereby changing the resistance.

• Potential programmable storage fabric. . .
▶ Bertrand Russell’s Material Implication Logic

• Reference

https://ieeexplore.ieee.org/document/4687366


33 / 84

Persistent Memory Databases Persistent Memory DBMSs

Magnetoresistive RAM

• Stores data using magnetic storage elements
instead of electric charge or current flows.

• Spin-Transfer Torque (STT-MRAM) is the
leading technology for this type of PM.
▶ Supposedly able to scale to very smallsizes

(10nm) and have SRAM-like latencies. What is
SRAM used for?

Reference

https://spectrum.ieee.org/semiconductors/memory/spin-memory-shows-its-might


34 / 84

Persistent Memory Databases Persistent Memory DBMSs

Why This is for Real

• Industry has agreed to standard technologies
and form factors (JDEC).

• Linux and Microsoft added support for PM in
their kernels (DAX).

• Intel added new instructions for flushing cache
lines to PM (CLFLUSH, CLWB).

JA

JA

JA

JA

JA

JA

JA

JA

JA



35 / 84

Persistent Memory Databases Persistent Memory DBMSs

PM Configurations

Reference

http://sigmod2017.org/wp-content/uploads/2017/05/06-Data-Structures-Engineering-For-Byte-Addressable-Non-Volatile-Memory.pdf
JA

JA

JA

JA

JA

JA

JA

JA

JA



36 / 84

Persistent Memory Databases Persistent Memory DBMSs

PM for Database Systems

• Block-addressable PM is not that interesting.
• Byte-addressable PM will be a game changer but will require some work to use

correctly.
▶ In-memory DBMSs will be better positioned to use byte-addressable PM.
▶ Disk-oriented DBMSs will initially treat PM as just a faster SSD.

JA

JA

JA

JA

JA

JA

JA

JA

JA

JA

JA



37 / 84

Persistent Memory Databases Persistent Memory DBMSs

Storage & Recovery Methods

• Understand how a DBMS will behave on a system that only has byte-addressable PM.
• Develop PM-optimized implementations of standard DBMS architectures.
• Based on the N-Store prototype DBMS.
• Reference

https://github.com/jarulraj/storage
https://dl.acm.org/doi/10.1145/2723372.2749441
JA

JA

JA

JA

JA

JA



38 / 84

Persistent Memory Databases Persistent Memory DBMSs

Synchronization

• Existing programming models assume that any write to memory is non-volatile.
▶ CPU decides when to move data from caches to DRAM.

• The DBMS needs a way to ensure that data is flushed from caches to PM.

JA

JA

JA



39 / 84

Persistent Memory Databases Persistent Memory DBMSs

Synchronization

JA

JA

JA

JA



40 / 84

Persistent Memory Databases Persistent Memory DBMSs

Synchronization

• Cache-line Flush (CLFLUSH)
▶ This instruction allows the DBMS to flush a cache-line out to memory.
▶ If that cache line contains modified data at any level of the cache hierarchy, that data is

written back to memory.
• Cache-line Write Back (CLWB)

▶ Writes back the cache line (if modified) to memory
▶ The cache line may be retained in the cache hierarchy in non-modified state
▶ Improves performance by reducing cache misses
▶ CLWB instruction is ordered only by store-fencing (SFENCE) operation.

• Asynchronous DRAM Refresh (ADR)
▶ In case of a power loss, there is sufficient reserve power to flush the stores pending in the

memory controller back to Optane DIMM.
▶ Stores are posted to the Write Pending Queue (WPQ) in the memory controller

Reference

https://www.usenix.org/system/files/login/articles/login_summer17_07_rudoff.pdf
JA

JA

JA

JA

JA

JA



41 / 84

Persistent Memory Databases Persistent Memory DBMSs

Naming

• If the DBMS process restarts, we need to make sure that all the pointers for in-memory
data point to the same data.

JA

JA



42 / 84

Persistent Memory Databases Persistent Memory DBMSs

Naming

• If the DBMS process restarts, we need to make sure that all the pointers for in-memory
data point to the same data.



43 / 84

Persistent Memory Databases Persistent Memory DBMSs

PM-Aware Memory Allocator

• Feature 1: Synchronization
▶ The allocator writes back CPU cache lines to PM using the CLFLUSH instruction.
▶ It then issues a SFENCE instruction to wait for the data to become durable on PM.

• Feature 2: Naming
▶ The allocator ensures that virtual memory addresses assigned to a memory-mapped

region never change even after the OS or DBMS restarts.

JA

JA

JA

JA

JA

JA



44 / 84

Persistent Memory Databases Storage Engine Architectures

Storage Engine Architectures



45 / 84

Persistent Memory Databases Storage Engine Architectures

Storage Engine Architectures

• Choice 1: In-place Updates
▶ Table heap with a write-ahead log + snapshots.
▶ Example: VoltDB

• Choice 2: Copy-on-Write
▶ Create a shadow copy of the table when updated.
▶ No write-ahead log.
▶ Example: LMDB

• Choice 3: Log-structured
▶ All writes are appended to log. No table heap.
▶ Example: RocksDB

JA



46 / 84

Persistent Memory Databases Storage Engine Architectures

In-place Updates Engine

JA

JA



47 / 84

Persistent Memory Databases Storage Engine Architectures

In-place Updates Engine

JA



48 / 84

Persistent Memory Databases Storage Engine Architectures

In-place Updates Engine



49 / 84

Persistent Memory Databases Storage Engine Architectures

In-place Updates Engine

JA

JA

JA

JA



50 / 84

Persistent Memory Databases Storage Engine Architectures

In-place Updates Engine

• Limitations
▶ Duplicate Data
▶ Recovery Latency

JA

JA



51 / 84

Persistent Memory Databases Storage Engine Architectures

PM-Aware Architectures

• Leverage the allocator’s non-volatile pointers to only record what changed rather
than how it changed.

• The DBMS only must maintain a transient UNDO log for a txn until it commits.
▶ Dirty cache lines from an uncommitted txn can be flushed by hardware to the memory

controller.
▶ No REDO log because we flush all the changes to PM at the time of commit.

JA

JA

JA

JA

JA



52 / 84

Persistent Memory Databases Storage Engine Architectures

PM-Aware In-place Updates Engine

JA

JA



53 / 84

Persistent Memory Databases Storage Engine Architectures

PM-Aware In-place Updates Engine

JA

JA

JA

JA

JA



54 / 84

Persistent Memory Databases Storage Engine Architectures

PM-Aware In-place Updates Engine

JA

JA

JA

JA

JA

JA

JA

JA

JA



55 / 84

Persistent Memory Databases Storage Engine Architectures

Copy-On-Write Engine

JA

JA



56 / 84

Persistent Memory Databases Storage Engine Architectures

Copy-On-Write Engine

JA

JA

JA



57 / 84

Persistent Memory Databases Storage Engine Architectures

Copy-On-Write Engine

JA



58 / 84

Persistent Memory Databases Storage Engine Architectures

Copy-On-Write Engine

JA

JA

JA

JA

JA

JA



59 / 84

Persistent Memory Databases Storage Engine Architectures

Copy-On-Write Engine

• Limitations
▶ Expensive Copies

JA



60 / 84

Persistent Memory Databases Storage Engine Architectures

PM-Aware Copy-On-Write Engine

JA

JA

JA



61 / 84

Persistent Memory Databases Storage Engine Architectures

PM-Aware Copy-On-Write Engine

JA



62 / 84

Persistent Memory Databases Storage Engine Architectures

Log-Structured Engine



63 / 84

Persistent Memory Databases Storage Engine Architectures

Log-Structured Engine



64 / 84

Persistent Memory Databases Storage Engine Architectures

Log-Structured Engine



65 / 84

Persistent Memory Databases Storage Engine Architectures

Log-Structured Engine

• Limitations
▶ Duplicate Data
▶ Compactions



66 / 84

Persistent Memory Databases Storage Engine Architectures

PM-Aware Log-Structured Engine



67 / 84

Persistent Memory Databases Storage Engine Architectures

PM-Aware Log-Structured Engine



68 / 84

Persistent Memory Databases Write-Behind Logging

Write-Behind Logging



69 / 84

Persistent Memory Databases Write-Behind Logging

Observation

• WAL serves two purposes
▶ Transform random writes into sequential log writes.
▶ Support transaction rollback.
▶ Design makes sense for disks with slow random writes.

• But PM supports fast random writes
▶ Directly write data to the multi-versioned database.
▶ Only record meta-data about committed txns in log.

JA

JA

JA

JA

JA

JA

JA

JA



70 / 84

Persistent Memory Databases Write-Behind Logging

Write-Behind Logging

• PM-centric logging protocol that provides instant recovery and minimal duplication
overhead.
▶ Directly propagate changes to the database.
▶ Only record meta-data in log.
▶ Reference

• Recover the database almost instantaneously.
▶ Need to record meta-data about in-flight transactions.
▶ In case of failure, ignore their effects.

https://www.vldb.org/pvldb/vol10/p337-arulraj.pdf
JA

JA

JA

JA

JA

JA

JA

JA

JA

JA



71 / 84

Persistent Memory Databases Write-Behind Logging

Write-Behind Logging

JA



72 / 84

Persistent Memory Databases Write-Behind Logging

Write-Behind Logging

JA

JA



73 / 84

Persistent Memory Databases Write-Behind Logging

Write-Behind Logging

• DBMS assigns timestamps to transactions
▶ Get timestamps within same group commit timestamp range to identify and ignore effects

of in-flight txns.
• Use failed group commit timestamp range:

▶ DBMS uses range during tuple visibility checks.
▶ Ignores tuples created or updated within this range.
▶ UNDO is implicitly done via visibility checks.

JA

JA

JA

JA

JA

JA

JA

JA

JA

JA



74 / 84

Persistent Memory Databases Write-Behind Logging

Write-Behind Logging

• Recovery consists of only analysis phase
▶ The DBMS can immediately start processing transactions after restart with explicit

UNDO/REDO phases.
• Garbage collection eventually kicks in to remove the physical versions of uncommitted

transactions.
▶ Using timestamp range information in write-behind log.
▶ After this finishes, no need to do extra visibility checks.

JA

JA

JA

JA

JA

JA



75 / 84

Persistent Memory Databases Write-Behind Logging

Metadata for Instant Recovery

• Use group commit timestamp range to ignore effects of transactions in failed group
commit.
▶ Maintain list of failed timestamp ranges.

JA



76 / 84

Persistent Memory Databases Write-Behind Logging

Metadata for Instant Recovery

JA

JA

JA



77 / 84

Persistent Memory Databases Write-Behind Logging

Metadata for Instant Recovery

JA

JA

JA

JA

JA

JA

JA

JA



78 / 84

Persistent Memory Databases Write-Behind Logging

Metadata for Instant Recovery

JA

JA



79 / 84

Persistent Memory Databases Write-Behind Logging

Write-Behind Logging – Recovery

• Replay Log with 1m TPC-C Transactions
• PM 2× Latency Relative to DRAM

JA

JA

JA



80 / 84

Persistent Memory Databases Write-Behind Logging

Write-Behind Logging – Runtime

• TPC-C Transactions (Eight Warehouses)
• PM 2× Latency Relative to DRAM

JA

JA

JA

JA

JA



81 / 84

Persistent Memory Databases Conclusion

Conclusion



82 / 84

Persistent Memory Databases Conclusion

PM Summary

• Optimization of Storage Engine Architectures
▶ Leverage byte-addressability to avoid unnecessary data duplication.

• Optimization of Logging and Recovery Protocol
▶ PM-optimized recovery protocols avoid the overhead of processing a log.
▶ Non-volatile data structures ensure consistency.

JA

JA

JA



83 / 84

Persistent Memory Databases Conclusion

Parting Thoughts

• The design of a in-memory DBMS is significantly different than a disk-oriented system.
• The world has finally become comfortable with in-memory data storage and

processing.
• Byte-addressable PM is going to be a game changer.
• We are likely to see many new computational components that DBMSs can use in the

next decade.
▶ The core ideas / algorithms will still be the same.

JA

JA

JA



84 / 84

Persistent Memory Databases Conclusion

Next Class

• Concurrency Control

JA

JA


	Persistent Memory Databases
	Recap
	Disk-oriented vs In-Memory DBMSs
	Persistent Memory DBMSs
	Storage Engine Architectures
	Write-Behind Logging
	Conclusion


