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Background

• Much of the development history of DBMSs is about dealing with the limitations of
hardware.

• Hardware was much different when the original DBMSs were designed:
▶ Uniprocessor (single-core CPU)
▶ RAM was severely limited.
▶ The database had to be stored on disk.
▶ Disks were even slower than they are now.
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Background

• But now DRAM capacities are large enough that most databases can fit in memory.
▶ Structured data sets are smaller.
▶ Unstructured or semi-structured data sets are larger.

• We need to understand why we can’t always use a "traditional" disk-oriented DBMS
with a large cache to get the best performance.
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Today’s Agenda

• Motivation
• Concurrency Control Schemes
• Concurrency Control Evaluation
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In-memory Data Organization

• An in-memory DBMS does not need to store the database in slotted pages but it will
still organize tuples in blocks/pages:
▶ Direct memory pointers vs. record ids
▶ Fixed-length vs. variable-length data pools
▶ Use checksums to detect software errors from trashing the database.
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In-memory Data Organization



8 / 51

Concurrency Control in Main-Memory DBMSs Recap

Concurrency Control

• For in-memory DBMSs, the cost of a txn acquiring a lock is the same as accessing data.
• New bottleneck is contention caused from txns trying access data at the same time.
• The DBMS can store locking information about each tuple together with its data.

▶ This helps with CPU cache locality.
▶ Mutexes are too slow. Need to use compare-and-swap (CAS) instructions.
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Compare-and-Swap

• Atomic instruction that compares contents of a memory location M to a given value V
▶ If values are equal, installs new given value V’ in M
▶ Otherwise operation fails
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Concurrency Control Schemes

• Two-Phase Locking (2PL)
▶ Assume txns will conflict so they must acquire locks on database objects before they are

allowed to access them.
• Timestamp Ordering (T/O)

▶ Assume that conflicts are rare so txns do not need to first acquire locks on database objects
and instead check for conflicts at commit time.
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Two-Phase Locking

• Deadlock Detection
▶ Each txn maintains a queue of the txns that hold the locks that it waiting for.
▶ A separate thread checks these queues for deadlocks.
▶ If deadlock found, use a heuristic to decide what txn to kill in order to break deadlock.

• Deadlock Prevention
▶ Check whether another txn already holds a lock when another txn requests it.
▶ If lock is not available, the txn will either (1) wait, (2) commit suicide, or (3) kill the other

txn.
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Timestamp Ordering

• Basic T/O
▶ Check for conflicts on each read/write.
▶ Copy tuples on each access to ensure repeatable reads.

• Optimistic Currency Control (OCC)
▶ Store all changes in private workspace.
▶ Check for conflicts at commit time and then merge.
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Optimistic Concurrency Control

• Timestamp-ordering scheme where txns copy data read/write into a private workspace
that is not visible to other active txns.

• When a txn commits, the DBMS verifies that there are no conflicts.
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Observation

• When there is low contention, optimistic protocols perform better because the DBMS
spends less time checking for conflicts.

• At high contention, the both classes of protocols degenerate to essentially the same
serial execution.
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Concurrency Control Evaluation

• Compare in-memory concurrency control protocols at high levels of parallelism.
▶ Single test-bed system.
▶ Evaluate protocols using core counts beyond what is available on today’s CPUs.
▶ Reference

• Running in extreme environments exposes what are the main bottlenecks in the DBMS.

https://www.vldb.org/pvldb/vol8/p209-yu.pdf
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1000-CORE CPU Simulator

• DBx1000 Database System
▶ In-memory DBMS with pluggable lock manager.
▶ No network access, logging, or concurrent indexes.
▶ All txns execute using stored procedures.

• MIT Graphite CPU Simulator
▶ Single-socket, tile-based CPU.
▶ Shared L2 cache for groups of cores.
▶ Tiles communicate over 2D-mesh network.
▶ NUCA (non-uniform cache access) architecture.

https://github.com/yxymit/DBx1000
http://groups.csail.mit.edu/carbon/?page_id=111
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Target Workload

• Yahoo! Cloud Serving Benchmark (YCSB)
▶ 20 million tuples
▶ Each tuple is 1KB (total database is 20GB)

• Each transactions reads/modifies 16 tuples.
• Varying skew in transaction access patterns.
• Serializable isolation level.
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Read-Only Workload

• DL−DETECT / NO−WAIT – No overhead. No extra work. Everybody can acquire
the shared locks on tuples.

• WAIT −DIE /MVCC – Timestamp allocation bottleneck.
• OCC / TIMESTAMP – Overhead of copying read tuples for repeatable reads.
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Write-Intensive /Medium-Contention
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Write-Intensive /Medium-Contention

• 60% of txns are accessing 20% of the database.
• DL−DETECT – The worst because more conflicts. Spend more time trying to find

deadlocks. Longer stalls.
• NO−WAIT /WAIT −DIE – The best because they are simple. Cost of restarting txns

in DBx1000 is cheap.
• OCC / TIMESTAMP – These protocols are roughly all the same because of copying.
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Write-Intensive / High-Contention

• 90% of txns are accessing 10% of the database.
• All protocols flat-lined and converge to zero at 1000 cores. At high-contention, they all

perform the same.
• NO−WAIT does the best. Only executing 200k txn/sec which is not a lot compared to

the previous graphs. Lots of restarts.
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Bottlenecks

• Lock Thrashing
▶ DL−DETECT , WAIT −DIE

• Timestamp Allocation
▶ All T/O algorithms +WAIT −DIE

• Memory Allocations
▶ OCC +MVCC
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Lock Thrashing

• Each txn waits longer to acquire locks, causing other txn to wait longer to acquire locks.
• Can measure this phenomenon by removing deadlock detection/prevention overhead.

▶ Force txns to acquire locks in primary key order.
▶ Deadlocks are not possible.
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Lock Thrashing
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Timestamp Allocation

• Mutex
▶ Worst option.

• Atomic Addition
▶ Requires cache invalidation on write.

• Batched Atomic Addition
▶ Needs a back-offmechanism to prevent fast burn.

• Hardware Clock
▶ Not sure if it will exist in future CPUs.

• Hardware Counter
▶ Not implemented in existing CPUs.



47 / 51

Concurrency Control in Main-Memory DBMSs Concurrency Control Evaluation

Timestamp Allocation



48 / 51

Concurrency Control in Main-Memory DBMSs Concurrency Control Evaluation

Memory Allocations

• Copying data on every read/write access slows down the DBMS because of contention
on the memory controller.
▶ In-place updates and non-copying reads are not affected as much.

• Default libc malloc is slow. Never use it.
▶ We will discuss this further later in the semester.
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Parting Thoughts

• The design of an in-memory DBMS is significantly different than a disk-oriented
system.

• The world has finally become comfortable with in-memory data storage and
processing.

• Increases in DRAM capacities have stalled in recent years compared to SSDs. . .
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Next Class

• Multi-Version Concurrency Control
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