Lecture 20: Cost-Based Query Optimization

Recap

2/52

< E ▶ < E ▶ E • 9 < @

Recap

Aprile Lekite

ADA E AEAAEA

3/52

Approach 1: Heuristics / Rules

Query Optimization

- Rewrite the query to remove stupid / inefficient things.
- These techniques may need to examine catalog, but they do not need to examine data.

Approach 2: Cost-based Search

- Use a model to estimate the cost of executing a plan.
- Evaluate multiple equivalent plans for a query and pick the one with the lowest cost.

Recap

Plan Cost Estimation

 How long will a query take?
 CPU: Small cost; tough to estimate Disk: Number of block transfers
 Memory: Amount of DRAM used
 Network: Number of messages

Ake? h to estimate k transfers

6/52

- How many tuples will be read/written?
- It is too expensive to run every possible plan to determine this information, so the DBMS need a way to derive this information...

The DBMS stores internal statistics about tables, attributes, and indexes in its internal eatalog.

Self-tunic) DOMSE

7/52

SPORE SEVEN

- Different systems update them at different times
- Manual invocations:

Statistics

- Postgres/SQLite: ANALYZE
- Oracle/MySQL: ANALYZE TABLE
- SQL Server: UPDATE STATISTICS
- DB2: RUNSTATS

<=> < = > < = > < = < 0 < 0 < 8 / 52

Statistics

For each relation R, the DBMS maintains the following information:
 N_R: Number of tuples in R.
 V(A, R): Number of distinct values for attribute A.

Derivable Statistics

PLINB

< E ト 4 E ト E の Q ペ 10 / 52

- The **selection cardinality** SC(A, R) is the average number of records with a value for an attribute A is given by: NR / V(A, R)
- Note that this assumes **data uniformity**.

10,000 students, 10 colleges – how many students in SCS?

Selection Statistics

- Equality predicates on unique keys are easy to estimate.
- What about more complex predicates? What is their selectivity?

Complex Predicates

- The selectivity (sel) of a predicate P is the fraction of tuples that qualify.
- Formula depends on type of predicate:
 - Equality
 Range
 Negation
 Conjunction
 Disjunction

Selection – Complex Predicates

- Assume that V(age, people) has five distinct values (0–4) and $N_R = 5$
- Equality Predicate: A=constant
 - $sel(A=constant) = SC(P) / N_R$
 - Example: sel(age=2) = $\frac{1}{5}$

SELECT * FROM people WHERE age = 2

Selection – Complex Predicates

- Disjunction:
 - sel(P1 ∨ P2) = sel(P1) + sel(P2) sel(P1∧P2) = sel(P1) + sel(P2) sel(P1) × sel(P2)
 sel(age=2 OR name LIKE 'A%')

< E ト 4 E ト E の Q C 17 / 52

• This again assumes that the selectivities are independent.

SELECT * FROM people WHERE age = 2 OR name LIKE 'A%'

Problinhin P1 PBBB P2

Selection Cardinality

• Assumption 1: Uniform Data

The distribution of values (except for the heavy hitters) is the same.

• Assumption 2: Independent Predicates

The predicates on attributes are independent

Assumption 3: Inclusion Principle

The domain of join keys overlap such that each key in the inner relation will also exist in the outer table.

<= ト < E ト E の Q へ 18 / 52

Correlated Attributes Dependent

- Consider a database of automobiles:
 - Number of Makes = 10, Number of Models = 100
- And the following query: (make = "Honda"ANDmodel = "Accord")
- With the independence and uniformity assumptions, the selectivity is:
 - ▶ $1/10 \times 1/100 = 0.001$
- But since only Honda makes Accords, the real selectivity is 1/100 = 0.01

Accord => Hunda

• Our formulas are nice, but we assume that data values are uniformly distributed.

• Our formulas are nice, but we assume that data values are uniformly distributed.

▲ 臣 ▶ ▲ 臣 ▶ 臣 • • • • • • •

21/52

• Our formulas are nice, but we assume that data values are uniformly distributed.

Histograms With Quantiles

• Vary the **width of buckets** so that the total number of occurrences for each bucket is roughly the same.

ADA E AEAAA

23 / 52

Histograms With Quantiles

• Vary the <u>width of buckets</u> so that the total number of occurrences for each bucket is roughly the same.

- Approp	Query Prens					
ISs also collect samples from t	tables to estimate selectivities.					
oles when the underlying table	es changes significantly.					
illion tuples						
SELECT AVG(age) FROM people WHERE age > 50						
ge status						
3 Senior	1 pyly					
Sophomore	1000.1					
5 Freshman						
5 Junior						
3 Senior						
	Approved to the terms of the second s					

Sampling

- Modern DBMSs also collect samples from tables to estimate selectivities.
- Update samples when the underlying tables changes significantly.
- Example: 1 billion tuples

• se	l(age>5	0) =	1/3		
SELE	CT AVG(a	ge)	FROM people	e WHERE age > 50	
id	name	age	status		
1001	Shiyi	58	Senior		
1003	Mark	25	Junior		
1005	Alice	38	Senior	4	•

Observation

• Now that we can (roughly) estimate the **selectivity of predicates**, what can we actually do with them?

Plan Enumeration

<= ▶ < = ▶ = の < 28 / 52

Query Optimization

- After performing rule-based rewriting, the DBMS will enumerate different plans for the query and estimate their costs.
 Single relation Multiple relations
- It chooses the best plan it has seen for the query after exhausting all plans or <u>some timeout</u>.

Plan Enumeration

Single-Relation Query Planning

- Pick the best access method.
 Sequential Scan
 Binary Search (clustered indexes)
 Index Scan
- Predicate evaluation ordering.
- Simple heuristics are often good enough for this. OLTP queries are especially easy. . .

OLTP Query Planning

• Query planning for OLTP queries is easy because they are **sargable** (Search Argument Able).

< E ト 4 E ト E の Q C 31 / 52

- It is usually just picking the best index.
- Joins are almost always on foreign key relationships with a small cardinality.
- Can be implemented with simple heuristics.

```
CREATE TABLE people (
   id INT PRIMARY KEY,
   val INT NOT NULL,
);
```

SELECT * FROM people WHERE id = 123;

- As number of joins increases, number of alternative plans grows rapidly
 - We need to restrict search space.
- Fundamental decision in System R: only left-deep join trees are considered.

Modern DBMSs do not always make this assumption anymore.

Multi-Relation Query Planning

• Fundamental decision in System R: Only consider left-deep join trees.

▲■▶▲■▶ ■ のへで

34/52

Multi-Relation Query Planning

- Fundamental decision in System R: Only consider left-deep join trees.
- Allows for **fully pipelined** plans where intermediate results are not written to temp files.

Not all left-deep trees are fully pipelined.

Plan Enumeration

36 / 52

Multi-Relation Query Planning

Enumerate the orderings

- Example: Left-deep tree 1, Left-deep tree 2...
- Enumerate the physical join operator for each logical join operator

Example: Hash, Sort-Merge, Nested Loop...

• Enumerate the **access paths** for each table

Example: Index 1, Index 2, Seq Scan...

• Use dynamic programming to reduce the number of cost estimations.

Candidate Plan Example

```
How to generate plans for search algorithm:
Enumerate relation orderings
Enumerate join algorithm choices
Enumerate access method choices
No real DBMSs does it this way. It's actually more messy...
```

SELECT * FROM R, S, T WHERE R.a = S.a AND S.b = T.b

Candidate Plans

• Step 1: Enumerate relation orderings

 $4 \equiv \mathbf{1} + \mathbf{1} = \mathbf{1} + \mathbf{2} + \mathbf{2} = \mathbf{1} + \mathbf{2} + \mathbf{2$

Candidate Plans

• Step 2: Enumerate join algorithm choises

Step #2: Enumerate join algorithm choices

1 Join gen

Candidate Plans

• Step 3: Enumerate access method choices

Postgres Optimizer

Jublean • Examines all types of join trees Left-deep, Right-deep, bushy • Two optimizer implementations: Traditional Dynamic Programming Approach Genetic Query Optimizer (GEQO) • Postgres uses the traditional algorithm when number of tables in query is less than 12 and switches to GEOO when there are 12 or more.

Postgres Optimizer

Postgres Optimizer

Conclusion

Conclusion

Parting Thoughts

Cost Est Selectivity estimations Key assumptions in query optimization Uniformity Independence Histograms Join selectivity plan Envouk Dynamic programming for join orderings

< E ト 4 E ト E の Q の 51 / 52

Next Class

Design Decisions in Query Optimization