
1 / 52

Cost-Based Query Optimization

Lecture 20: Cost-Based Query Optimization



2 / 52

Cost-Based Query Optimization Recap

Recap



3 / 52

Cost-Based Query Optimization Recap

Query Optimization

• Approach 1: Heuristics / Rules
▶ Rewrite the query to remove stupid / inefficient things.
▶ These techniques may need to examine catalog, but they do not need to examine data.

• Approach 2: Cost-based Search
▶ Use a model to estimate the cost of executing a plan.
▶ Evaluate multiple equivalent plans for a query and pick the one with the lowest cost.



4 / 52

Cost-Based Query Optimization Recap

Today’s Agenda

• Plan Cost Estimation
• Plan Enumeration



5 / 52

Cost-Based Query Optimization Plan Cost Estimation

Plan Cost Estimation



6 / 52

Cost-Based Query Optimization Plan Cost Estimation

Cost Estimation

• How long will a query take?
▶ CPU: Small cost; tough to estimate
▶ Disk: Number of block transfers
▶ Memory: Amount of DRAM used
▶ Network: Number of messages

• How many tuples will be read/written?
• It is too expensive to run every possible plan to determine this information, so the

DBMS need a way to derive this information. . .



7 / 52

Cost-Based Query Optimization Plan Cost Estimation

Statistics

• The DBMS stores internal statistics about tables, attributes, and indexes in its internal
catalog.

• Different systems update them at different times.
• Manual invocations:

▶ Postgres/SQLite: ANALYZE
▶ Oracle/MySQL: ANALYZE TABLE
▶ SQL Server: UPDATE STATISTICS
▶ DB2: RUNSTATS



8 / 52

Cost-Based Query Optimization Plan Cost Estimation

Statistics

• For each relation R, the DBMS maintains the following information:
▶ NR: Number of tuples in R.
▶ V(A,R): Number of distinct values for attribute A.



9 / 52

Cost-Based Query Optimization Plan Cost Estimation

Derivable Statistics

• The selection cardinality SC(A,R) is the average number of records with a value for
an attribute A is given by: NR / V(A,R)

• What could go wrong with this estimate?



10 / 52

Cost-Based Query Optimization Plan Cost Estimation

Derivable Statistics

• The selection cardinality SC(A,R) is the average number of records with a value for
an attribute A is given by: NR / V(A,R)

• Note that this assumes data uniformity.
▶ 10,000 students, 10 colleges – how many students in SCS?



11 / 52

Cost-Based Query Optimization Plan Cost Estimation

Selection Statistics

• Equality predicates on unique keys are easy to estimate.
• What about more complex predicates? What is their selectivity?

CREATE TABLE people (
id INT PRIMARY KEY,
val INT NOT NULL,
age INT NOT NULL,
status VARCHAR(16)

);

SELECT * FROM people WHERE id = 123 --- Easier
SELECT * FROM people WHERE val > 1000 --- Harder: Range predicate
SELECT * FROM people WHERE age = 30 AND status = 'Lit' --- Harder:
Complex predicate



12 / 52

Cost-Based Query Optimization Plan Cost Estimation

Complex Predicates

• The selectivity (sel) of a predicate P is the fraction of tuples that qualify.
• Formula depends on type of predicate:

▶ Equality
▶ Range
▶ Negation
▶ Conjunction
▶ Disjunction



13 / 52

Cost-Based Query Optimization Plan Cost Estimation

Selection – Complex Predicates

• Assume that V(age,people) has five distinct values (0–4) and NR = 5
• Equality Predicate: A=constant

▶ sel(A=constant) = SC(P) / NR

▶ Example: sel(age=2) = 1/5

SELECT * FROM people WHERE age = 2



14 / 52

Cost-Based Query Optimization Plan Cost Estimation

Selection – Complex Predicates

• Range Predicate:
▶ sel(A>=a) = (Amax – a) / (Amax – Amin)
▶ Example: sel(age>=2) ≈ (4 – 2) / (4 – 0) ≈ 1/2

SELECT * FROM people WHERE age >= 2



15 / 52

Cost-Based Query Optimization Plan Cost Estimation

Selection – Complex Predicates
• Negation Query:

▶ sel(not P) = 1 – sel(P)
▶ Example: sel(age != 2) = 1 – (1/5) = 4/5

• Observation: Selectivity ≈ Probability

SELECT * FROM people WHERE age != 2



16 / 52

Cost-Based Query Optimization Plan Cost Estimation

Selection – Complex Predicates
• Conjunction:

▶ sel(P1 ∧ P2) = sel(P1) × sel(P2)
▶ sel(age=2 ∧ name LIKE ’A%’)

• This assumes that the predicates are independent.
• Not always true in practice!
SELECT * FROM people WHERE age = 2 AND name LIKE 'A%'



17 / 52

Cost-Based Query Optimization Plan Cost Estimation

Selection – Complex Predicates

• Disjunction:
▶ sel(P1 ∨ P2) = sel(P1) + sel(P2) – sel(P1∧P2) = sel(P1) + sel(P2) – sel(P1) × sel(P2)
▶ sel(age=2 OR name LIKE ’A%’)

• This again assumes that the selectivities are independent.

SELECT * FROM people WHERE age = 2 OR name LIKE 'A%'



18 / 52

Cost-Based Query Optimization Plan Cost Estimation

Selection Cardinality

• Assumption 1: Uniform Data
▶ The distribution of values (except for the heavy hitters) is the same.

• Assumption 2: Independent Predicates
▶ The predicates on attributes are independent

• Assumption 3: Inclusion Principle
▶ The domain of join keys overlap such that each key in the inner relation will also exist in

the outer table.



19 / 52

Cost-Based Query Optimization Plan Cost Estimation

Correlated Attributes

• Consider a database of automobiles:
▶ Number of Makes = 10, Number of Models = 100

• And the following query: (make = ”Honda”ANDmodel = ”Accord”)
• With the independence and uniformity assumptions, the selectivity is:

▶ 1/10 × 1/100 = 0.001

• But since only Honda makes Accords, the real selectivity is 1/100 = 0.01



20 / 52

Cost-Based Query Optimization Plan Cost Estimation

Cost Estimation

• Our formulas are nice, but we assume that data values are uniformly distributed.



21 / 52

Cost-Based Query Optimization Plan Cost Estimation

Cost Estimation

• Our formulas are nice, but we assume that data values are uniformly distributed.



22 / 52

Cost-Based Query Optimization Plan Cost Estimation

Cost Estimation

• Our formulas are nice, but we assume that data values are uniformly distributed.



23 / 52

Cost-Based Query Optimization Plan Cost Estimation

Histograms With Quantiles

• Vary the width of buckets so that the total number of occurrences for each bucket is
roughly the same.



24 / 52

Cost-Based Query Optimization Plan Cost Estimation

Histograms With Quantiles

• Vary the width of buckets so that the total number of occurrences for each bucket is
roughly the same.



25 / 52

Cost-Based Query Optimization Plan Cost Estimation

Sampling

• Modern DBMSs also collect samples from tables to estimate selectivities.
• Update samples when the underlying tables changes significantly.
• Example: 1 billion tuples

SELECT AVG(age) FROM people WHERE age > 50

id name age status

1001 Shiyi 58 Senior
1002 Rahul 41 Sophomore
1003 Peter 25 Freshman
1004 Mark 25 Junior
1005 Alice 38 Senior



26 / 52

Cost-Based Query Optimization Plan Cost Estimation

Sampling

• Modern DBMSs also collect samples from tables to estimate selectivities.
• Update samples when the underlying tables changes significantly.
• Example: 1 billion tuples
• sel(age>50) = 1/3

SELECT AVG(age) FROM people WHERE age > 50

id name age status

1001 Shiyi 58 Senior
1003 Mark 25 Junior
1005 Alice 38 Senior



27 / 52

Cost-Based Query Optimization Plan Cost Estimation

Observation

• Now that we can (roughly) estimate the selectivity of predicates, what can we
actually do with them?



28 / 52

Cost-Based Query Optimization Plan Enumeration

Plan Enumeration



29 / 52

Cost-Based Query Optimization Plan Enumeration

Query Optimization

• After performing rule-based rewriting, the DBMS will enumerate different plans for
the query and estimate their costs.
▶ Single relation
▶ Multiple relations

• It chooses the best plan it has seen for the query after exhausting all plans or
some timeout.



30 / 52

Cost-Based Query Optimization Plan Enumeration

Single-Relation Query Planning

• Pick the best access method.
▶ Sequential Scan
▶ Binary Search (clustered indexes)
▶ Index Scan

• Predicate evaluation ordering.
• Simple heuristics are often good enough for this.
• OLTP queries are especially easy. . .



31 / 52

Cost-Based Query Optimization Plan Enumeration

OLTP Query Planning

• Query planning for OLTP queries is easy because they are sargable (Search Argument
Able).
▶ It is usually just picking the best index.
▶ Joins are almost always on foreign key relationships with a small cardinality.
▶ Can be implemented with simple heuristics.

CREATE TABLE people (
id INT PRIMARY KEY,
val INT NOT NULL,

);

SELECT * FROM people WHERE id = 123;



32 / 52

Cost-Based Query Optimization Plan Enumeration

Multi-Relation Query Planning

• As number of joins increases, number of alternative plans grows rapidly
▶ We need to restrict search space.

• Fundamental decision in System R: only left-deep join trees are considered.
▶ Modern DBMSs do not always make this assumption anymore.



33 / 52

Cost-Based Query Optimization Plan Enumeration

Multi-Relation Query Planning

• Fundamental decision in System R: Only consider left-deep join trees.



34 / 52

Cost-Based Query Optimization Plan Enumeration

Multi-Relation Query Planning

• Fundamental decision in System R: Only consider left-deep join trees.



35 / 52

Cost-Based Query Optimization Plan Enumeration

Multi-Relation Query Planning

• Fundamental decision in System R: Only consider left-deep join trees.
• Allows for fully pipelined plans where intermediate results are not written to temp

files.
▶ Not all left-deep trees are fully pipelined.



36 / 52

Cost-Based Query Optimization Plan Enumeration

Multi-Relation Query Planning

• Enumerate the orderings
▶ Example: Left-deep tree 1, Left-deep tree 2. . .

• Enumerate the physical join operator for each logical join operator
▶ Example: Hash, Sort-Merge, Nested Loop. . .

• Enumerate the access paths for each table
▶ Example: Index 1, Index 2, Seq Scan. . .

• Use dynamic programming to reduce the number of cost estimations.



37 / 52

Cost-Based Query Optimization Plan Enumeration

Dynamic Programming



38 / 52

Cost-Based Query Optimization Plan Enumeration

Dynamic Programming



39 / 52

Cost-Based Query Optimization Plan Enumeration

Dynamic Programming



40 / 52

Cost-Based Query Optimization Plan Enumeration

Dynamic Programming



41 / 52

Cost-Based Query Optimization Plan Enumeration

Dynamic Programming



42 / 52

Cost-Based Query Optimization Plan Enumeration

Candidate Plan Example

• How to generate plans for search algorithm:
▶ Enumerate relation orderings
▶ Enumerate join algorithm choices
▶ Enumerate access method choices

• No real DBMSs does it this way. It’s actually more messy. . .

SELECT * FROM R, S, T
WHERE R.a = S.a AND S.b = T.b



43 / 52

Cost-Based Query Optimization Plan Enumeration

Candidate Plans

• Step 1: Enumerate relation orderings



44 / 52

Cost-Based Query Optimization Plan Enumeration

Candidate Plans

• Step 2: Enumerate join algorithm choices



45 / 52

Cost-Based Query Optimization Plan Enumeration

Candidate Plans

• Step 3: Enumerate access method choices



46 / 52

Cost-Based Query Optimization Plan Enumeration

Postgres Optimizer

• Examines all types of join trees
▶ Left-deep, Right-deep, bushy

• Two optimizer implementations:
▶ Traditional Dynamic Programming Approach
▶ Genetic Query Optimizer (GEQO)

• Postgres uses the traditional algorithm when number of tables in query is less than 12
and switches to GEQO when there are 12 or more.



47 / 52

Cost-Based Query Optimization Plan Enumeration

Postgres Optimizer



48 / 52

Cost-Based Query Optimization Plan Enumeration

Postgres Optimizer



49 / 52

Cost-Based Query Optimization Plan Enumeration

Postgres Optimizer



50 / 52

Cost-Based Query Optimization Conclusion

Conclusion



51 / 52

Cost-Based Query Optimization Conclusion

Parting Thoughts

• Selectivity estimations
• Key assumptions in query optimization

▶ Uniformity
▶ Independence
▶ Histograms
▶ Join selectivity

• Dynamic programming for join orderings



52 / 52

Cost-Based Query Optimization Conclusion

Next Class

• Design Decisions in Query Optimization


	Cost-Based Query Optimization
	Recap
	Plan Cost Estimation
	Plan Enumeration
	Conclusion


