
1 / 82

Multi-Version Concurrency Control

Lecture 18: Case Studies



2 / 82

Multi-Version Concurrency Control Recap

Recap



3 / 82

Multi-Version Concurrency Control Recap

Multi-Version Concurrency Control

• The DBMS maintains multiple physical versions of a single logical object in the
database:
▶ When a txn writes to an object, the DBMS creates a new version of that object.
▶ When a txn reads an object, it reads the newest version that existed when the txn started.



4 / 82

Multi-Version Concurrency Control Recap

Multi-Version Concurrency Control

• Writers don’t block readers. Readers don’t block writers.
• Read-only txns can read a consistent snapshot without acquiring locks or txn ids.

▶ Use timestamps to determine visibility.

• Easily support time-travel queries.



5 / 82

Multi-Version Concurrency Control Recap

Today’s Agenda

• MVCC Protocols
• Microsoft Hekaton (SQL Server)
• TUM HyPer
• SAP HANA
• CMU Cicada



6 / 82

Multi-Version Concurrency Control MVCC Protocols

MVCC Protocols



7 / 82

Multi-Version Concurrency Control MVCC Protocols

Snapshot Isolation (SI)

• When a txn starts, it sees a consistent snapshot of the database that existed when that
the txn started.
▶ No torn writes from active txns.
▶ If two txns update the same object, then first writer wins.

• SI is susceptible to the Write Skew Anomaly.



8 / 82

Multi-Version Concurrency Control MVCC Protocols

Write Skew Anomaly



9 / 82

Multi-Version Concurrency Control MVCC Protocols

Write Skew Anomaly



10 / 82

Multi-Version Concurrency Control MVCC Protocols

Isolation Level Hierarchy



11 / 82

Multi-Version Concurrency Control MVCC Protocols

Concurrency Control Protocol

• Approach 1: Timestamp Ordering
▶ Assign txns timestamps that determine serial order.
▶ Considered to be original MVCC protocol.

• Approach 2: Optimistic Concurrency Control
▶ Three-phase protocol from last class.
▶ Use private workspace for new versions.

• Approach 3: Two-Phase Locking
▶ Txns acquire appropriate lock on physical version before they can read/write a logical

tuple.



12 / 82

Multi-Version Concurrency Control MVCC Protocols

Tuple Format



13 / 82

Multi-Version Concurrency Control MVCC Protocols

Timestamp Ordering (MVTO)



14 / 82

Multi-Version Concurrency Control MVCC Protocols

Timestamp Ordering (MVTO)



15 / 82

Multi-Version Concurrency Control MVCC Protocols

Timestamp Ordering (MVTO)



16 / 82

Multi-Version Concurrency Control MVCC Protocols

Timestamp Ordering (MVTO)



17 / 82

Multi-Version Concurrency Control MVCC Protocols

Timestamp Ordering (MVTO)



18 / 82

Multi-Version Concurrency Control MVCC Protocols

Timestamp Ordering (MVTO)



19 / 82

Multi-Version Concurrency Control MVCC Protocols

Timestamp Ordering (MVTO)



20 / 82

Multi-Version Concurrency Control MVCC Protocols

Two-Phase Locking (MV2PL)



21 / 82

Multi-Version Concurrency Control MVCC Protocols

Two-Phase Locking (MV2PL)



22 / 82

Multi-Version Concurrency Control MVCC Protocols

Two-Phase Locking (MV2PL)



23 / 82

Multi-Version Concurrency Control MVCC Protocols

Two-Phase Locking (MV2PL)



24 / 82

Multi-Version Concurrency Control MVCC Protocols

Two-Phase Locking (MV2PL)



25 / 82

Multi-Version Concurrency Control MVCC Protocols

Observation



26 / 82

Multi-Version Concurrency Control MVCC Protocols

Observation



27 / 82

Multi-Version Concurrency Control MVCC Protocols

Observation



28 / 82

Multi-Version Concurrency Control MVCC Protocols

Observation



29 / 82

Multi-Version Concurrency Control MVCC Protocols

PostgreSQL: Txn Id Wraparound

• Set a flag in each tuple header that says that it is frozen in the past. Any new txn id
will always be newer than a frozen version.

• Runs the vacuum before the system gets close to this upper limit.
• Otherwise it must stop accepting new commands when the system gets close to the

max txn id.



30 / 82

Multi-Version Concurrency Control Microsoft Hekaton

Microsoft Hekaton



31 / 82

Multi-Version Concurrency Control Microsoft Hekaton

Microsoft Hekaton

• Incubator project started in 2008 to create new OLTP engine for MSFT SQL Server
(MSSQL).
▶ Reference

• Had to integrate with MSSQL ecosystem.
• Had to support all possible OLTP workloads with predictable performance.

▶ Single-threaded partitioning (e.g., H-Store/VoltDB) works well for some applications but
terrible for others.

https://vldb.org/pvldb/vol5/p298_per-akelarson_vldb2012.pdf


32 / 82

Multi-Version Concurrency Control Microsoft Hekaton

Hekaton MVCC

• Each txn is assigned a timestamp when they begin (BeginTS) and when they commit
(CommitTS).

• Each tuple contains two timestamps that represents their visibility and current state:
▶ BEGIN-TS: The BeginTS of the active txn or the CommitTS of the committed txn that

created it.
▶ END-TS: The BeginTS of the active txn that created the next version or infinity or the

CommitTS of the committed txn that created it.



33 / 82

Multi-Version Concurrency Control Microsoft Hekaton

Hekaton: Operations



34 / 82

Multi-Version Concurrency Control Microsoft Hekaton

Hekaton: Operations



35 / 82

Multi-Version Concurrency Control Microsoft Hekaton

Hekaton: Operations



36 / 82

Multi-Version Concurrency Control Microsoft Hekaton

Hekaton: Operations



37 / 82

Multi-Version Concurrency Control Microsoft Hekaton

Hekaton: Operations



38 / 82

Multi-Version Concurrency Control Microsoft Hekaton

Hekaton: Operations



39 / 82

Multi-Version Concurrency Control Microsoft Hekaton

Hekaton: Operations



40 / 82

Multi-Version Concurrency Control Microsoft Hekaton

Hekaton: Operations



41 / 82

Multi-Version Concurrency Control Microsoft Hekaton

Hekaton: Operations



42 / 82

Multi-Version Concurrency Control Microsoft Hekaton

Hekaton: Operations



43 / 82

Multi-Version Concurrency Control Microsoft Hekaton

Hekaton: Transaction State Map

• Global map of all txns’ states in the system:
▶ ACTIVE: The txn is executing read/write operations.
▶ VALIDATING: The txn has invoked commit and the DBMS is checking whether it is

valid.
▶ COMMITTED: The txn is finished but may have not updated its versions’ TS.
▶ TERMINATED: The txn has updated the TS for all of the versions that it created.



44 / 82

Multi-Version Concurrency Control Microsoft Hekaton

Hekaton: Transaction Lifecycle



45 / 82

Multi-Version Concurrency Control Microsoft Hekaton

Hekaton: Transaction Meta-Data

• Read Set
▶ Pointers to physical versions returned to access method.

• Write Set
▶ Pointers to versions updated (old and new), versions deleted (old), and version inserted

(new).
• Scan Set

▶ Stores enough information needed to perform each scan operation again to check result.
• Commit Dependencies

▶ List of txns that are waiting for this txn to finish.



46 / 82

Multi-Version Concurrency Control Microsoft Hekaton

Hekaton: Transaction Validation

• Read Stability
▶ Check that each version read is still visible as of the end of the txn.

• Phantom Avoidance
▶ Repeat each scan to check whether new versions have become visible since the txn began.

• Extent of validation depends on isolation level:
▶ SERIALIZABLE: Read Stability + Phantom Avoidance
▶ REPEATABLE READS: Read Stability
▶ SNAPSHOT ISOLATION: None
▶ READ COMMITTED: None



47 / 82

Multi-Version Concurrency Control Microsoft Hekaton

Hekaton: Optimistic vs. Pessimistic

• Optimistic Txns:
▶ Check whether a version read is still visible at the end of the txn.
▶ Repeat all index scans to check for phantoms.

• Pessimistic Txns:
▶ Use shared & exclusive locks on records and buckets.
▶ No validation is needed.
▶ Separate background thread to detect deadlocks.



48 / 82

Multi-Version Concurrency Control Microsoft Hekaton

Hekaton: Optimistic vs. Pessimistic



49 / 82

Multi-Version Concurrency Control Microsoft Hekaton

Hekaton: Lessons

• Use only lock-free data structures
▶ No latches, spin locks, or critical sections
▶ Indexes, txn map, memory alloc, garbage collector
▶ Example: Bw-Trees

• Only one single serialization point in the DBMS to get the txn’s begin and commit
timestamp
▶ Atomic Addition (CAS)



50 / 82

Multi-Version Concurrency Control Microsoft Hekaton

Observation

• Read/scan set validations are expensive if the txns access a lot of data.
• Appending new versions hurts the performance of OLAP scans due to pointer chasing

& branching.
• Record-level conflict checks may be too coarse-grained and incur false positives.



51 / 82

Multi-Version Concurrency Control Hyper

Hyper



52 / 82

Multi-Version Concurrency Control Hyper

Hyper MVCC

• Column-store with delta record versioning.
• Reference

▶ In-Place updates for non-indexed attributes
▶ Delete/Insert updates for indexed attributes.
▶ Newest-to-Oldest Version Chains
▶ No Predicate Locks / No Scan Checks

• Avoids write-write conflicts by aborting txns that try to update an uncommitted object.

https://dl.acm.org/doi/10.1145/2723372.2749436


53 / 82

Multi-Version Concurrency Control Hyper

Hyper: Storage Architecture



54 / 82

Multi-Version Concurrency Control Hyper

Hyper: Storage Architecture



55 / 82

Multi-Version Concurrency Control Hyper

Hyper: Storage Architecture



56 / 82

Multi-Version Concurrency Control Hyper

Hyper: Storage Architecture



57 / 82

Multi-Version Concurrency Control Hyper

Hyper: Validation

• First-Writer Wins
▶ If version vector is not null, then it always points to the last committed version.
▶ Do not need to check whether write-sets overlap.

• Check the redo buffers of txns that committed after the validating txn started.
▶ Compare the committed txn’s write set for phantoms using Precision Locking.
▶ Only need to store the txn’s read predicates and not its entire read set.

https://dl.acm.org/citation.cfm?id=582340


58 / 82

Multi-Version Concurrency Control Hyper

Hyper: Precision Locking



59 / 82

Multi-Version Concurrency Control Hyper

Hyper: Precision Locking



60 / 82

Multi-Version Concurrency Control Hyper

Hyper: Precision Locking



61 / 82

Multi-Version Concurrency Control Hyper

Hyper: Precision Locking



62 / 82

Multi-Version Concurrency Control Hyper

Hyper: Version Synopses



63 / 82

Multi-Version Concurrency Control Hyper

Hyper: Version Synopses



64 / 82

Multi-Version Concurrency Control SAP HANA

SAP HANA



65 / 82

Multi-Version Concurrency Control SAP HANA

SAP HANA

• In-memory HTAP DBMS with time-travel version storage (N2O).
• Reference

▶ Supports both optimistic and pessimistic MVCC.
▶ Latest versions are stored in time-travel space.
▶ Hybrid storage layout (row + columnar).

• Based on P*TIME, TREX, and MaxDB.
• First released in 2012.

https://dl.acm.org/doi/10.1145/2213836.2213946


66 / 82

Multi-Version Concurrency Control SAP HANA

SAP HANA: Version Storage

• Store the oldest version in the main data table.
• Each tuple maintains a flag to denote whether there exists newer versions in the

version space.
• Maintain a separate hash table that maps record identifiers to the head of version chain.



67 / 82

Multi-Version Concurrency Control SAP HANA

SAP HANA: Version Storage



68 / 82

Multi-Version Concurrency Control SAP HANA

SAP HANA: Transactions

• Instead of embedding meta-data about the txn that created a version with the data,
store a pointer to a context object.
▶ Reads are slower because you must follow pointers.
▶ Large updates are faster because it’s a single write to update the status of all tuples.

• Store meta-data about whether a txn has committed in a separate object as well.



69 / 82

Multi-Version Concurrency Control SAP HANA

SAP HANA: Version Storage



70 / 82

Multi-Version Concurrency Control SAP HANA

SAP HANA: Version Storage



71 / 82

Multi-Version Concurrency Control Cicada

Cicada



72 / 82

Multi-Version Concurrency Control Cicada

MVCC Limitations

• Computation & Storage Overhead
▶ Most MVCC schemes use indirection to search a tuple’s version chain. This increases CPU

cache misses.
▶ Also requires frequent garbage collection to minimize the number versions that a thread

must evaluate.
• Shared Memory Writes

▶ Most MVCC schemes store versions in "global" memory in the heap without considering
locality.

• Timestamp Allocation
▶ All threads access single shared counter.



73 / 82

Multi-Version Concurrency Control Cicada

OCC Limitations

• Frequent Aborts
▶ Txns will abort too quickly under high contention, causing high churn.

• Extra Reads & Writes
▶ Each txn must copy tuples into their private workspace to ensure repeatable reads. It then

has to check whether it read consistent data when it commits.
• Index Contention

▶ Txns install "virtual" index entries to ensure unique-key invariants.



74 / 82

Multi-Version Concurrency Control Cicada

CMU Cicada

• In-memory OLTP engine based on optimistic MVCC with append-only storage (N2O).
• Reference

▶ Best-effort Inlining
▶ Loosely Synchronized Clocks
▶ Contention-Aware Validation
▶ Index Nodes Stored in Tables

• Designed to be scalable for both low- and high-contention workloads.

https://dl.acm.org/doi/10.1145/3035918.3064015


75 / 82

Multi-Version Concurrency Control Cicada

Cicada: Best-Effort Inlining

• Record Meta-data

• Record meta-data is stored in
a fixed location.

• Threads will attempt to inline
read-mostly version within
this meta-data to reduce
version chain traversals.



76 / 82

Multi-Version Concurrency Control Cicada

Cicada: Fast Validation

• Contention-aware Validation
▶ Validate access to recently modified records first.

• Early Consistency Check
▶ Pre-validate access set before making global writes.
▶ Skip if all recent txns committed successfully.

• Incremental Version Search
▶ Resume from last search location in version list.



77 / 82

Multi-Version Concurrency Control Cicada

Cicada: Index Storage



78 / 82

Multi-Version Concurrency Control Cicada

Cicada: Low Contention



79 / 82

Multi-Version Concurrency Control Cicada

Cicada: High Contention



80 / 82

Multi-Version Concurrency Control Conclusion

Conclusion



81 / 82

Multi-Version Concurrency Control Conclusion

Parting Thoughts

• There are several other implementation factors for an MVCC DBMS beyond the four
main design decisions that we discussed last class.

• Need to balance the trade-offs between indirection and performance.



82 / 82

Multi-Version Concurrency Control Conclusion

Next Class

• Wellness Day
• Midterm Exam
• Query Optimization


	Multi-Version Concurrency Control
	Recap
	MVCC Protocols
	Microsoft Hekaton
	Hyper
	SAP HANA
	Cicada
	Conclusion


