Lecture 19: Rule-Based Query Optimization

Optimization 1

Recap

2/36

Optimization 1 SRt

Anatomy of a Database System [Monologue]

(=
VN = Cot LR
Application IZZER Y] 0 u
oz) Svystem q — Schema Info e
Cgtdog E: __?__ _\
L
© SQL Query O Logical
Plan o o
Schoma nfo Optimizer
SQL Rewriter
(Optional) .
Name—Internal ID Lz Rewr(‘;fﬂ'd) Og?aymal
n

© sQL Query

loal
O

Executor Q
eAbstract
Syntax

ree

https://dsf.berkeley.edu/papers/fntdb07-architecture.pdf

Recep
Anatomy of a Database System [Monologue]

Process Manager
> Manages client connections
Query Processor
> Parse, plan and execute queries on top of storage manager

Transactional Storage Manager
> Knits together buffer management, concurrency control, logging and recovery
Shared Utilities

> Manage hardware resources across threads

https://dsf.berkeley.edu/papers/fntdb07-architecture.pdf

Recep
Anatomy of a Database System [Monologue]

Process Manager
> Connection Manager + Admission Control
Query Processor
> Query Parser
> Query Optimizer (a.k.a., Query Planner)
> Query Executor
Transactional Storage Manager
> Lock Manager
> Access Methods (a.k.a., Indexes)
> Buffer Pool Manager
> Log Manager
Shared Utilities

> Memory, Disk, and Networking Manager

https://dsf.berkeley.edu/papers/fntdb07-architecture.pdf

Recap
Today’s Agenda

e Motivation
* Relational Algebra Equivalences

e Nested Queries

Optimization 1 Motivation

Motivation

Motivation
Query Optimization

e Remember that SQL is declarative.

> User tells the DBMS what answer they want, not how to get the answer.
e There can be a big difference in performance based on plan is used:

> Hours — Seconds

Motivation
IBM System R

e First implementation of a query optimizer from the 1970s.

> People argued that the DBMS could never choose a query plan better than what a human
could write.

e Many concepts and design decisions from the System R optimizer are still used today.

Motivation
Query Optimization

e Approach 1: Heuristics / Rules

> Rewrite the query to remove stupid / inefficient things.
> These techniques may need to examine catalog, but they do not need to examine data.

e Approach 2: Cost-based Search

> Use a model to estimate the cost of executing a plan.
> Evaluate multiple equivalent plans for a query and pick the one with the lowest cost.

Optimization 1 Motivation

Anatomy of a Database System [Monologue]

(=
VN = Cot LR
Application IZZER Y] 0 u
oz) Svystem q — Schema Info e
Cgtdog E: __?__ _\
L
© SQL Query O Logical
Plan o o
Schoma nfo Optimizer
SQL Rewriter
(Optional) .
Name—Internal ID Lz Rewr(‘;fﬂ'd) Og?aymal
n

© sQL Query

loal
O

Executor Q
eAbstract
Syntax

ree

https://dsf.berkeley.edu/papers/fntdb07-architecture.pdf

Motivation
Logical vs. Physical Plans

e The optimizer generates a mapping of a logical algebra expression to the optimal
equivalent physical algebra expression.
e Physical operators define a specific execution strategy using an access path.

> They can depend on the physical format of the data that they process (i.e., sorting,
compression).
> Not always a 1:1 mapping from logical to physical.

Motivation
Query Optimization is NP-Hard

e This is the hardest part of building a DBMS.
e If you are good at this, you will get paid well.

e People are starting to look at employing ML to improve the accuracy and efficacy of
optimizers.

(@©clsib2 0B Relational Algebra Equivalences

Relational Algebra Equivalences

Relational Algebra Equivalences

e Two relational algebra expressions are equivalent if they generate the same set of
tuples.

e The DBMS can identify better query plans without a cost model.
e This is often called query rewriting.

Optimization 1

Predicate Pushdown

SELECT s.name, e.cid

FROM student AS s, enrolled AS e
WHERE s.sid = e.sid

AND e.grade = 'A’

Thame, cid(Ograge—a(Studentxenrolled))

= Dalx 16 / 36

Predicate Pushdown

SELECT s.name, e.cid

FROM student AS s, enrolled AS e
WHERE s.sid = e.sid

AND e.grade = 'A’

": s.name,e.cid ":s.name,e.cid

4
9 grade="A’ ' Ms.sid:e.sid

. ~
N s.sid=e.sid Ggrade:’A’
~
student enrolled student enrolled

= = = Dalx 17 / 36

Predicate Pushdown

SELECT s.name, e.cid

FROM student AS s, enrolled AS e
WHERE s.sid = e.sid

AND e.grade = 'A’

Thame, cid(Ograge=a(Studentxenrolled))

Thame, cid(StUdentN (Gg,ade=-A-(en rolled)))

Do 18 /36

Relational Algebra Equivalences

e Selections:

> Perform filters as early as possible.

> Reorder predicates so that the DBMS applies the most selective one first.

> Break a complex predicate, and push down o}, Ap,A..p. (R) = 0p, (0p, (... 0p, (R)))
e Simplify a complex predicate

> (X=Y AND Y=3) —» X=3 AND Y=3

Relational Algebra Equivalences

e Projections:

» Perform them early to create smaller tuples and reduce intermediate results (if duplicates
are eliminated)
> Project out all attributes except the ones requested or required (e.g., joining keys)

e This is not important for a column store

(@©clsib2 0B Relational Algebra Equivalences

Projection Pushdown

SELECT s.name, e.cid

WHERE s.sid = e.sid
AND e.grade = 'A’

FROM student AS s, enrolled AS e

n s.name,e.cid
t

D] s-sic=e sid »
/

A
Ggrade:’A’

N
student enrolled

n s.name,e.cid

t
M s.sid=e.sid
[3
sid, cid
sid,nameTC
rade='A"
O,

student enrolled

(@©clsib2 0B Relational Algebra Equivalences

Impossible / Unnecessary Predicates

CREATE TABLE A (
id INT PRIMARY KEY,
val INT NOT NULL);

SELECT * FROM A WHERE 1 = 0; --- No Results
SELECT * FROM A WHERE 1 1;

SELECT * FROM A;

Join Elimination

SELECT Al.*

FROM A AS Al JOIN A AS A2
ON Al.id = A2.id;

SELECT * FROM A;

23/36

Ignoring Projections

SELECT * FROM A AS Al
WHERE EXISTS(SELECT val FROM A AS A2

WHERE Al.id = A2.id);

SELECT * FROM A;

Do 24 /36

Relational Algebra Equivalences
Merging Predicates

SELECT * FROM A WHERE val BETWEEN 1 AND 100 OR val BETWEEN 50 AND 150;

SELECT * FROM A WHERE val BETWEEN 1 AND 150;

Relational Algebra Equivalences

e Joins:
> Commutative: RXS = SXR
> Associative: (RXS)XT = RX(SXT)

e How many different orderings are there for an n-way join?

Relational Algebra Equivalences

e How many different orderings are there for an n-way join?
e Catalan number: ~ 4,

> Exhaustive enumeration will be too slow.
> We'll later look at how an optimizer prunes the search space.

Optimization 1 Nested Sub-Queries

Nested Sub-Queries

Nested Sub-Queries
Nested Sub-Queries

e The DBMS treats nested sub-queries in the WHERE clause as functions that take
parameters and return a single value or set of values.
e Two Approaches:

> Rewrite to de-correlate and/or flatten them
> Decompose nested query and store result to temporary table

Nested Sub-Queries
Nested Sub-Queries: Rewrite

SELECT name FROM sailors AS S
WHERE EXISTS (
SELECT * FROM reserves AS R
WHERE S.sid = R.sid
AND R.day '2018-10-15"

SELECT name

FROM sailors AS S, reserves AS R
WHERE S.sid = R.sid

AND R.day = '2018-10-15"

Nested Sub-Queries: Decompose

e For each sailor with the highest rating (over all sailors) and at least two reservations for
red boats, find the sailor id and the earliest date on which the sailor has a reservation
for a red boat.

SELECT S.sid, MIN(R.day)

FROM sailors S, reserves R, boats B
WHERE S.sid = R.sid

AND R.bid = B.bid

AND B.color = 'red'

AND S.rating = (SELECT MAX(S2.rating)

FROM sailors S2)

GROUP BY S.sid
HAVING COUNT(*) > 1

Decomposing Queries

e For harder queries, the optimizer breaks up queries into blocks and then concentrates
on one block at a time.

e Sub-queries are written to a temporary table that are discarded after the query finishes.

Decomposing Queries

SELECT S.sid, MIN(R.day) --- Outer Block
FROM sailors S, reserves R, boats B
WHERE S.sid = R.sid
AND R.bid = B.bid
AND B.color = 'red'
AND S.rating = () --- Result of Nested Query
GROUP BY S.sid
HAVING COUNT(*) > 1

SELECT MAX(rating) FROM sailors

Optimization 1 Conclusion

Conclusion

Conclusion
Query Optimization

e We can use static rules and heuristics to optimize a query plan without needing to
understand the contents of the database.

e Filter as early as possible.

Next Class

e Cost-based Query Optimization

A

36/36

	Optimization 1
	Recap
	Motivation
	Relational Algebra Equivalences
	Nested Sub-Queries
	Conclusion

