Lecture 12: Concurrency Control Theory
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Anatomy of a Database System [Monologue]
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https://dsf.berkeley.edu/papers/fntdb07-architecture.pdf

Concurrency Control Theory BT

Anatomy of a Database System [Monologue]

Process Manager
> Manages client connections
Query Processor
> Parse, plan and execute queries on top of storage manager

Transactional Storage Manager
> Knits together buffer management, concurrency control, logging and recovery
Shared Utilities

> Manage hardware resources across threads


https://dsf.berkeley.edu/papers/fntdb07-architecture.pdf
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Anatomy of a Database System [Monologue]

Process Manager
> Connection Manager + Admission Control
Query Processor
> Query Parser
> Query Optimizer (a.k.a., Query Planner)
> Query Executor
Transactional Storage Manager
> Lock Manager
> Access Methods (a.k.a., Indexes)
> Buffer Pool Manager
> Log Manager
Shared Utilities

> Memory, Disk, and Networking Manager


https://dsf.berkeley.edu/papers/fntdb07-architecture.pdf
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Today’s Agenda

Motivation
Atomicity,
Consistency

Durability

Isolation
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Motivation

e Lost Updates:

> We both change the same record in a table at the same time. How to avoid race condition?
> Concurrency Control protocol

e Durability:
> You transfer $100 between bank accounts but there is a power failure. What is the correct

database state?
> Recovery protocol
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Concurrency Control & Recovery

e Valuable properties of DBMSs.
* Based on concept of transactions with ACID properties.

e Let’s talk about transactions . . .
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Transaction

e A transaction is the execution of a sequence of one or more operations (e.g., SQL
queries) on a database to perform some higher-level function.
e It is the basic unit of change in a DBMS:
> Partial transactions are not allowed!
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Transaction: Example

e Move $100 from A’s bank account to B’s account.

e Transaction:
» Check whether A has $100.
»> Deduct $100 from A’s account.
> Add $100 to B’s account.
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Strawman Solution

e Execute each txn one-by-one (i.e., serial order) as they arrive at the DBMS.
> One and only one txn can be running at the same time in the DBMS.

e Before a txn starts, copy the entire database to a new file and make all changes to that
file.
> If the txn completes successfully, overwrite the original file with the new one.
> If the txn fails, just remove the dirty copy.
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Problem Statement

e A (potentially) better approach is to allow concurrent execution of independent
transactions.
e Why do we want that?

> Better utilization/throughput
> Lower response times to users.

e But we also would like:

» Correctness
> Fairness
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Transactions

e Hard to ensure correctness?
> What happens if A only has $100 and tries to pay off two people at the same time?
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Problem Statement

e Arbitrary interleaving of operations can lead to:

» Temporary Inconsistency (ok, unavoidable)
> Permanent Inconsistency (bad!)

e We need formal correctness criteria to determine whether an interleaving is valid.
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Definitions

e A txn may carry out many operations on the data retrieved from the database

e However, the DBMS is only concerned about what data is read/written from/to the
database.

> Changes to the outside world are beyond the scope of the DBMS.
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Formal Definitions

e Database: A fixed set of named data objects (e.g., A, B, C, ...).
> We do not need to define what these objects are now.

e Transaction: A sequence of read and write operations ( R(A), W(B), . ..

> DBMS'’s abstract view of a user program
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Transactions in SQL

e A new txn starts with the BEGIN command.
e The txn stops with either COMMIT or ABORT:

> If commit, the DBMS either saves all the txn’s changes or aborts it.
> If abort, all changes are undone so that it’s like as if the txn never executed at all.

e Abort can be either self-inflicted or caused by the DBMS.
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Correctness Criteria: ACID

Atomicity: All actions in the txn happen, or none happen.

Consistency: If each txn is consistent and the DB starts consistent, then it ends up
consistent.

Isolation: Execution of one txn is isolated from that of other txns.

Durability: If a txn commits, its effects persist.
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Correctness Criteria: ACID

Atomicity: “all or nothing”

Consistency: “it looks correct to me”

Isolation: “as if alone”

Durability: “survive failures”
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Atomicity
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Atomicity of Transactions

e Two possible outcomes of executing a txn:

> Commit after completing all its actions.
> Abort (or be aborted by the DBMS) after executing some actions.

e DBMS guarantees that txns are atomic.

> From user’s point of view: txn always either executes all its actions, or executes no actions
at all.
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Atomicity of Transactions

e Scenario 1:

> We take $100 out of A’s account but then the DBMS aborts the txn before we transfer it.
e Scenario 2:

> We take $100 out of A’s account but then there is a power failure before we transfer it.

e What should be the correct state of A’s account after both txns abort?
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Mechanisms For Ensuring Atomicity

e Approach 1: Logging

> DBMS logs all actions so that it can undo the actions of aborted transactions.
> Maintain undo records both in memory and on disk.
» Think of this like the black box in airplanes. . .
e Logging is used by almost every DBMS.
> Audit Trail
> Efficiency Reasons
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Mechanisms For Ensuring Atomicity

e Approach 2: Shadow Paging

> DBMS makes copies of pages and txns make changes to those copies. Only when the txn
commits is the page made visible to others.
» Originally from System R.

e Few systems do this:

» CouchDB
> LMDB (OpenLDAP)
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Consistency
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Consistency

e The "world" represented by the database is logically correct. All questions asked
about the data are given logically correct answers.

> Database Consistency
> Transaction Consistency




Concurrency Control Theory @B 47

Database Consistency

e The database accurately models the real world and follows integrity constraints.

e Transactions in the future see the effects of transactions committed in the past inside
of the database.
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Transaction Consistency

e If the database is consistent before the transaction starts (running alone), it will also be
consistent after.
e Transaction consistency is the application’s responsibility.
> We won't discuss this further.
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Durability
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Durability

e All of the changes of committed transactions should be persistent.
> No torn updates.
> No changes from failed transactions.

e The DBMS can use either logging or shadow paging to ensure that all changes are
durable.
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Isolation
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Isolation of Transactions

e Users submit txns, and each txn executes as if it was running by itself.
> Easier programming model to reason about.

e But the DBMS achieves concurrency by interleaving the actions (reads/writes of DB
objects) of txns.

e We need a way to interleave txns but still make it appear as if they ran one-at-a-time.
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Mechanisms For Ensuring Isolation

e A concurrency control protocol is how the DBMS decides the proper interleaving of
operations from multiple transactions.
e Two categories of protocols:

> Pessimistic: Don’t let problems arise in the first place.
> Optimistic: Assume conflicts are rare, deal with them after they happen.
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Example

e Assume at first A and B each have $1000.
e T1 transfers $100 from A’s account to B’s
e T2 credits both accounts with 6% interest.

T, T,
BEGIN BEGIN
A=A-100 A=Ax1.06
B=B+100 B=B*1.06
COMMIT COMMIT
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Example

e Assume at first A and B each have $1000.

e What are the possible outcomes of running T1 and T2?

BEGIN BEGIN
A=A-100 A=A%1.06
B=B+100 B=B*1.06
COMMIT COMMIT
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Example

Assume at first A and B each have $1000.

What are the possible outcomes of running T1 and T2?
Many! But A+B should be:
> 2000 % 1.06 =2120
There is no guarantee that T1 will execute before T2 or vice-versa, if both are submitted

together. But the net effect must be equivalent to these two transactions running
serially in some order.
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Example

e Legal outcomes:
> A=954, B=1166 — A+B=2120
> A=960, B=1160 — A+B=2120

e The outcome depends on whether T1 executes before T2 or vice versa.
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Serial Execution Example

Schedule Schedule
R itttk ~ R ittt ~
: T1 Tz 1 : T1 Tz 1
i [ BEGIN H i BEGIN H
| A=A-100 I : A=A%1.06 | I
| | B=B+100 | i B=B*1.06 | |
1| coMMIT o COMMIT |1
| BEGIN | = ||BEGIN !
i A=A%1.06 | I I | A=A-100 I
H B=Bx1.06 | | | | B=B+100 H
i COMMIT || 1 | COMMIT i
] 1 1 ]
i i i i
i i i
| 1
\ 4

A+B=$2120

Do 39/78
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Interleaving Transactions

e We interleave txns to maximize concurrency.
> Slow disk/network I/O.
> Multi-core CPUs.
e When one txn stalls because of a resource (e.g., page fault), another txn can continue
executing and make forward progress.
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Interleaving Example (Good)

Schedule Schedule
T ~ T N
: T1 T2 : : T-| TZ :
1 | BEGIN i 1| BEGIN i
1| A=A-100 ! 1] A=A-100 i
! pESIN o |1 1| B=B+100 I

=A*1. -—

KB=B+100> = M ey H
1[T ] i A=A%1.06 |1
H B=B+1.06> | H B=Bx1.06 | |
I Co i I COMMIT |1
1 1 1 1
1 1 1 1
1 1 1

1
! /

A+B=$2120
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Interleaving Example (Bad)

___Schedule

S U

i [BEGIN i

I | A=A-100 !

I BEGIN i A=954, B=1166

: A=A%1.06 | I

| fmae i E o

1 1

1| B=B+100 i A=960, B=1160

|| commrT I

1 1

: A=954, B=1060 :

\

-------------- The bank is missing $106! ’]
A+B= $2014A

DA 42 /78
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Interleaving Example (Bad)

Schedule DBMS View
ST 5 e ————————— ~\
I T, T, 1 1 T, T, |
| [BEGIN H i [BEGIN i

1

| A=A-100 = : = R(A) :
' BEGIN i W(A) i
: A=A%1.06 -.:_§I=\ BEGIN :
B=B*1.06 ~ *R(A) I

1
i COMMIT .\\' W(A) I
I'| B=B+100 ~ ' H § R(B) ]
1 | cCoMMIT \| 1 W(B) I
: N‘ commrt | |
1 _ _ 1 tR(B) 1
I A=954, B=1060 ! ™~ y(8) i
| TS -/ | LcommIT i
\ J
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Correctness

e How do we judge whether a schedule is correct?
e If the schedule is equivalent to some serial execution.
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Formal Properties of Schedules

e Serial Schedule
> A schedule that does not interleave the actions of different transactions.

e Equivalent Schedules

> For any database state, the effect of executing the first schedule is identical to the effect of
executing the second schedule.
> Doesn’t matter what the arithmetic operations are!
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Formal Properties of Schedules

e Serializable Schedule

> A schedule that is equivalent to some serial execution of the transactions.

e If each transaction preserves consistency, every serializable schedule preserves
consistency.
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Formal Properties of Schedules

e Serializability is a less intuitive notion of correctness compared to txn initiation time or
commit order, but it provides the DBMS with additional flexibility in scheduling
operations.

e More flexibility means better parallelism.
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Contflicting Operations

e We need a formal notion of equivalence that can be implemented efficiently based on
the notion of conflicting operations

e Two operations conflict if:

> They are by different transactions,
> They are on the same object and at least one of them is a write.
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Interleaved Execution Anomalies

e Read-Write Conflicts (R-W)
e Write-Read Conflicts (W-R)
o Write-Write Conflicts (W-W)
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Read-Write Conflicts

e Unrepeatable Reads

e ——————————
f T, T,
| | BEGIN

$10=aRrRA)

. : BEGIN
I R(A)

(N
i COMMIT

$19<=R(A)
1| commIT
\

A
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Write-Read Conflicts

e Reading Uncommitted Data ("Dirty Reads")

:’ T, T, 1

1

<=: BEGIN :

$10 1 R(A) i

$12 W(A) BEGIN 1
I:? o NR(A)
Dt

1| _e®e | commIT :

t ABORT i

i i

|\ 1

A
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Write-Write Conflicts

e Overwriting Uncommitted Data

Coo, T,
I | BEGIN
$10=23 W(A)
: . o BEGIN
I Q W(A)
: oWo W(B)
1 COMMIT
$20—) W(B)
| | coMMIT
\

$15
$15
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Formal Properties of Schedules

¢ Given these conflicts, we now can understand what it means for a schedule to be
serializable.

» This is to check whether schedules are correct.
> This is not how to generate a correct schedule.

e There are different levels of serializability:

> Conflict Serializability -> Most DBMSs try to support this.
> View Serializability -> No DBMS can do this.
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Conflict Serializable Schedules

e Two schedules are conflict equivalent iff:

> They involve the same actions of the same transactions, and
> Every pair of conflicting actions is ordered the same way.

e Schedule S is conflict serializable if:
> Sis conflict equivalent to some serial schedule.
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Contflict Serializablity: Intuition

e Schedule S is conflict serializable if you are able to transform S into a serial schedule by
swapping consecutive non-conflicting operations of different transactions.
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Conflict Serializablity: Intuition

Schedule
T ————— ~\
H T, T, I
| | BEGIN BEGIN ]
1| R(A) |
: W(A) I
! AN
! R(B)/ i
1| W) i
1| commrt 1
1 R(B) i
H W(B) I
1 COMMIT !
N e ’

Do 56 /78
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Conflict Serializablity: Intuition

Schedule
T ———— ~\
i T, T, I
| | BEGIN BEGIN I
1| R(A) |
Fwew I
I R(A) |
I |R(B) i
H W(A) 1
1| W) H
1| commrt I
i R(B) |
H w(B) I
1 COMMIT !
\ ’

!
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Conflict Serializablity: Intuition

Schedule
O,
1 1 2 :
| | BEGIN BEGIN I
1| R(A) H
1w :

R(A
| oy e F !
H W(A) 1
1| W(B) H
11 commrt I
] R(B) |
H W(B) 1
1 COMMIT !
\ ’,

I

Do 58 /78
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Conflict Serializablity: Intuition

Schedule
pmmmEEmEmEmEmm———— \
H T, T, !
| | BEGIN BEGIN I
1{R(A) H
1w 1
1| R(® H
I R(A) i
H W(A) I
1| W H
1| commrr 1
I R(B) H
H w(B) 1
1 COMMIT '
e ’,

DA 59/78
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Conflict Serializablity: Intuition

Schedule Serial Schedule

'I -------------- “\ pmTmmTEEEEEEm_——— ~\
i T T ! | T T, 1
|[BEGIN  [BEGIN |1 i [BEGIN i
[RCA) | | |R(A) !
1w 1 11 W(A) 1
1| R(B) I 1 |R® i
: W(B) I = 1 |W(®B) :
H R(A) 1 | | coMmIT BEGIN 1
i W(A) | i R(A) !
1| commrt ] ! W(A) i
I R(B) i i R(B) '
! w(B I I W

. O] , ®) i
1 COMMIT ! I COMMIT |1
\~ ______________ 4 ‘~ ______________ /'

= 9Dae 60/78
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Conflict Serializablity: Intuition

Schedule Serial Schedule

T, T,

BEGIN BEGIN
R(A)

Y

BEGIN
R(A)
W(A)
COMMIT | BEGIN
R(A)
W(A)
COMMIT

R(A)
W(A)
WCAY ¢
COMMIT (g, COMMLIT

o ——————
e =
o —————————

A T

= Dalx 61/78
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Serializablity

e Swapping operations is easy when there are only two txns in the schedule. It’s
cumbersome when there are many txns.

e Are there any faster algorithms to figure this out other than transposing operations?
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Dependency Graphs

e One node per txn.
e Edge from T; to Tj if:
> An operation Oj; of T; conflicts with an operation O; of T; and
> Oy appears earlier in the schedule than O;.
e Also known as a precedence graph. A schedule is conflict serializable iff its
dependency graph is acyclic.

Dependency Graph



Concurrency Control Theory

Example 1

Schedule Dependency Graph
oot SN gTTETEEEEEmEmEmm Y
i T T, ! i A i
| | BEGIN BEGIN i ! !
1| RA) H 1 1
e : i :
1 R(A)

! ’Q’ W) i i B i
i *We |R(B) ' L A
: W(B) i
1 comMiT |1 The cycle in the graph
i ;Egg H reveals the problem.
:‘ COMMIT ! The output of T, depends

4

on T, and vice-versa.

4
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Example 2

Schedule Dependency Graph
P i 5 =y =\
1 h T Ty H !
| [ BEGIN - ! 1
1R ! i i
W(A) BEGIN 1 i
: ﬁ\ R(A) : : :
H W(A) ' 1 H
i BEGIN | COMMIT | § e ]
H R(B) H . . . .
i W(B) \ Isthis equivalent to a serial execution?
1| R(8Y“ | commMIT 1
: W(B) : Yes (Tz, T1, T3)
|\ COMMIT )} — Notice that T should go after T,,

although it starts before it!
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Example 3 — Inconsistent Analysis

Schedule Dependency Graph

R(A)

sum = A
R(B)

sum += B
ECHO sum
R(B) COMMIT

B = B+10
W(B)
COMMIT

s
D

gty o N Y
>
I 1}
>
L
S

N e e e
4
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Example 3 — Inconsistent Analysis

Schedule Dependency Graph
pmmmm—m—————————= pmmmmmEEEEEmm——————
{n om0 : i
1| BEGIN BEGIN ] H '
1| R(A) H 1 1
V1A =A-10 1 H 1
1WA | i i
: R(A) 1 1 1
H sum = A 1 L ________________ )
! R(B) i
o G|
1 QEcHo sumD)|
HG) ]
1|B = B+10 H
Tiwe i
I | COMMIT 1
N J
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Example 3 — Inconsistent Analysis

Schedule Dependency Graph
e e e ~ T e e e
: T1 T2 \: : A ‘:
1| BEGIN BEGIN 1 ! !
1| R(A) ! i 1
11 A=a10 1 ! 1
W ! i i

R(A) i 1
i ‘Q’ sum = A i L ___t B ]
1 R(B)
1l *7% gn+=s |1 Isitpossible to modify only the
: ECHO sum | | application logic so that schedule
R® 4 (OMIT |1 produces acorrect” result but is still
E N(E) I not conflict serializable?
1 | COMMIT [
\ J

4
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View Serializability

e Alternative (weaker) notion of serializability.
e Schedules S1 and S2 are view equivalent if:

> If T1 reads initial value of A in S1, then T1 also reads initial value of A in S2.
> If T1 reads value of A written by T2 in S1, then T1 also reads value of A written by T2 in S2.
> If T1 writes final value of A in S1, then T1 also writes final value of A in S2.
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View Serializability

Schedule Dependency Graph

COMMIT | COMMIT | COMMIT

o
\——-——-—-——-——f

o
| T ————

DA 70/78
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View Serializability

Schedule Schedule
pmmmmEmEmEmEmEmm——————— N SmEmEEEEEEEEEmm———— N
roT, T, T, ) :’ T, T, T, )
| [ BEGIN H 1 [ BEGIN H
! R(A) BIE:G)IN ! H REA; !

W(A 1] WA
i BEGIN : : COMMIT i
'Y L GeyIE e :
I'| COMMIT | COMMIT NeOMMET | ' H COMMIT v
: L/ \u Gio D
H Allows all confTict H
1 serializable schedules + ]
| CS . -L "blind writes" J' -------------- -

71/78
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Serializability

e View Serializability allows for (slightly) more schedules than Conflict Serializability
does.
> But is difficult to enforce efficiently.
e Neither definition allows all schedules that you would consider "serializable".

> This is because they don’t understand the meanings of the operations or the data (recall
Example 3)
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Serializability

e In practice, Conflict Serializability is what systems support because it can be enforced
efficiently.

¢ To allow more concurrency, some special cases get handled separately at the
application level.
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Universe of Schedules

(" All Schedules

( ViewSerializable )
([ Conflict Serializable )
l Serial
_J
\_ Y,
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Conclusion
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ACID Properties

Atomicity: All actions in the txn happen, or none happen.

Consistency: If each txn is consistent and the DB starts consistent, then it ends up
consistent.

Isolation: Execution of one txn is isolated from that of other txns.

Durability: If a txn commits, its effects persist.
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Parting Thoughts

e Concurrency control and recovery are among the most important functions provided
by a DBMS.
e Concurrency control is automatic

> System automatically inserts lock/unlock requests and schedules actions of different txns.
> Ensures that resulting execution is equivalent to executing the txns one after the other in
some order.



Next Class

Concurrency Control Theory

e Two-Phase Locking
e Isolation Levels

Do 7878
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