
1 / 57

Optimistic Concurrency Control

Lecture 15: Optimistic Concurrency Control



2 / 57

Optimistic Concurrency Control Recap

Recap



3 / 57

Optimistic Concurrency Control Recap

Basic T/O

• Txns read and write objects without locks.
• Every object X is tagged with timestamp of the last txn that successfully did read/write:

▶ W − TS(X) – Write timestamp on X
▶ R− TS(X) – Read timestamp on X

• Check timestamps for every operation:
▶ If txn tries to access an object from the future, it aborts and restarts.



4 / 57

Optimistic Concurrency Control Recap

Partition-based T/O

• Split the database up in disjoint subsets called horizontal partitions (aka shards).
• Use timestamps to order txns for serial execution at each partition.

▶ Only check for conflicts between txns that are running in the same partition.



5 / 57

Optimistic Concurrency Control Recap

Observation

• If you assume that conflicts between txns are rare and that most txns are short-lived,
then forcing txns to wait to acquire locks adds a lot of overhead.

• A better approach is to optimize for the no-conflict case.

JA

JA

JA

JA

JA

JA



6 / 57

Optimistic Concurrency Control Recap

Today’s Agenda

• Optimistic Concurrency Control
• Phantoms
• Isolation Levels

JA

JA

JA

JA

JA

JA

JA



7 / 57

Optimistic Concurrency Control Optimistic Concurrency Control

Optimistic Concurrency Control



8 / 57

Optimistic Concurrency Control Optimistic Concurrency Control

Optimistic Concurrency Control

• The DBMS creates a private workspace for each txn.
▶ Any object read is copied into workspace.
▶ Modifications are applied to workspace.

• When a txn commits, the DBMS compares workspace write set to see whether it
conflicts with other txns.

• If there are no conflicts, the write set is installed into the global database.

JA

JA

JA

JA

JA

JA

JA

JA

JA

JA

JA

JA

JA



9 / 57

Optimistic Concurrency Control Optimistic Concurrency Control

OCC Phases

• Phase 1 – Read:
▶ Track the read/write sets of txns and store their writes in a private workspace.

• Phase 2 – Validation:
▶ When a txn commits, check whether it conflicts with other txns.

• Phase 3 – Write:
▶ If validation succeeds, apply private changes to database. Otherwise abort and restart the

txn.

JA

JA

JA

JA

JA

JA



10 / 57

Optimistic Concurrency Control Optimistic Concurrency Control

OCC – Example

JA

JA

JA

JA

JA



11 / 57

Optimistic Concurrency Control Optimistic Concurrency Control

OCC – Example

JA



12 / 57

Optimistic Concurrency Control Optimistic Concurrency Control

OCC – Example

JA

JA



13 / 57

Optimistic Concurrency Control Optimistic Concurrency Control

OCC – Example

JA

JA

JA



14 / 57

Optimistic Concurrency Control Optimistic Concurrency Control

OCC – Example

JA



15 / 57

Optimistic Concurrency Control Optimistic Concurrency Control

OCC – Example

JA

JA

JA

JA



16 / 57

Optimistic Concurrency Control Optimistic Concurrency Control

OCC – Example

JA

JA

JA

JA

JA

JA

JA

JA



17 / 57

Optimistic Concurrency Control Optimistic Concurrency Control

OCC – Validation Phase

• The DBMS needs to guarantee only serializable schedules are permitted.
• Ti checks other txns for RW and WW conflicts and makes sure that all conflicts go one

way (from older txns to younger txns).

JA

JA

JA

JA



18 / 57

Optimistic Concurrency Control Optimistic Concurrency Control

OCC – Serial Validation

• Maintain global view of all active txns.
• Record read set and write set while txns are running and write into private workspace.
• Execute Validation and Write phase inside a protected critical section.

JA

JA

JA

JA



19 / 57

Optimistic Concurrency Control Optimistic Concurrency Control

OCC – Read Phase

• Track the read/write sets of txns and store their writes in a private workspace.
• The DBMS copies every tuple that the txn accesses from the shared database to its

workspace ensure repeatable reads.

JA

JA



20 / 57

Optimistic Concurrency Control Optimistic Concurrency Control

OCC – Validation Phase

• Each txn’s timestamp is assigned at the beginning of the validation phase (different
from 2PL).

• Check the timestamp ordering of the committing txn with all other running txns.
• If TS(Ti) < TS(Tj), then one of the following three scenarios must hold. . .

JA

JA

JA

JA

JA



21 / 57

Optimistic Concurrency Control Optimistic Concurrency Control

OCC – Validation Phase

• When the txn invokes COMMIT , the DBMS checks if it conflicts with other txns.
• Two methods for this phase:

▶ Backward Validation
▶ Forward Validation

JA



22 / 57

Optimistic Concurrency Control Optimistic Concurrency Control

OCC – Backward Validation

• Check whether the committing txn intersects its read/write sets with those of any txns
that have already committed.

JA

JA

JA



23 / 57

Optimistic Concurrency Control Optimistic Concurrency Control

OCC – Backward Validation

• Check whether the committing txn intersects its read/write sets with those of any txns
that have already committed.

JA

JA



24 / 57

Optimistic Concurrency Control Optimistic Concurrency Control

OCC – Forward Validation

• Check whether the committing txn intersects its read/write sets with any active txns
that have not yet committed.

JA



25 / 57

Optimistic Concurrency Control Optimistic Concurrency Control

OCC – Forward Validation

• Check whether the committing txn intersects its read/write sets with any active txns
that have not yet committed.

JA



26 / 57

Optimistic Concurrency Control Optimistic Concurrency Control

OCC – Validation Step 1

• Scenario 1:
• Ti completes all three phases before Tj begins.

JA

JA



27 / 57

Optimistic Concurrency Control Optimistic Concurrency Control

OCC – Validation Step 1

JA



28 / 57

Optimistic Concurrency Control Optimistic Concurrency Control

OCC – Validation Step 2

• Scenario 2:
• Ti completes before Tj starts its Write phase, and Ti does not write to any object read

by Tj.
▶ WriteSet(Ti) ∩ ReadSet(Tj) =

JA



29 / 57

Optimistic Concurrency Control Optimistic Concurrency Control

OCC – Validation Step 2

JA

JA

JA

JA

JA

JA

JA



30 / 57

Optimistic Concurrency Control Optimistic Concurrency Control

OCC – Validation Step 2

JA



31 / 57

Optimistic Concurrency Control Optimistic Concurrency Control

OCC – Validation Step 3

• Scenario 3:
• Ti completes its Read phase before Tj completes its Read phase
• And Ti does not write to any object that is either read or written by Tj:

▶ WriteSet(Ti) ∩ ReadSet(Tj) =
▶ WriteSet(Ti) ∩ WriteSet(Tj) =

JA



32 / 57

Optimistic Concurrency Control Optimistic Concurrency Control

OCC – Validation Step 3

JA

JA



33 / 57

Optimistic Concurrency Control Optimistic Concurrency Control

OCC – Validation Step 3



34 / 57

Optimistic Concurrency Control Optimistic Concurrency Control

OCC – Validation Step 3

JA

JA

JA



35 / 57

Optimistic Concurrency Control Optimistic Concurrency Control

OCC – Observation

• OCC works well when the number of conflicts is low:
▶ All txns are read-only (ideal).
▶ Txns access disjoint subsets of data.

• If the database is large and the workload is not skewed, then there is a low probability
of conflict, so again locking is wasteful.

JA

JA

JA

JA

JA

JA



36 / 57

Optimistic Concurrency Control Optimistic Concurrency Control

OCC – Performance Issues

• High overhead for copying data locally.
• Validation/Write phase bottlenecks.
• Aborts are more wasteful than in 2PL because they only occur after a txn has already

executed.

JA

JA

JA

JA

JA

JA

JA

JA

JA



37 / 57

Optimistic Concurrency Control Optimistic Concurrency Control

Observation

• Recall that so far we have only dealing with transactions that read and update data.
• But now if we have insertions, updates, and deletions, we have new problems. . .

JA

JA



38 / 57

Optimistic Concurrency Control Phantoms

Phantoms



39 / 57

Optimistic Concurrency Control Phantoms

The Phantom Problem

JA

JA

JA

JA

JA



40 / 57

Optimistic Concurrency Control Phantoms

The Phantom Problem

JA

JA

JA

JA

JA

JA

JA

JA



41 / 57

Optimistic Concurrency Control Phantoms

The Phantom Problem

• How did this happen?
▶ Because T1 locked only existing records and not ones under way!

• Conflict serializability on reads and writes of individual items guarantees
serializability only if the set of objects is fixed.

JA



42 / 57

Optimistic Concurrency Control Phantoms

Predicate Locking

• Lock records that satisfy a logical predicate:
▶ Example: status = ′ lit ′

• In general, predicate locking has a lot of locking overhead.
• Index locking is a special case of predicate locking that is potentially more efficient.

JA

JA

JA

JA



43 / 57

Optimistic Concurrency Control Phantoms

Index Locking

• If there is a dense index on the status field then the txn can lock index page containing
the data with status = ′ lit ′.

• If there are no records with status = ′ lit ′, the txn must lock the index page where
such a data entry would be, if it existed.

JA

JA

JA



44 / 57

Optimistic Concurrency Control Phantoms

Locking without an Index

• If there is no suitable index, then the txn must obtain:
▶ A lock on every page in the table to prevent a record’s status = ′ lit ′ from being changed

to lit.
▶ The lock for the table itself to prevent records with status = ′ lit ′ from being added or

deleted.

JA

JA



45 / 57

Optimistic Concurrency Control Phantoms

Repeating Scans

• An alternative is to just re-execute every scan again when the txn commits and check
whether it gets the same result.
▶ Have to retain the scan set for every range query in a txn.

JA



46 / 57

Optimistic Concurrency Control Phantoms

Weaker Levels of Isolation

• Serializability is useful because it allows programmers to ignore concurrency issues.
• But enforcing it may allow too little concurrency and limit performance.
• We may want to use a weaker level of consistency to improve scalability.

JA

JA

JA

JA



47 / 57

Optimistic Concurrency Control Isolation Levels

Isolation Levels



48 / 57

Optimistic Concurrency Control Isolation Levels

Isolation Levels

• Controls the extent that a txn is exposed to the actions of other concurrent txns.
• Provides for greater concurrency at the cost of exposing txns to uncommitted changes:

▶ Dirty Reads
▶ Unrepeatable Reads
▶ Phantom Reads

JA

JA

JA

JA

JA



49 / 57

Optimistic Concurrency Control Isolation Levels

Isolation Levels

• Isolation (High→Low)
• SERIALIZABLE: No phantoms, all reads repeatable, no dirty reads.
• REPEATABLE READS: Phantoms may happen.
• READ COMMITTED: Phantoms and unrepeatable reads may happen.
• READ UNCOMMITTED: All of them may happen.

JA

JA

JA

JA



50 / 57

Optimistic Concurrency Control Isolation Levels

Isolation Levels

Level Dirty Read Unrepeatable Read Phantom

SERIALIZABLE No No No
REPEATABLE READ No No Maybe
READ COMMITTED No Maybe Maybe
READ UNCOMMITTED Maybe Maybe Maybe

JA

JA



51 / 57

Optimistic Concurrency Control Isolation Levels

Isolation Levels

• SERIALIZABLE: Obtain all locks first; plus index locks, plus strict 2PL.
• REPEATABLE READS: Same as above, but no index locks.
• READ COMMITTED: Same as above, but S locks are released immediately.
• READ UNCOMMITTED: Same as above, but allows dirty reads (no S locks).

JA

JA

JA

JA

JA



52 / 57

Optimistic Concurrency Control Isolation Levels

SQL-92 Isolation Levels

• You set a txn’s isolation level before you execute any queries in that txn.
• Not all DBMSs support all isolation levels in all execution scenarios

▶ Replicated Environments

• The default depends on implementation. . .

SET TRANSACTION Isolation LEVEL <isolation-level>;

BEGIN TRANSACTION ISOLATION LEVEL <isolation-level>;

JA

JA



53 / 57

Optimistic Concurrency Control Isolation Levels

Isolation Levels (2013)

DBMS Default Maximum

Actian Ingres 10.0/10S SERIALIZABLE SERIALIZABLE
Aerospike READ COMMITTED READ COMMITTED
Greenplum 4.1 READ COMMITTED SERIALIZABLE
MySQL 5.6 REPEATABLE READS SERIALIZABLE
MemSQL 1b READ COMMITTED READ COMMITTED
MS SQL Server 2012 READ COMMITTED SERIALIZABLE
Oracle 11g READ COMMITTED SNAPSHOT ISOLATION
Postgres 9.2.2 READ COMMITTED SERIALIZABLE
SAP HANA READ COMMITTED SERIALIZABLE
ScaleDB 1.02 READ COMMITTED READ COMMITTED
VoltDB SERIALIZABLE SERIALIZABLE

• Source

http://www.bailis.org/blog/when-is-acid-acid-rarely/
JA

JA

JA

JA



54 / 57

Optimistic Concurrency Control Isolation Levels

SQL-92 Access Modes

• You can provide hints to the DBMS about whether a txn will modify the database
during its lifetime.

• Only two possible modes:
▶ READ WRITE (Default)
▶ READ ONLY

• Not all DBMSs will optimize execution if you set a txn to in READ ONLY mode.

SET TRANSACTION <access-mode>;

BEGIN TRANSACTION <access-mode>;

JA

JA



55 / 57

Optimistic Concurrency Control Conclusion

Conclusion



56 / 57

Optimistic Concurrency Control Conclusion

Parting Thoughts

• Every concurrency control can be broken down into the basic concepts that I have
described in the last two lectures.
▶ Two-Phase Locking (2PL): Assumption that collisions are commonplace
▶ Timestamp Ordering (T/O): Assumption that collisions are rare.

• Optimistic protocols defer the validation phase to the end of the txn
• I am not showing benchmark results because I don’t want you to get the wrong idea.

JA

JA

JA

JA



57 / 57

Optimistic Concurrency Control Conclusion

Next Class

• Multi-Version Concurrency Control

JA


	Optimistic Concurrency Control
	Recap
	Optimistic Concurrency Control
	Phantoms
	Isolation Levels
	Conclusion


